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Lecture 2: Systems Defined by Differential Equations



Introduction

In this Lecture, you will learn:

1. Quantitative illustration of the benefits of Feedback
2. Some basics of modeling using differential equations.
3. The State-Space Framework.
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PART 1: An Example of Control without Dynamics

Just for Motivation: Makes it easier to solve for the

CRUISE CONTROL

Plant: The Automobile (Car)

e Input: Throttle Position, 0;p,0ttic-

° : Real Velocity, Virue.

e Dynamics: No Dynamics! Speed
is proportional to throttle
(proportional gain).

Virue = 10 - Othrottie

output Plant input

The gain factor is 10 mph/°.
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Cruise Control: Open-Loop vs. Closed-Loop

Open Loop Control

First lets start with open loop control

Vdswred throttle Vlluc

gontrol > Engine >
Desired ystem Gas Speed

Speed

Actuator: Throttle

Controller:
e Input: Desired Velocity, Vdesired-
° : Throttle, O:hrottie-

Open Loop Controller We use a simple controller based on our knowledge of
the plant.

1
Othrottle = ==  Vdesired
—— 10 ~——
output ~ input

controller
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Cruise Control: Open-Loop vs. Closed-Loop

Closed Loop Control: The Error signal

Now lets try using closed loop control

Control O R Engine Viwe Speed‘
Desired ©.etocity System

Speed

Actuator: Throttle
Sensor: Speedometer

Look at the CONTROLLER:
e Input: Error in Velocity, eyeiocity = Virue — Vdesired-
° : Throttle, 0:hr0tt1c-
Proportional Feedback: Amplify the error signal by a scalar gain k.

ethrottle =—k- Evelocity = -k - (Vtrue - Vdesired)
—— ~—~
output control input
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Closed Loop vs. Open Loop (Solving for Viyue)
: Two equations:

Virue = 10 - Oinrotiie and Othrottie = Tovdesired

Combining, we get

Virue = 10-—Vdesired = Vdesired-

10
Open-loop control has No Error!
: Two equations:
Virue = 10 - Otnrottie and Othrottle = —k (Vtrue - Vdesired) .

Combining these, we get Virye = —10 - k(Virue — Vdesired)-

Lets Choose k& = 10.

10- k 100
Virue = deeSired = ﬁvdesired = .99Vdesired-

Closed-loop control has 1% Error.
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Impact of Error and Disturbances

Comparison:
e Open Loop: No error
e Closed Loop: Small error

> Error gets very small if Kk — oo, since

10-k
1+10-k

Virue = Vdesired — Vdesired-

Question: Why use feedback?
e Answer: Life is Messy.
Problems:
. : What if our model is wrong by 10%, so

Virue = 11- ethrottle

° : An Incline of ig;sturbance degrees will reduce the throttle by
5/°.

Aaifhrottle =-.5- Z-disi&vu’bzmce
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Impact of Error and Disturbances
Open Loop

Let Vdesired = 50mph, idistufbance =—-1°.
Now Recalculate the Open Loop Output : Virue

Incline l Liisturbance

enu ottle
NG
>

]

true

O R

Control
System

Virue = 11(0throttle —.5- Z.distturbance)

Othrotile = 1 Vdesired = 5

we have
Virue = 11(5 +.5) = 60.5mph

Which is NOT ACCEPTABLE!!!
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Impact of Error and Disturbances
Closed Loop

Recalculate the Closed Loop output : Virue
e Plant with Disturbance: viyye = 11 (Othrottic — -5 - idisturbance)

e Controller: 0:,0tt1c = —k (Verue — Vdesired) = —k(Virue — 50)
Combine these equations and solve for viyye.
Virue = 11(—k  Virue +50-k+.5) = =11 -k - Vipue + 11-50 -k + 5.5
Solving for vipue Yyields

oo Uk+1 0 11011
true T R 111

50 = .991 - 50 = 49.6mph

M. Peet Lecture 2: Control Systems 9 /30



PART 2: A Brief Review of Modeling

Ordinary Differential Equations (ODEs)

Models can be
e static (x = Ku).

e dynamic (& = —x + u).

Physics-based Modeling
e Mechanics and circuits define ODEs

e Identify states (position, voltage, et c.)

e |dentify governing differential equations.

Newton invented ODE models in 1684:

e Newton's Second Law: (« is position) l—x(t)’

2 F()
ﬁx(t) =F(t)/m -

e z(t) is a state (can also be a signal (output))

e F(t) is a signal (input)
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Review: Modeling

Differential Equations

Nonlinear Differential Equations:

Where
e This is a first-order differential equation
e u(t) is the Input
o is the
e z(t) is the state variable.
» position, heading, velocity, etc.

e f, g are functions (possibly vector-valued).
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Review: Equations of Motion (EOMs)

Linear Equations

, our equations of motion will be Linear. e.g.
Z(t) = ba(t) + ax(t)

where

e a and b are constants.

Linear equations are better because
e The Laplace Transform exists (Lecture 4)
e Stability is easy
» & = ax is stable if a < 0 and unstable if a > 0.

Nonlinear Equations should be (Lecture 3)!11
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Review: Equations of Motion
Higher Orders or Multiple Variables

Types of EOM:

Coupled Differential Equations:

T = ax + bz
Z=cx+dz

e The motion of x affects the motion of z and vice-versa.
Higher Order Derivatives:

T =aZl+br+cx

e Commonly obtained from Newton's Second law.
» Or anything with inertia....

AKA F:fw
) = —F(t
#1) = —F(1)
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Dynamic Model: Suspension System
Mass-Spring Model

We wish to study the motion of the vehicle subject to disturbances.
e Model the car as a solid mass
o Control the vertical motion of the car (z(t))

P <I—> x(¥)

M = fin)

li
B

(@)
Inputs: Force, f(1).
: Displacement, = z(t).

Definition 1.

A system with one input and one output is Single-Input, Single-Output (SISO).
A system with more than one input or more than one output is Multi-Input
Multi-Output (MIMO)
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Dynamic Model: Suspension System
Mass-Spring Model

Plant Dynamics: Equations of Motion

e Spring Force: Opposes motion in = with spring constant K.
Fy(t) = —Kuxz(t)

e Damper Force: Opposes motion in & with damping coefficient ¢
Fy(t) = —ci(t)

e Newton's Second Law:

System Model:
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Standard Forms

Frequency Domain

Once we have our dynamic model

K 1, .
i(t)=——=z(t) — £:c(t) +—f(t) Differential Equations
m m m
= z(t) Output Equation

This model can be expressed in two standard forms
e Transfer Function
e State-Space

We will discuss these in more depth soon. For now:

Apply the Laplace Transform to both equations and solve for

the output.
K c 1.
2. N ~ . . .
(s) = ——i(s) — — = Differential Equat
s°2(s) mx(s) ms:c(s) + mf(s) ifferential Equations
9(s) = 2(s) Output Equation
which yields
1 R
Sttt R
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Suspension System with Wheel Dynamics
More Detailed Model

Now, we add the dynamics of the wheel. m

c

ﬁ

There are two states: J_
States: X,
T .

e Vehicle Position, x1
e Wheel Position, x2

Our Input is the position of the surface

of the road. %

Inputs:

e Road Surface, u
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SuspensionSimulation.mp4
Media File (video/mp4)


Suspension Model: Free Body 1

This time we write the dynamics of both the wheel and the car.

L
jj
i

Car Dynamics: Equations of Motion
e Spring 1 Force on Car: Fyy .(t) = —K1(z1(t) — x2(t))
o Damper Force on Car: Fy.(t) = —c(21(t) — $2(t))

e Newton's Second Law:

Moy (t) = Fao(t) + Faelt)
= —Ka(z1(t) = 22(1)) = (i1 (t) = 22(1))
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Suspension Model: Free Body 2

— I
1
7T

Wheel Dynamics: Equations of Motion
e Spring 1 Force on Wheel: Fy1 ,,(t) = K1(x1(t) — x2(1))
e Spring 2 Force on Wheel: Fyo ,,(t) = —Ka(z2(t) — u(t))
o Damper Force on Wheel: Fy,,(t) = c(&1(t) — @2(t))
e Newton’s Second Law:

Mauia(t) = Futw(t) + Feouw(t) + Fau(t)
= Ki(z1(t) — 22(t)) — Ka(wa(t) — ulf)) + c(dn (t) — #2(t))
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Equations of Motion

Combining the dynamics, we get the coupled system dynamics.

L
ixz
Y1

M@ (t) = K1(z1(t) — 22(t)) — Ko(za(t) — u(l)) + c(d1(t) — 42(t))
meiy(t) = —Ki(z1(t) — w2(t)) — c(21(t) — 22())

- [

This is quite complicated.

e To simplify, we would like to use a Standard Form.
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Other Sources of Models

Angular Momentum
Newton’s Second Law Applied to Rigid Bodies

The rate of change of angular momentum is

given by -®/~-'-‘“L i ®m.-.
> M(t) = Ta(t) = 16(t) 1= bt + )
I= —r|I|'

a(t) = 6(t) is the angular acceleration.

G Tl rd, anin
Im 3 "' L |nma..n

e O(t) is the state (angular displacement) _ :::.:‘;'; :
e [ is the moment of inertia. W PSR Y e W
e M(t) is the torque (moment). U O;; ' :tmﬁ'.:
o i Il_ i g
§= i
T T I et 25
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Other Sources of Models

Voltage Laws

Kirchhoff’s Current Law (KCL):
Current is conserved at each junction

Zik(t) =0
k

Kirchhoff’s Voltage Law (KVL): Net

Voltage change around any loop is zero. ok e
STVi(t) = 0 O oni
k . .

These are combined with standard voltage laws such as voltage drop across a
resister, inductor and capacitor:

Vi(t) = Ri(t) —ir(t) = = VL(t)
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PART 3: State-Space Formulation

A Standard Form for writing Diff. Eqns.

is a way of writing first order differential equation using matrices.

Z(t) = AZ(t)

where Z(t) is a vector and A € R™*"™ is a square matrix.

Example:
d T -1 0 1 il
T | = 2 0 0 T2
dt | 0 —1 1] |as

Is equivalent to writing the three differential equations

T, = —x1+ 23
i,‘g = 2371
T3 = —X9 + T3

Writing equations in state-space has many advantages
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Review: Equations of Motion
Multiple Variables and State-Space
Consider the system

T =ar+ by
y=cx+dy

When we have multiple coupled equations: Convert to State-Space:
dlz| _fa b] |z
dt ly] e d] |y

x = Ax

Which is easily expressed as
where

e X is a vector.

e A is a matrix.
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State-Space Form for Systems

Definition 2.
State-Space Form is a convenient way of representing /inear multivariate or
MIMO systems using 4 matrices.

z(t) = Ax(t) + Bul(t)
= Cz(t) + Du(t)
e 1 is the vector of Inputs.
e 4 is the vector of
e z is the State.
u € R™, y € RP, and x € R™ can be vectors of any dimension. However, the
matrices must be compatable (the right size):
A e R B e R™™™
C e RP*® D e RP*™
e u € R™ means u is a real vector of length m.

e C € RP*™ means C' is a matrix with p rows and n columns.

M. Peet Lecture 2: Control Systems 25 /30



Putting Things in State-Space Form

Reducing Higher Order Dynamics

When we have higher order derivatives,
T (t) = ax(t) + bx(t) + u(t)
=x(t) + ul(t)

we can put it in state-space form by
e Introducing new variables.

e Define a new variable for every derivative term except for the the highest
order one.
> eg. Letxy =z, xo =2 and z3 = .
e Add a new first order differential equation for each new variable.
> eg. j,‘l = T2 and j,‘z = I3
e Then put in state-space form.
So, for example, we would have 3 equations

il(t) = {L‘Q(t)
Ta(t) = w3(?)
i‘g(t) e ailfg(t) + bl‘l(t) + ul(t)
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Putting Things in State-Space Form

Using our first-order equations:

a1 (t) = wa(t); o (t) = ws(t)
x3(t) = axa(t) + bxq (t) + u(l) =z (t) + u(l)

We construct the matrix representation:

So that
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State-Space Form: Suspension System

Recall the dynamics:
Mo (t) = Ki(21(t) — 22(t)) — Ka(wa(t) — ull)) + c(@1(t) — d2(t))
meiy (t) = —Ki(w1(t) — x2(t)) — c(@1(t) — d2(t))
£
.T?Q(t)

Define the new variables z;

z1(t) = 21(t) 22(t) = d1(t) 23(t) = a2(t) z4(t) = @2(1)

Which yields the following set of equations: (/) = [28] ,
z1(t) = 22(t)
fa(t) = 12 (a(0) — 20(8) — ~(aa(®) — 24(0)
z3(t) = 24(t)
£a(t) = 52 (1(0) = 20(0)) = 3 2 (aa(t) = (1) + = (zal) — 24(0)
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Constructing State-Space Systems

—=u(t)
Moy

(t) +

My

My
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Summary

What have we learned today?

A Static Model of Cruise-Control
e Simple static model and Control
e Open Loop Control
e Closed Loop Control
e Benefits of Feedback
Dynamic Models
e Including Inputs and
e Using Newton's Laws
e MIMO and SISO systems
o Other sources of models (Kirchhoff's Laws)
State-Space

e State-Space Form
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