Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 4: The Laplace Transform (and Friends)

Introduction

In this Lecture, you will learn:

Simple ways to use state-space.

- How to find the output given an input.
- Linearity

Linear Systems.

- The Fourier Series
 - Representing signals as the sum of sinusoids.
 - Representing systems using response to sinusoids.
- The Fourier Transform
- The Laplace Transform
 - Representing signals in the frequency domain.
 - Representing systems using response to sinusoids.

How to represent a system using a Transfer Function.

• How to find the output given an input.

Recall the state-space form

Find the output given the input

State-Space:

Basic Question: Given an input function, u(t), what is the output?

Solution: Solve the differential Equation.

Example: The equation

$$\dot{x}(t) = ax(t), \qquad x(0) = x_0$$

has solution

$$x(t) = e^{at}x_0,$$

But we are interested in Matrices!!!

Not a rule, but sometimes... If it works for scalars, it also works for matrices.

3 / 23

The Solution to State-Space

State-Space:

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t) \qquad x(0) = 0$$

The equation

$$\dot{x}(t) = Ax(t), \qquad x(0) = x_0$$

Solution:

$$x(t) = e^{At}x_0$$

The Matrix exponential is defined by the series expansion

$$e^{At} = I + (At) + \frac{1}{2}(At)^2 + \frac{1}{6}(At)^3 + \dots + \frac{1}{k!}(At)^k + \dots$$

Don't Worry! You will never have to calculate a matrix exponential by hand. The important part is that

$$\dot{x}(t) = \frac{d}{dt}e^{At}x_0 = Ae^{At}x_0 = Ax(t),$$
 and $x(0) = e^0x_0 = x_0$

What happens when we add an input instead of an initial condition?

M. Peet Lecture 4: Control Systems

Find the output given the input

State-Space:

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t) \qquad x(0) = 0$$

The equation

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x(0) = 0$$

Solution:

$$y(t) = \int_0^t Ce^{A(t-s)} Bu(s) ds + Du(t)$$

Proof.

Check the solution:

$$x(t) = \int_0^t e^{A(t-s)} B\mathbf{u}(s) ds$$

$$\dot{x}(t) = e^0 B\mathbf{u}(t) + A \int_0^t e^{A(t-s)} B\mathbf{u}(s) ds = B\mathbf{u}(t) + Ax(t)$$

Calculating the Output

Numerical Example, $u(t) = \sin(t)$

State-Space:

$$\dot{x} = -x(t) + u(t)$$

 $y(t) = x(t) - .5u(t)$ $x(0) = 0$
 $A = -1;$ $B = 1;$ $C = 1;$ $D = -.5$

Solution:

$$y(t) = \int_0^t Ce^{A(t-s)} Bu(s) ds + Du(t)$$

$$= e^{-t} \int_0^t e^s \sin(s) ds - \frac{1}{2} \sin(t)$$

$$= \frac{1}{2} e^{-t} \left(e^s (\sin s - \cos s)|_0^t \right) - \frac{1}{2} \sin(t)$$

$$= \frac{1}{2} e^{-t} \left(e^t (\sin t - \cos t) + 1 \right) - \frac{1}{2} \sin(t)$$

$$= \frac{1}{2} \left(e^{-t} - \cos t \right)$$

Calculating Complicated Outputs

Linearity

Problem: Finding the integral of complicated functions is tough.

Solution: Use the linearity of the system.

A system G is a MAP from input functions to output functions. e.g., $G: u \mapsto y$

$$y(t) = \int_0^t Ce^{A(t-s)} Bu(s) ds + Du(t)$$

Definition 1.

A SYSTEM is Linear if for any scalars, α and β , and any inputs u_1 and u_2 ,

$$G(\alpha u_1 + \beta u_2) = \alpha G u_1 + \beta G u_2$$

State-space systems are LINEAR.

Properties of Linearity

Properties: Multiplication

- y = Gu implies $\alpha y = G(\alpha u)$.
- · larger input implies a larger output.

Properties: Addition

- $y_1 = Gu_1$ and $y_2 = Gu_2$ implies $G(u_1 + u_2) = y_1 + y_2$.
- Can calculate complicated outputs by addition.
 - ▶ Step 1: Decompose input into simple parts: $u(t) = u_1(t) + u_2(t)$
 - ▶ Step 2: Calculate simple outputs: y_1 and y_2 .
 - ▶ Step 3: Calculate the complicated output: $y(t) = y_1(t) + y_2(t)$

Example: Using previous system,

$$\dot{x} = -x(t) + u(t)$$

$$y(t) = x(t) - .5u(t) \qquad x(0) = 0$$

Let
$$u(t) = 2\sin(t) - \cos(t)$$
.

Question: Can we compute the output without recalculating the integral???

Example of Linearity

Recall our simple state-space system:

$$A = -1;$$
 $B = 1;$ $C = 1;$ $D = -.5$

• We found the that input $u_1(t) = \sin(t)$ produces output $y_1(t) = \frac{1}{2} \left(e^{-t} - \cos t \right)$.

Now if $u_2(t) = \cos(nt)$, we have

$$y_2(t) = \int_0^t Ce^{A(t-s)} Bu_2(s) ds + Du_2(t)$$

$$= e^{-t} \int_0^t e^s \cos(ns) ds - \frac{1}{2} \cos(nt)$$

$$= \frac{1}{2} e^{-t} \int_0^t \left(e^{(1+in)s} + e^{(1-in)s} \right) ds - \frac{1}{2} \cos(nt)$$

$$= \frac{1}{2} e^{-t} \left[\frac{1}{(1+in)} e^{(1+in)s} + \frac{1}{(1-in)} e^{(1-in)s} \right]_0^t - \frac{1}{2} \cos(nt)$$

$$= \frac{-e^{-t} + \cos(nt) + n \sin(nt)}{1 + n^2} - \frac{1}{2} \cos(nt)$$

Example of Linearity

For our simple state-space system:

• We found the that input $u_1(t) = \sin(t)$ produces output $y_1(t) = \frac{1}{2} (e^{-t} - \cos t)$.

Now if $u_2(t) = \cos(t)$, we have

$$y_2(t) = \frac{1}{2} \left(\sin t - e^{-t} \right)$$

So for the composite input, $u(t) = 2u_1(t) - u_2(t)$, we find

$$y(t) = 2y_1(t) - y_2(t)$$

$$= (e^{-t} - \cos t) - \frac{1}{2} (\sin t - e^{-t})$$

$$= \frac{3}{2} e^{-t} - \cos t - \frac{1}{2} \sin t$$

Frequency Domain version 1: Fourier Series

We calculated the response to a complicated signal

$$u(t) = 2\sin(t) - \cos(t)$$

by adding the responses to the simple sinusoids:

$$u_1(t) = \sin(t)$$
 and $u_2(t) = \cos(t)$

So that $y(t) = y_1(t) + y_2(t)$

Question: What about more complicated signals???

Claim: We can recreate $\underline{\mathsf{ANY}}$ signal u(t) by adding up sinusoids.

Conclusion: Since we know the output when the input is sinusoid, we can calculate the solution for <u>ANY</u> input signal.

Frequency Domain version 1: Fourier Series

Question: How do we express our input using sines and cosines???

Answer: The Fourier Series.

Theorem 2 (Fourier Series).

Any input signal, u on the time interval $[-\pi, \pi]$ is the combination of sines and cosines:

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \sin(nt) + b_n \cos(nt)]$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} u(s) \sin(ns) ds$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} u(s) \cos(ns) ds$

Frequency Domain version 1: The Fourier Series

Assume we know the output produced by sinusoids:

- $y_{1,n}(t)$ is the output from $u_{1,n}(t) = \sin(nt)$
- $y_{2,n}(t)$ is the output from $u_{2,n}(t) = \cos(nt)$

Then for the input

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \sin(nt) + b_n \cos(nt)]$$

The output is

$$y(t) = \frac{b_0}{2}y_{2,0}(t) + \sum_{n=1}^{\infty} \left[a_n y_{1,n}(t) + b_n y_{2,n}(t) \right]$$

Conclusion: The functions $y_n(t)$ make it very easy to calculate the output for any input.

Problem: We need an infinite number of a_n and $y_n(t)$.

Frequency Domain version 2: The Fourier Transform

An alternative to the Fourier Series is the Fourier Transform.

Instead of a Sum of sinusoids, we express the signal as an Integral of sinusoids:

$$u(t) = \int_0^\infty a(\omega) \sin(\omega t) d\omega + \int_0^\infty b(\omega) \cos(\omega t) d\omega$$

Alternatively, (using $\sin(\omega t)=\frac{e^{\imath\omega t}-e^{-\imath\omega t}}{2i}$ and $\cos(\omega t)=\frac{e^{\imath\omega t}+e^{-\imath\omega t}}{2}$):

$$u(t) = \int_{-\infty}^{\infty} \hat{u}(i\omega)e^{i\omega t}d\omega$$

Here $\hat{u}(i\omega)$ is the **Fourier Transform** of the signal u(t) and is computed as follows:

Theorem 3.

The Fourier Transform of the signal u can be found as

$$\hat{u}(\imath\omega) = \int_{-\infty}^{\infty} e^{-\imath\omega t} u(t) dt$$

Inverse Fourier Transform

Recall: \hat{u} is the Fourier Transform of u if

$$\hat{u}(\imath\omega) = \int_{-\infty}^{\infty} e^{-\imath\omega t} u(t) dt$$

In order to recover u from \hat{u} , we can use the following:

Theorem 4 (Inverse Fourier Transform).

Given \hat{u} , the Fourier Transform of u, we can find u as

$$u(t) = \int_{-\infty}^{\infty} e^{\imath \omega t} \hat{u}(\imath \omega) d\omega$$

Example: Step Function

Consider the input signal:

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

The Fourier transform is

$$\hat{u}(\imath\omega) = \int_0^\infty e^{-\imath\omega t} dt$$
$$= \frac{1}{-\imath\omega} \left[e^{-\imath\omega t} \right]_0^\infty = \frac{1}{-\imath\omega}$$

Example

Consider the input signal:

$$u(t) = e^{iat}$$

The Fourier transform is

$$\hat{u}(i\omega) = \begin{cases} \infty & \omega = a \\ 0 & \omega \neq a \end{cases}$$
$$= \delta(\omega - a)$$

 δ is the Dirac Delta function.

We'll do many more examples next lecture.

The Fourier transform can be applied to samples of music to understand the frequency composition.

Application: The Graphic Equalizer:

Application

Figure: Equal Loudness Test

Audio Compression

- Sound is communicated in compression waves
- Humans can only hear sound in the range 20Hz-20kHz
- Music signals are usually simpler in frequency content than in time.
- e.g. The .mp3 standard.

Transfer Functions

Suppose we know the output of a system for every possible input of the form $e^{-\imath \omega t}.$

• Input $u_{\omega}(t) = e^{-\imath \omega t}$ produces output $g(\omega,t)$

Then for any input with Fourier Transform $\hat{u}(\imath\omega)$, we can calculate the output y as

$$y(t) = \int_{-\infty}^{\infty} \hat{u}(i\omega)g(\omega, t)d\omega$$

Summary:

- Let $\hat{u}(\imath\omega)$ be the Fourier Transform of the input, u(t).
- Let $\hat{y}(\imath \omega)$ be the Fourier Transform of the outut, y(t).
- Then

$$\hat{y}(\imath\omega) = \hat{G}(\imath\omega)\hat{u}(\imath\omega)$$

for some Transfer Function, \hat{G}

Problem: Sinusoids are NOT REAL! Every signal has to START and STOP... **Next:** We consider the Laplace Transform.

Causality

Definition 5.

In a **Causal** System, a change in input at a later time $u(t+\tau)$ cannot affect the present output y(t).

Every physical system in the universe is causal.

Causal:

Non-Causal

$$\dot{x}(t) = x(t) \qquad \qquad \dot{x}(t) = x(t+1)$$

Non-Causal Systems are usually artificial.

- Noise filtering
 - Averages window of future and past.
 - Playback must be delayed due to causality

Conclusion: We only consider causal systems in this class.

M. Peet Lecture 4: Control Systems

The Laplace Transform

Transfer Functions

For causal systems, we can use the Laplace Transform:

Definition 6.

The Laplace Transform of the signal u can be found as

$$\hat{u}(s) = \int_0^\infty e^{-st} u(t) dt$$

Similar to the Fourier Transform, we have the following property.

Theorem 7.

For any causal, bounded, linear, time-invariant system, there exists a function $\hat{G}(s)$ such that

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s)$$

where $\hat{y}(s)$ is the Laplace Transform of the output.

The function, \hat{G} is called the **Transfer Function** of the system.

Summary

What have we learned today?

Simple ways to use state-space.

- How to find the output given an input.
- Linearity

Linear Systems.

- The Fourier Series
 - Representing signals as the sum of sinusoids.
 - Representing systems using response to sinusoids.
- The Fourier Transform
- The Laplace Transform
 - Representing signals in the frequency domain.
 - Representing systems using response to sinusoids.

Next Lecture: Calculating the Laplace Transform