
Systems Analysis and Control

Matthew M. Peet
Arizona State University

Lecture 2: Systems Defined by Differential Equations

Introduction

In this Lecture, you will learn:

1. Quantitative illustration of the benefits of Feedback

2. Some basics of modeling using differential equations.

3. The State-Space Framework.

M. Peet Lecture 2: Control Systems 2 / 30

PART 1: An Example of Control without Dynamics
Just for Motivation: Makes it easier to solve for the output

CRUISE CONTROL

Plant: The Automobile (Car)

• Input: Throttle Position, θthrottle.

• Output: Real Velocity, vtrue.

• Dynamics: No Dynamics! Speed
is proportional to throttle
(proportional gain).

vtrue︸ ︷︷ ︸
output

= 10︸︷︷︸
Plant

· θthrottle︸ ︷︷ ︸
input

The gain factor is 10 mph/◦.

M. Peet Lecture 2: Control Systems 3 / 30

Cruise Control: Open-Loop vs. Closed-Loop
Open Loop Control

First lets start with open loop control

Control

System
Speed

Engine
Desired

Speed
Gas

v
desired

θ
throttle

v
true

Actuator: Throttle

Controller:

• Input: Desired Velocity, vdesired.

• Output: Throttle, θthrottle.

Open Loop Controller We use a simple controller based on our knowledge of
the plant.

θthrottle︸ ︷︷ ︸
output

=
1

10︸︷︷︸
controller

vdesired︸ ︷︷ ︸
input

M. Peet Lecture 2: Control Systems 4 / 30

Cruise Control: Open-Loop vs. Closed-Loop
Closed Loop Control: The Error signal

Now lets try using closed loop control

Control

System

Speed

Engine
Desired

Speed

-v
desired θ

throttle v
true

e
velocity

v
true

Actuator: Throttle

Sensor: Speedometer

Look at the CONTROLLER:
• Input: Error in Velocity, evelocity = vtrue − vdesired.
• Output: Throttle, θthrottle.

Proportional Feedback: Amplify the error signal by a scalar gain k.

θthrottle︸ ︷︷ ︸
output

= −k · evelocity = −k︸︷︷︸
control

· (vtrue − vdesired)︸ ︷︷ ︸
input

M. Peet Lecture 2: Control Systems 5 / 30

Closed Loop vs. Open Loop (Solving for vtrue)

Open Loop: Two equations:

vtrue = 10 · θthrottle and θthrottle =
1

10
vdesired

Combining, we get

vtrue = 10
1

10
vdesired = vdesired.

Open-loop control has No Error!

Closed Loop: Two equations:

vtrue = 10 · θthrottle and θthrottle = −k (vtrue − vdesired) .

Combining these, we get vtrue = −10 · k(vtrue − vdesired).
Lets Choose k = 10.

vtrue =
10 · k

1 + 10 · k
vdesired =

100

101
vdesired = .99vdesired.

Closed-loop control has 1% Error.

M. Peet Lecture 2: Control Systems 6 / 30

Impact of Error and Disturbances

Comparison:

• Open Loop: No error

• Closed Loop: Small error
I Error gets very small if k →∞, since

vtrue =
10 · k

1 + 10 · kvdesired → vdesired.

Question: Why use feedback?

• Answer: Life is Messy.

Problems:

• Modeling Errors: What if our model is wrong by 10%, so

vtrue = 11 · θthrottle

• Disturbances: An Incline of idisturbance degrees will reduce the throttle by
.5/◦.

∆θthrottle = −.5 · idisturbance

M. Peet Lecture 2: Control Systems 7 / 30

Impact of Error and Disturbances
Open Loop

Let vdesired = 50mph, idisturbance = −1◦.
Now Recalculate the Open Loop Output : Vtrue

Control

System

Incline

.5

11
v
desired

θ
throttle

v
true

i
disturbance

vtrue = 11(θthrottle − .5 · idisturbance)

θthrottle =
1

10
vdesired = 5

we have
vtrue = 11(5 + .5) = 60.5mph

Which is NOT ACCEPTABLE!!!.

M. Peet Lecture 2: Control Systems 8 / 30

Impact of Error and Disturbances
Closed Loop

Recalculate the Closed Loop output : Vtrue

• Plant with Disturbance: vtrue = 11 · (θthrottle − .5 · idisturbance)
• Controller: θthrottle = −k (vtrue − vdesired) = −k(vtrue − 50)

Combine these equations and solve for vtrue.

vtrue = 11(−k · vtrue + 50 · k + .5) = −11 · k · vtrue + 11 · 50 · k + 5.5

Solving for vtrue yields

vtrue =
11k + .11

1 + 11k
50 =

110.11

111
50 = .991 · 50 = 49.6mph

M. Peet Lecture 2: Control Systems 9 / 30

PART 2: A Brief Review of Modeling
Ordinary Differential Equations (ODEs)

Models can be

• static (x = Ku).

• dynamic (ẋ = −x+ u).

Physics-based Modeling

• Mechanics and circuits define ODEs

• Identify states (position, voltage, et c.)

• Identify governing differential equations.

Newton invented ODE models in 1684:

• Newton’s Second Law: (x is position)

d2

dt2
x(t) = F (t)/m

• x(t) is a state (can also be a signal (output))

• F (t) is a signal (input)

x(t)
F(t)

m

M. Peet Lecture 2: Control Systems 10 / 30

Review: Modeling
Differential Equations

Nonlinear Differential Equations:

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Where

• This is a first-order differential equation

• u(t) is the Input

• y(t) is the Output

• x(t) is the state variable.
I position, heading, velocity, etc.

• f , g are functions (possibly vector-valued).

M. Peet Lecture 2: Control Systems 11 / 30

Review: Equations of Motion (EOMs)
Linear Equations

Usually, our equations of motion will be Linear. e.g.

ẍ(t) = bẋ(t) + ax(t)

where

• a and b are constants.

Linear equations are better because

• The Laplace Transform exists (Lecture 4)

• Stability is easy
I ẋ = ax is stable if a < 0 and unstable if a ≥ 0.

Nonlinear Equations should be Linearized (Lecture 3)!!!

M. Peet Lecture 2: Control Systems 12 / 30

Review: Equations of Motion
Higher Orders or Multiple Variables

Types of EOM:

Coupled Differential Equations:

ẋ = ax+ bz

ż = cx+ dz

• The motion of x affects the motion of z and vice-versa.

Higher Order Derivatives:

...
x = aẍ+ bẋ+ cx

• Commonly obtained from Newton’s Second law.
I Or anything with inertia....

F = mẍ
AKA

ẍ(t) =
1

m
F (t).

M. Peet Lecture 2: Control Systems 13 / 30

Dynamic Model: Suspension System
Mass-Spring Model

We wish to study the motion of the vehicle subject to disturbances.

• Model the car as a solid mass

• Control the vertical motion of the car (x(t))

Inputs: Force, f(t).
Outputs: Displacement, y(t) = x(t).

Definition 1.

A system with one input and one output is Single-Input, Single-Output (SISO).
A system with more than one input or more than one output is Multi-Input
Multi-Output (MIMO)

M. Peet Lecture 2: Control Systems 14 / 30

Dynamic Model: Suspension System
Mass-Spring Model

Plant Dynamics: Equations of Motion

• Spring Force: Opposes motion in x with spring constant K.

Fs(t) = −Kx(t)

• Damper Force: Opposes motion in ẋ with damping coefficient c

Fd(t) = −cẋ(t)

• Newton’s Second Law:

mẍ(t) = Fs(t) + Fd(t) + f(t)

System Model:

ẍ(t) = −K
m
x(t)− c

m
ẋ(t) +

1

m
f(t)

y(t) = x(t)

M. Peet Lecture 2: Control Systems 15 / 30

Standard Forms
Frequency Domain

Once we have our dynamic model

ẍ(t) = −K
m
x(t)− c

m
ẋ(t) +

1

m
f(t) Differential Equations

y(t) = x(t) Output Equation

This model can be expressed in two standard forms
• Transfer Function
• State-Space

We will discuss these in more depth soon. For now:

Transfer Function: Apply the Laplace Transform to both equations and solve for
the output.

s2x̂(s) = −K
m
x̂(s)− c

m
sx̂(s) +

1

m
f̂(s) Differential Equations

ŷ(s) = x̂(s) Output Equation

which yields

ŷ(s) =
1

ms2 + cs+K
f̂(s)

M. Peet Lecture 2: Control Systems 16 / 30

Suspension System with Wheel Dynamics
More Detailed Model

Now, we add the dynamics of the wheel.

There are two states:
States:

• Vehicle Position, x1

• Wheel Position, x2

x
1

x
2

m
c

m
w

u

Our Input is the position of the surface
of the road.
Inputs:

• Road Surface, u

M. Peet Lecture 2: Control Systems 17 / 30

SuspensionSimulation.mp4
Media File (video/mp4)

Suspension Model: Free Body 1

This time we write the dynamics of both the wheel and the car.

x
1

x
2

m
c

m
w

u

Car Dynamics: Equations of Motion

• Spring 1 Force on Car: Fs1,c(t) = −K1(x1(t)− x2(t))

• Damper Force on Car: Fd,c(t) = −c(ẋ1(t)− ẋ2(t))

• Newton’s Second Law:

mcẍ1(t) = Fs1,c(t) + Fd,c(t)

= −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

M. Peet Lecture 2: Control Systems 18 / 30

Suspension Model: Free Body 2

x
1

x
2

m
c

m
w

u

Wheel Dynamics: Equations of Motion

• Spring 1 Force on Wheel: Fs1,w(t) = K1(x1(t)− x2(t))

• Spring 2 Force on Wheel: Fs2,w(t) = −K2(x2(t)− u(t))

• Damper Force on Wheel: Fd,w(t) = c(ẋ1(t)− ẋ2(t))

• Newton’s Second Law:

mwẍ2(t) = Fs1,w(t) + Fs2,w(t) + Fd,w(t)

= K1(x1(t)− x2(t))−K2(x2(t)− u(t)) + c(ẋ1(t)− ẋ2(t))

M. Peet Lecture 2: Control Systems 19 / 30

Equations of Motion

Combining the dynamics, we get the coupled system dynamics.

x
1

x
2

m
c

m
w

u

mwẍ2(t) = K1(x1(t)− x2(t))−K2(x2(t)− u(t)) + c(ẋ1(t)− ẋ2(t))

mcẍ1(t) = −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

y(t) =

[
x1(t)
x2(t)

]
This is quite complicated.

• To simplify, we would like to use a Standard Form.

M. Peet Lecture 2: Control Systems 20 / 30

Other Sources of Models
Angular Momentum

Newton’s Second Law Applied to Rigid Bodies

The rate of change of angular momentum is
given by ∑

M(t) = Iα(t) = Iθ̈(t)

• α(t) = θ̈(t) is the angular acceleration.

• θ(t) is the state (angular displacement)

• I is the moment of inertia.

• M(t) is the torque (moment).

M. Peet Lecture 2: Control Systems 21 / 30

Other Sources of Models
Voltage Laws

Kirchhoff’s Current Law (KCL):
Current is conserved at each junction∑

k

ik(t) = 0

Kirchhoff’s Voltage Law (KVL): Net
Voltage change around any loop is zero.∑

k

Vk(t) = 0

These are combined with standard voltage laws such as voltage drop across a
resister, inductor and capacitor:

Vr(t) = Rir(t)
d

dt
iL(t) =

1

L
VL(t)

d

dt
Vc(t) =

1

C
ic(t)

M. Peet Lecture 2: Control Systems 22 / 30

PART 3: State-Space Formulation
A Standard Form for writing Diff. Eqns.

State-Space is a way of writing first order differential equation using matrices.

~̇x(t) = A~x(t)

where ~x(t) is a vector and A ∈ Rn×n is a square matrix.

Example:

d

dt

x1x2
x3

 =

−1 0 1
2 0 0
0 −1 1

x1x2
x3


Is equivalent to writing the three differential equations

ẋ1 = −x1 + x3

ẋ2 = 2x1

ẋ3 = −x2 + x3

Writing equations in state-space has many advantages

M. Peet Lecture 2: Control Systems 23 / 30

Review: Equations of Motion
Multiple Variables and State-Space

Consider the system

ẋ = ax+ by

ẏ = cx+ dy

When we have multiple coupled equations: Convert to State-Space:

d

dt

[
x
y

]
=

[
a b
c d

] [
x
y

]
Which is easily expressed as

ẋ = Ax

where

• x is a vector.

• A is a matrix.

M. Peet Lecture 2: Control Systems 24 / 30

State-Space Form for Systems

Definition 2.

State-Space Form is a convenient way of representing linear multivariate or
MIMO systems using 4 matrices.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

• u is the vector of Inputs.

• y is the vector of Outputs.

• x is the State.

u ∈ Rm, y ∈ Rp, and x ∈ Rn can be vectors of any dimension. However, the
matrices must be compatable (the right size):

A ∈ Rn×n B ∈ Rn×m

C ∈ Rp×n D ∈ Rp×m

• u ∈ Rm means u is a real vector of length m.
• C ∈ Rp×n means C is a matrix with p rows and n columns.

M. Peet Lecture 2: Control Systems 25 / 30

Putting Things in State-Space Form
Reducing Higher Order Dynamics

When we have higher order derivatives,
...
x (t) = aẋ(t) + bx(t) + u(t)

y(t) = x(t) + u(t)

we can put it in state-space form by
• Introducing new variables.

Procedure:
• Define a new variable for every derivative term except for the the highest

order one.
I e.g. Let x1 = x, x2 = ẋ and x3 = ẍ.

• Add a new first order differential equation for each new variable.
I e.g. ẋ1 = x2 and ẋ2 = x3

• Then put in state-space form.
So, for example, we would have 3 equations

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = ax2(t) + bx1(t) + u(t)

M. Peet Lecture 2: Control Systems 26 / 30

Putting Things in State-Space Form

Using our first-order equations:

ẋ1(t) = x2(t); ẋ2(t) = x3(t)

ẋ3(t) = ax2(t) + bx1(t) + u(t) y(t) = x1(t) + u(t)

We construct the matrix representation:

ẋ(t) =

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

0 1 0
0 0 1
b a 0

x1(t)
x2(t)
x3(t)

+

0
0
1

u(t)

y(t) =
[
1 0 0

] x1(t)
x2(t)
x3(t)

+
[
1
]
u(t)

So that

A =

0 1 0
0 0 1
b a 0

 B =

0
0
1


C =

[
1 0 0

]
D =

[
1
]

M. Peet Lecture 2: Control Systems 27 / 30

State-Space Form: Suspension System

Recall the dynamics:

mwẍ2(t) = K1(x1(t)− x2(t))−K2(x2(t)− u(t)) + c(ẋ1(t)− ẋ2(t))

mcẍ1(t) = −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

y(t) =

[
x1(t)
x2(t)

]
Define the new variables zi

z1(t) = x1(t) z2(t) = ẋ1(t) z3(t) = x2(t) z4(t) = ẋ2(t)

Which yields the following set of equations: y(t) =

[
z1(t)
z3(t)

]
,

ż1(t) = z2(t)

ż2(t) = −K1

mc
(z1(t)− z3(t))− c

mc
(z2(t)− z4(t))

ż3(t) = z4(t)

ż4(t) =
K1

mw
(z1(t)− z3(t))− K2

mw
(z3(t)− u(t))) +

c

mw
(z2(t)− z4(t))

M. Peet Lecture 2: Control Systems 28 / 30

Constructing State-Space Systems

ż1(t) = z2(t)

ż2(t) = −K1

mc
z1(t)− c

mc
z2(t) +

K1

mc
z3(t) +

c

mc
z4(t)

ż3(t) = z4(t)

ż4(t) =
K1

mw
z1(t) +

c

mw
z2(t)−

(
K1

mw
+
K2

mw

)
z3(t)− c

mw
z4(t) +

K2

mw
u(t)

y(t) =

[
z1(t)
z3(t)

]

ż1(t)
ż2(t)
ż3(t)
ż4(t)

 =


0 1 0 0
−K1

mc
− c

mc

K1

mc

c
mc

0 0 0 1
K1

mw

c
mw

−
(

K1

mw
+ K2

mw

)
− c

mw



z1(t)
z2(t)
z3(t)
z4(t)

+


0
0
0
K2

mw

u(t)

y(t) =

[
1 0 0 0
0 0 1 0

]
z1(t)
z2(t)
z3(t)
z4(t)

+

[
0
0

]
u(t)

M. Peet Lecture 2: Control Systems 29 / 30

Summary

What have we learned today?

A Static Model of Cruise-Control

• Simple static model and Control

• Open Loop Control

• Closed Loop Control

• Benefits of Feedback

Dynamic Models

• Including Inputs and Outputs

• Using Newton’s Laws

• MIMO and SISO systems

• Other sources of models (Kirchhoff’s Laws)

State-Space

• State-Space Form

M. Peet Lecture 2: Control Systems 30 / 30

	Control Systems

