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Introduction

In this Lecture, you will learn:

Simple ways to use state-space.
e How to find the output given an input.

e Linearity

Linear Systems.
e The Fourier Series

» Representing signals as the sum of sinusoids.
> Representing systems using response to sinusoids.

e The Fourier Transform

e The Laplace Transform

> Representing signals in the frequency domain.
> Representing systems using response to sinusoids.

How to represent a system using a Transfer Function.

e How to find the output given an input.
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Recall the state-space form

Find the output given the input

State-Space:

& = Ax(t) + Bu(t) Input Output
=Cz(t)+ Du(t)  x(0)=0 vl g;f;:'z:]pace Ly

Basic Question: Given an input function, «(¢), what is the output?
Solution: Solve the differential Equation.

Example: The equation
z(t) = ax(t), x(0) = g

has solution
z(t) = ey,
But we are interested in I

Not a rule, but sometimes... If it works for scalars, it also works for matrices.
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The Solution to State-Space
State-Space:
& = Az(t) + Bul(t)
= Cx(t) + Dul(t) xz(0) =0

The equation
x(t) = Ax(t), x(0) = xo

Solution:
z(t) = etlxg

The Matrix exponential is defined by the series expansion
1 1 1
e =T+ (At) + E(At)2 + E(At)?’ 4ot E(At)k 4o

Don’t Worry! You will never have to calculate a matrix exponential by hand.
The important part is that

d
z(t) = aemzo = AefMzy = Ax(t), and 2(0) = %z = 2
What happens when we add an input instead of an initial condition?
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Find the output given the input
State-Space:

& = Ax(t) + Bu(t) v -
1.60 —Dollars per Euro
ety r o) a®=0
The equation %"”
B(t) = Az(t) + Bult),  2(0)=0 ..
Solution: o0

2 $ 8 g 3 8 8 5 8 g @

i
y(t) = / CeAt=*) Bu(s)ds + Du(t)
0

Proof.
Check the solution:

t
x(t):/ e By(s)ds
0

t
&(t) = e"Bu(t) + A/ eAt=9) Bu(s)ds = Bu(t) + Ax(t)
0
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Calculating the Output
Numerical Example, u(t) = sin(t)
State-Space:
&= —x(t) + ult)
= z(t) — .5u(t)
A=-1;, B=1;, C=

Solution:

¢
:/ Ce "= Bu(s)ds + Dul(t)
0

t
1

= e_t/ e’ sin(s)ds — = sin(t)
0 2

1 1

= ie_t (e*(sins — cos s)[f) — 5 sin(t)
1 1

= ie_t (e'(sint — cost) + 1) — 3 sin(t)
1

=3 (e_t — Co8 t)
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Calculating Complicated Outputs

Linearity

Problem: Finding the integral of complicated functions is tough.
Solution: Use the linearity of the system.

A system G is a MAP from input functions to

output functions. e.g., G : u — Input Outgut
u =Gu
G y

t
— / CeA(t*s)B//(s)ds + Dul(t)
0

Definition 1.
A SYSTEM is Linear if for any scalars, « and /3, and any inputs u; and us,

G(auy + Bug) = aGuy + BGus

State-space systems are
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Properties of Linearity

Properties: Multiplication
o = Gu implies ay = G(au).
e larger input implies a larger output.
Properties: Addition
° = Guy and 1> = Guo implies G(u; + us) =y +
e Can calculate complicated outputs by addition.
» Step 1: Decompose input into simple parts: u(t) = w1 (t) + u2(t)
» Step 2: Calculate simple outputs: y1 and ya.
> Step 3: Calculate the complicated output: y(t) = y1(t) + y2(¢)

Example: Using previous system,

Let u(t) = 2sin(t) — cos(t).
Question: Can we compute the output without recalculating the integral???
8/23
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Example of Linearity

Recall our simple state-space system:
A=-1; B=1;, C=1;, D=-5
e We found the that input w; () = sin(¢) produces output
y1(t) = % (e7! — cost).

Now if ug(t) = cos(nt), we have
t
ya(t) = / Cet=%) Buy(s)ds + Dus(t)
0

t
1
= e*t/ e® cos(ns)ds — 5 cos(nt)
0

1 ' 1
7€_t/ (e(l-i-ln)s + 6(1_1")5) ds — — COS(TLt)
2" J, 2

t
_ %e*t { 1 e(1m)s o 16(11”)5} - %cos(nt)

(14n) (1—1n) 0
—e !+ cos(nt) + nsin(nt) 1
= T —5 cos(nt)
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Example of Linearity

For our simple state-space system:

o We found the that input u;(t) = sin(t) produces output

y1(t) = % (e7t — cost).
Now if uz(t) = cos(t), we have

y2(t) = = (sint — e ")

1

2

So for the , u(t) = 2uq (t) — ua(t), we find
y(t) = 2y1(t) — 2(t)

= (e_t — cos t) — % (sint — e_t)

3, 1
256 —cost — —sint
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Frequency Domain version 1: Fourier Series

We calculated the response to a complicated signal

u(t) = 2sin(t) — cos(t)

by adding the responses to the simple sinusoids:

uy(t) = sin(t) and uz(t) = cos(t)

So that y(t) = y1(t) + y=2(t) o A
Question: What about more complicated

signals??7?

Claim: We can recreate ANY signal u(t) by adding v Y
up sinusoids. A Poseadhy

v Y A" \i

Conclusion: Since we know the output when the input is sinusoid, we can
calculate the solution for ANY input signal.
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Frequency Domain version 1: Fourier Series

Question: How do we express our input using sines and

cosines???
Answer: The Fourier Series.

Theorem 2 (Fourier Series).

Any input signal, u on the time interval [—m, 7] is the

combination of sines and cosines:

u(t) = % + i [an sin(nt) + by, cos(nt)]

n=1 N A N

=t / " u(s)sin(ns)ds by = - / " u(s) cos(ns)ds

™) _x -
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Frequency Domain version 1: The Fourier Series

Assume we know the output produced by sinusoids:
* y1,(t) is the output from uq ,,(t) = sin(nt)
o y2,(t) is the output from ug , (t) = cos(nt)
Then for the input

o0
= ?0 Z ap sin(nt) + by, cos(nt)]

The output is

y(t) = *920 +Z any1,n(t) + bpy2,n(t)]

Conclusion: The functions y,,(t) make it very easy to calculate the output for
any input.
Problem: We need an infinite number of a,, and y,,(¢).
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Frequency Domain version 2: The Fourier Transform

An alternative to the Fourier Series is the

Instead of a Sum of sinusoids, we express the signal as an Integral of sinusoids:

u(t) = /0DO a(w) sin(wt)dw + /OOO b(w) cos(wt)dw

rwt elthre—‘Lwt

" and cos(wt) = ——5—):

Wt _o—
24

u(t) = / " )t

— 00

Alternatively, (using sin(wt) =

Here @(ww) is the Fourier Transform of the signal u(t) and is computed as
follows:

Theorem 3.

The Fourier Transform of the signal u can be found as

w(w) = /Oo e~ “hy(t)dt

— 00
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Inverse Fourier Transform

Recall: 4 is the Fourier Transform of u if

In order to recover u from u, we can use the following:

Theorem 4 (Inverse Fourier Transform).

Given 1, the Fourier Transform of w, we can find u as

u(t) = /Oo e (ww) dw

—00
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The Fourier Transform

Example: Step Function

Consider the input signal:

u(t):{o t<0

I t>0 12

The Fourier transform is 0 ; FERAES AR AR
oo
i) = / e " dt
0
_ 1 o] = 1
—w 0 —w

magnitude of u(w)

o
Frequency(w)
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The Fourier Transform

Example

Consider the input signal:

u(t) = et

The Fourier transform is

o0 w=a
w ;ﬁ a
A
=(w
. . . 1%}
¢ is the Dirac Delta function. g
2
‘c
[o)]
©
€
N
7
frequency
We'll do many more examples next lecture.
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The Fourier Transform

The Fourier transform can be applied to samples of music to understand the
frequency composition.

Application: The Graphic Equalizer:

S
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FFT_piano.mp4
Media File (video/mp4)


FFT_equalizer_piano.mp4
Media File (video/mp4)


The Fourier Transform
Application

Perceived Human Hearing

T T T T T T T T T u
156 312 625 125 250 500 1000 2000 4000 8000 16000

Frequency (Hz)

Figure: Equal Loudness Test

Audio Compression
e Sound is communicated in compression waves
e Humans can only hear sound in the range 20Hz-20kHz
e Music signals are usually simpler in frequency content than in time.
e e.g. The .mp3 standard.
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Transfer Functions

Suppose we know the output of a system for every possible input of the form
e—zwt.

e Input u,(t) = e** produces output g(w, t)

Then for any input with Fourier Transform 4 (w), we can calculate the output y
as

y(t) = /00 w(w)g(w, t)dw

Summary:
e Let 4(w) be the Fourier Transform of the input, u(t).
o Let §(ww) be the Fourier Transform of the outut, y(t).
e Then R
J(w) = G(w)i(w)
for some Transfer Function, G

Problem: Sinusoids are NOT REAL! Every signal has to START and STOP...
Next: We consider the Laplace Transform.

M. Peet Lecture 4: Control Systems 20 /23



Causality

bt} i

it}

Definition 5.

In a Causal System, a change in input at a later time u(t + 7) cannot affect the
present output y(t).

Every physical system in the universe is causal.
Causal: Non-Causal
#(t) = a(t) #(t) = a(t +1)
Non-Causal Systems are usually
¢ Noise filtering
> Averages window of future and past.
> Playback must be delayed due to causality

Conclusion: We only consider causal systems in this class.
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The Laplace Transform

Transfer Functions

For causal systems, we can use the Laplace Transform:

Definition 6.

The Laplace Transform of the signal u can be found as

i(s) = /0 " sttt

Similar to the Fourier Transform, we have the following property.

Theorem 7.

For any causal, bounded, linear, time-invariant system, there exists a function
G(s) such that
4(s) = G(s)a(s)

where §(s) is the Laplace Transform of the output.
The function, G is called the Transfer Function of the system.
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Summary

What have we learned today?

Simple ways to use state-space.
e How to find the output given an input.

e Linearity

Linear Systems.
e The Fourier Series

» Representing signals as the sum of sinusoids.
> Representing systems using response to sinusoids.

e The Fourier Transform

e The Laplace Transform

» Representing signals in the frequency domain.
> Representing systems using response to sinusoids.

Next Lecture: Calculating the Laplace Transform
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