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Introduction

In this Lecture, you will learn:

Simple ways to use state-space.

• How to find the output given an input.

• Linearity

Linear Systems.

• The Fourier Series
I Representing signals as the sum of sinusoids.
I Representing systems using response to sinusoids.

• The Fourier Transform

• The Laplace Transform
I Representing signals in the frequency domain.
I Representing systems using response to sinusoids.

How to represent a system using a Transfer Function.

• How to find the output given an input.
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Recall the state-space form
Find the output given the input

State-Space:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0
State-Space

System

u y

Input Output

Basic Question: Given an input function, u(t), what is the output?
Solution: Solve the differential Equation.

Example: The equation

ẋ(t) = ax(t), x(0) = x0

has solution
x(t) = eatx0,

But we are interested in Matrices!!!

Not a rule, but sometimes... If it works for scalars, it also works for matrices.
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The Solution to State-Space
State-Space:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0

The equation

ẋ(t) = Ax(t), x(0) = x0

Solution:

x(t) = eAtx0

The Matrix exponential is defined by the series expansion

eAt = I + (At) +
1

2
(At)2 +

1

6
(At)3 + · · ·+ 1

k!
(At)k + · · ·

Don’t Worry! You will never have to calculate a matrix exponential by hand.
The important part is that

ẋ(t) =
d

dt
eAtx0 = AeAtx0 = Ax(t), and x(0) = e0x0 = x0

What happens when we add an input instead of an initial condition?
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Find the output given the input
State-Space:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0

The equation

ẋ(t) = Ax(t) +Bu(t), x(0) = 0

Solution:

y(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)

Proof.

Check the solution:

x(t) =

∫ t

0

eA(t−s)Bu(s)ds

ẋ(t) = e0Bu(t) +A

∫ t

0

eA(t−s)Bu(s)ds = Bu(t) +Ax(t)

M. Peet Lecture 4: Control Systems 5 / 23



Calculating the Output
Numerical Example, u(t) = sin(t)

State-Space:

ẋ = −x(t) + u(t)

y(t) = x(t)− .5u(t) x(0) = 0

A = −1; B = 1; C = 1; D = −.5

Solution:

y(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)

= e−t
∫ t

0

es sin(s)ds− 1

2
sin(t)

=
1

2
e−t

(
es(sin s− cos s)|t0

)
− 1

2
sin(t)

=
1

2
e−t

(
et(sin t− cos t) + 1

)
− 1

2
sin(t)

=
1

2

(
e−t − cos t

)
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Calculating Complicated Outputs
Linearity

Problem: Finding the integral of complicated functions is tough.
Solution: Use the linearity of the system.

A system G is a MAP from input functions to
output functions. e.g., G : u 7→ y

y(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)

G
u y=Gu

Input Output

Definition 1.

A SYSTEM is Linear if for any scalars, α and β, and any inputs u1 and u2,

G(αu1 + βu2) = αGu1 + βGu2

State-space systems are LINEAR.
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Properties of Linearity

Properties: Multiplication

• y = Gu implies αy = G(αu).

• larger input implies a larger output.

Properties: Addition

• y1 = Gu1 and y2 = Gu2 implies G(u1 + u2) = y1 + y2.

• Can calculate complicated outputs by addition.
I Step 1: Decompose input into simple parts: u(t) = u1(t) + u2(t)
I Step 2: Calculate simple outputs: y1 and y2.
I Step 3: Calculate the complicated output: y(t) = y1(t) + y2(t)

Example: Using previous system,

ẋ = −x(t) + u(t)

y(t) = x(t)− .5u(t) x(0) = 0

Let u(t) = 2 sin(t)− cos(t).

Question: Can we compute the output without recalculating the integral???
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Example of Linearity

Recall our simple state-space system:
A = −1; B = 1; C = 1; D = −.5

• We found the that input u1(t) = sin(t) produces output
y1(t) =

1
2 (e
−t − cos t).

Now if u2(t) = cos(nt), we have

y2(t) =

∫ t

0

CeA(t−s)Bu2(s)ds+Du2(t)

= e−t
∫ t

0

es cos(ns)ds− 1

2
cos(nt)

=
1

2
e−t

∫ t

0

(
e(1+ın)s + e(1−ın)s

)
ds− 1

2
cos(nt)

=
1

2
e−t

[
1

(1 + ın)
e(1+ın)s +

1

(1− ın)
e(1−ın)s

]t
0

− 1

2
cos(nt)

=
−e−t + cos(nt) + n sin(nt)

1 + n2
− 1

2
cos(nt)
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Example of Linearity

For our simple state-space system:

• We found the that input u1(t) = sin(t) produces output
y1(t) =

1
2 (e
−t − cos t).

Now if u2(t) = cos(t), we have

y2(t) =
1

2

(
sin t− e−t

)
So for the composite input, u(t) = 2u1(t)− u2(t), we find

y(t) = 2y1(t)− y2(t)

=
(
e−t − cos t

)
− 1

2

(
sin t− e−t

)
=

3

2
e−t − cos t− 1

2
sin t
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Frequency Domain version 1: Fourier Series

We calculated the response to a complicated signal

u(t) = 2 sin(t)− cos(t)

by adding the responses to the simple sinusoids:

u1(t) = sin(t) and u2(t) = cos(t)

So that y(t) = y1(t) + y2(t)

Question: What about more complicated
signals???

Claim: We can recreate ANY signal u(t) by adding
up sinusoids.

Conclusion: Since we know the output when the input is sinusoid, we can
calculate the solution for ANY input signal.
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Frequency Domain version 1: Fourier Series

Question: How do we express our input using sines and
cosines???

Answer: The Fourier Series.

Theorem 2 (Fourier Series).

Any input signal, u on the time interval [−π, π] is the
combination of sines and cosines:

u(t) =
a0
2

+

∞∑
n=1

[an sin(nt) + bn cos(nt)]

an =
1

π

∫ π

−π
u(s) sin(ns)ds bn =

1

π

∫ π

−π
u(s) cos(ns)ds
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Frequency Domain version 1: The Fourier Series

Assume we know the output produced by sinusoids:

• y1,n(t) is the output from u1,n(t) = sin(nt)

• y2,n(t) is the output from u2,n(t) = cos(nt)

Then for the input

u(t) =
a0
2

+

∞∑
n=1

[an sin(nt) + bn cos(nt)]

The output is

y(t) =
b0
2
y2,0(t) +

∞∑
n=1

[any1,n(t) + bny2,n(t)]

Conclusion: The functions yn(t) make it very easy to calculate the output for
any input.
Problem: We need an infinite number of an and yn(t).
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Frequency Domain version 2: The Fourier Transform

An alternative to the Fourier Series is the Fourier Transform.

Instead of a Sum of sinusoids, we express the signal as an Integral of sinusoids:

u(t) =

∫ ∞
0

a(ω) sin(ωt)dω +

∫ ∞
0

b(ω) cos(ωt)dω

Alternatively, (using sin(ωt) = eıωt−e−ıωt

2i and cos(ωt) = eıωt+e−ıωt

2 ):

u(t) =

∫ ∞
−∞

û(ıω)eıωtdω

Here û(ıω) is the Fourier Transform of the signal u(t) and is computed as
follows:

Theorem 3.

The Fourier Transform of the signal u can be found as

û(ıω) =

∫ ∞
−∞

e−ıωtu(t)dt
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Inverse Fourier Transform

Recall: û is the Fourier Transform of u if

û(ıω) =

∫ ∞
−∞

e−ıωtu(t)dt

In order to recover u from û, we can use the following:

Theorem 4 (Inverse Fourier Transform).

Given û, the Fourier Transform of u, we can find u as

u(t) =

∫ ∞
−∞

eıωtû(ıω)dω

M. Peet Lecture 4: Control Systems 15 / 23



The Fourier Transform
Example: Step Function

Consider the input signal:

u(t) =

{
0 t < 0

1 t ≥ 0

The Fourier transform is

û(ıω) =

∫ ∞
0

e−ıωtdt

=
1

−ıω
[
e−ıωt

]∞
0

=
1

−ıω
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The Fourier Transform
Example

Consider the input signal:

u(t) = eıat

The Fourier transform is

û(ıω) =

{
∞ ω = a

0 ω 6= a

= δ(ω − a)

δ is the Dirac Delta function.

a frequency
m
a
g
n
it
u
d
e

We’ll do many more examples next lecture.
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The Fourier Transform

The Fourier transform can be applied to samples of music to understand the
frequency composition.

Application: The Graphic Equalizer:
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FFT_piano.mp4
Media File (video/mp4)


FFT_equalizer_piano.mp4
Media File (video/mp4)



The Fourier Transform
Application

Figure: Equal Loudness Test

Audio Compression

• Sound is communicated in compression waves

• Humans can only hear sound in the range 20Hz-20kHz

• Music signals are usually simpler in frequency content than in time.

• e.g. The .mp3 standard.
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Transfer Functions

Suppose we know the output of a system for every possible input of the form
e−ıωt.

• Input uω(t) = e−ıωt produces output g(ω, t)

Then for any input with Fourier Transform û(ıω), we can calculate the output y
as

y(t) =

∫ ∞
−∞

û(ıω)g(ω, t)dω

Summary:

• Let û(ıω) be the Fourier Transform of the input, u(t).

• Let ŷ(ıω) be the Fourier Transform of the outut, y(t).

• Then
ŷ(ıω) = Ĝ(ıω)û(ıω)

for some Transfer Function, Ĝ

Problem: Sinusoids are NOT REAL! Every signal has to START and STOP...
Next: We consider the Laplace Transform.
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Causality

Definition 5.

In a Causal System, a change in input at a later time u(t+ τ) cannot affect the
present output y(t).

Every physical system in the universe is causal.

Causal:
ẋ(t) = x(t)

Non-Causal

ẋ(t) = x(t+ 1)
Non-Causal Systems are usually artificial.

• Noise filtering
I Averages window of future and past.
I Playback must be delayed due to causality

Conclusion: We only consider causal systems in this class.
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The Laplace Transform
Transfer Functions

For causal systems, we can use the Laplace Transform:

Definition 6.

The Laplace Transform of the signal u can be found as

û(s) =

∫ ∞
0

e−stu(t)dt

Similar to the Fourier Transform, we have the following property.

Theorem 7.

For any causal, bounded, linear, time-invariant system, there exists a function
Ĝ(s) such that

ŷ(s) = Ĝ(s)û(s)

where ŷ(s) is the Laplace Transform of the output.
The function, Ĝ is called the Transfer Function of the system.
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Summary

What have we learned today?

Simple ways to use state-space.

• How to find the output given an input.

• Linearity

Linear Systems.

• The Fourier Series
I Representing signals as the sum of sinusoids.
I Representing systems using response to sinusoids.

• The Fourier Transform

• The Laplace Transform
I Representing signals in the frequency domain.
I Representing systems using response to sinusoids.

Next Lecture: Calculating the Laplace Transform
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