Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 5: Calculating the Laplace Transform of a Signal

Introduction

In this Lecture, you will learn:

Laplace Transform of Simple Signals.

- Step, Exponentials, Ramps.
- Impulse

Properties of the Laplace Transform.

- delay, scaling
- convolution
- etc.

Transfer Functions

State Space to Transfer Function

Previously:

The Laplace Transform

Definition 1.

The Laplace Transform of the signal u(t) is

$$\hat{u}(s) = \int_0^\infty e^{-st} u(t) dt$$

The Laplace Transform is not the same as the Fourier transform.

- Assumes that signals begin at time t = 0 and u(t) = 0 for t < 0.
- Tends to flatten out peaks.

Signal:

$$u(t) = \sin at$$

Laplace Transform: (Recall FT was a Dirac δ ..)

$$\hat{u}(s) = \frac{a}{s^2 + a^2}$$

Example: Step Function

Consider the input signal:

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

The Laplace transform is

$$\hat{u}(s) = \int_0^\infty e^{-st} dt$$

$$= \frac{1}{-s} \left[e^{-st} \right]_0^\infty = \frac{1}{-s} [0 - 1]$$

$$= \frac{1}{s}$$

Note that $\lim_{t\to\infty} e^{-st} = 0$.

 Because we assume the real part of s is negative.

Review: Integration by parts

A very useful formula for finding the Laplace Transform is

• integration by parts.

$$\int_{a}^{b} u(s)v'(s)ds = [u(s)v(s)]_{s=a}^{s=b} - \int_{a}^{b} u'(s)v(s)ds$$

Example: Ramp Function

Consider the input signal:

$$u(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$
$$= t \cdot \mathbf{1}(t)$$

Recall $\mathbf{1}(t)$ is the step function.

The Laplace transform is

$$\hat{u}(s) = \int_0^\infty t e^{-st} dt$$

$$= \left[\frac{1}{-s} t e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty e^{-st} dt$$

$$= [0 - 0] - \frac{1}{s^2} [e^{-st}]_0^\infty dt$$

$$= -\frac{1}{s^2} [0 - 1] = \frac{1}{s^2}$$

Example: Quadratic Function

The Quadratic is similar to the Ramp.

$$u(t) = \begin{cases} 0 & t < 0 \\ t^2 & t \ge 0 \end{cases}$$
$$= t^2 \mathbf{1}(t)$$

Recall $\mathbf{1}(t)$ is the step function.

The Laplace transform is

$$\begin{split} \hat{u}(s) &= \int_0^\infty t^2 e^{-st} dt \\ &= \left[\frac{1}{-s} t^2 e^{-st} \right]_0^\infty + \frac{1}{s} \int_0^\infty t e^{-st} dt \\ &= \frac{1}{s^3} \end{split}$$

Example: exponential

The Sinusoid is created from the complex exponentials.

Lets do exponentials first.

Consider the input signal:

$$u(t) = \begin{cases} 0 & t < 0 \\ e^{at} & t \ge 0 \end{cases}$$
$$= e^{at} \mathbf{1}(t)$$

Recall $\mathbf{1}(t)$ is the step function.

The Laplace transform is

$$\hat{u}(s) = \int_0^\infty e^{(a-s)t} dt$$

$$= \left[\frac{1}{a-s} e^{(a-s)t} \right]_0^\infty$$

$$= \frac{1}{s-a}$$

Linearity

The Laplace Transform is itself a LINEAR SYSTEM.

- The Input is u
- The Output is \hat{u}
- ullet Lets call the system ${\cal L}$

$$\hat{u} = \mathcal{L}u$$

As for any linear system,

$$\mathcal{L}(\alpha u_1 + \beta u_2) = \alpha \mathcal{L} u_1 + \beta \mathcal{L} u_2$$
$$= \alpha \hat{u}_1 + \beta \hat{u}_2$$

We can compute the Laplace transform by using simple parts.

Example: Sinusoids

$$\cos \omega t = \frac{e^{\imath \omega t} + e^{-\imath \omega t}}{2}$$

Example: Sinusoids

Recall that

$$\cos \omega t = \frac{e^{\imath \omega t} + e^{-\imath \omega t}}{2}$$

But the Laplace transform of e^{at} is

$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

So the Laplace transforms of $e^{\imath \omega t}$ and $e^{-\imath \omega t}$ are

$$\hat{u}_1(s) = \mathcal{L}(e^{\imath \omega t}) = \frac{1}{s - \imath \omega}$$
 and $\hat{u}_2(s) = \mathcal{L}(e^{-\imath \omega t}) = \frac{1}{s + \imath \omega}$

$$\hat{u}_2(s) = \mathcal{L}(e^{-\imath \omega t}) = \frac{1}{s + \imath \omega}$$

Which shows us how to find $\mathcal{L}(\cos(\omega t))$

$$\mathcal{L}(\cos(\omega t)) = \mathcal{L}\left(\frac{e^{\imath \omega t} + e^{-\imath \omega t}}{2}\right) = \mathcal{L}\left(\frac{e^{\imath \omega t}}{2}\right) + \mathcal{L}\left(\frac{e^{-\imath \omega t}}{2}\right) = \frac{\hat{u}_1}{2} + \frac{\hat{u}_2}{2}$$
$$= \frac{1}{2}\left(\frac{1}{s - \imath \omega} + \frac{1}{s + \imath \omega}\right) = \frac{1}{2}\left(\frac{2s}{(s - \imath \omega)(s + \imath \omega)}\right) = \frac{s}{s^2 + \omega^2}$$

M. Peet

Example: Sinusoids

Likewise, for the \sin function,

$$\sin \omega t = \frac{e^{i\omega t} - e^{-i\omega t}}{2i}$$

$$= \frac{1}{2i} (u_1(t) - u_2(t))$$

$$u_1(t) = e^{i\omega t}$$

$$u_2(t) = e^{-i\omega t}$$

Which shows us how to find $\mathcal{L}(\sin(\omega t))$

$$\mathcal{L}(\sin(\omega t)) = \frac{1}{2i} (\hat{u}_1(s) - \hat{u}_2(s))$$

$$= \frac{1}{2i} \left(\frac{1}{s - i\omega} - \frac{1}{s + i\omega} \right)$$

$$= \frac{1}{2i} \left(\frac{2i\omega}{(s - i\omega)(s + i\omega)} \right) = \frac{\omega}{s^2 + \omega^2}$$

Example: Impulse functions

Definition 2.

An **Impulse** is a significant strike which occurs in an infinitesimally short time. Mathematically, we model the impulse as a Dirac delta function, $\delta(t)$.

Question: What is the Laplace transform of an

Impulse?

Answer: By definition of the Dirac Delta:

$$\hat{\delta}(s) = \int_0^\infty e^{-st} \delta(t) dt$$
$$= e^{-st}|_{t=0}$$
$$= 1$$

- The Impulse has a Uniform Frequency Response!!!!
- The opposite of the step function $(\mathbf{1}(s) = \mathcal{L}\delta(t))$.

Laplace Transform Table

Simple Signals

Summary: We can find the Laplace Transform for many simple signals

	u(t)	$\hat{u}(s)$
Step	1 (t)	$\frac{1}{s}$
Power	t^m	$\frac{m!}{s^{m+1}}$
Exponential	e^{-at}	$\frac{1}{s+a}$
Power Exponential	$\frac{t^{m-1}e^{-at}}{(m-1)!}$	$\frac{1}{(s+a)^m}$
Sine	$\sin(at)$	$\frac{a}{s^2+a^2}$
Cosine	$\cos(at)$	$\frac{s}{s^2+a^2}$
Impulse	$\delta(t)$	1

Remember that all functions are only for $t \geq 0$.

• We always have u(t) = 0 for t < 0

Question: How to use these functions to solve for more complex functions?

Other Properties

Properties: What properties of the Laplace transform can we exploit?

We have already discussed Linearity.

Other Examples:

• Delay: The signal is delayed

$$u(t) \to u(t-\tau)$$

• Time-Scale: The signal is slowed down or speeded up

$$u(t) \to u(at)$$

• **Differentiation:** The signal is a differential in time:

$$u(t) \to u'(t)$$

How do these changes affect the the Laplace transform?

$$\hat{u}(s) \rightarrow ?????$$

Delay

What is the effect of a delay on the Laplace Transform?

Use a change of variables: $t' = t - \tau$, dt' = dt

$$\begin{split} \hat{u}_{delayed}(s) &= \mathcal{L}(u(t-\tau)) = \int_0^\infty e^{-st} u(t-\tau) dt \\ &= \int_0^\infty e^{-s(t'+\tau)} u(t') dt' \\ &= e^{-s\tau} \int_0^\infty e^{-st'} u(t') dt' \\ &= e^{-s\tau} \hat{u}(s) \end{split}$$

Time-Scaling

What is the effect of scaling time?

Use a change of variables: t' = at, dt' = adt

$$\begin{split} \hat{u}_{scaled}(s) &= \mathcal{L}(u(at)) \\ &= \int_0^\infty e^{-st} u(at) dt \\ &= \frac{1}{a} \int_0^\infty e^{-\frac{st'}{a}} u(t') dt' \\ &= \frac{1}{a} \hat{u} \left(\frac{s}{a}\right) \end{split}$$

Example: Watch The Order of Operations

What is the Laplace Transform of

$$u(t) = \sin(a(t - \tau))$$

We know that $\hat{u}_{\sin}(s) = \mathcal{L}(\sin(t)) = \frac{1}{s^2+1}$.

- The change is $\sin t \to \sin(at) \to \sin(a(t-\tau))$
- Time-Scaling: $\hat{u}_s(s) = \frac{1}{a}\hat{u}\left(\frac{s}{a}\right)$
- Time-Delay: $\hat{u}_d(s) = e^{-\tau s} \hat{u}(s)$

Thus we have

$$\hat{u}_{ds}(s) = e^{-\tau s} \hat{u}_s(s)$$

$$= e^{-\tau s} \left(\frac{\frac{1}{a}}{\left(\frac{s}{a}\right)^2 + 1} \right)$$

$$= e^{-\tau s} \frac{a}{s^2 + a^2}$$

Differentiation

A very common case is when a signal has been differentiated. e.g.:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

In this case we use integration by parts:

$$\mathcal{L}(\dot{x}(t)) = \int_0^\infty e^{-st} \dot{x}(t) dt$$

$$= \left[e^{-st} x(t) \right]_0^\infty + s \int_0^\infty e^{-st} x(t) dt$$

$$= -x(0) + s \int_0^\infty e^{-st} x(t) dt$$

$$= -x(0) + s \hat{x}(s)$$

Multiple Differentiation

The differentiation property can be applied recursively:

$$\mathcal{L}(\ddot{x}(t)) = -\ddot{x}(0) + s\mathcal{L}(\ddot{x}(t))$$

$$= -\ddot{x}(0) - s\dot{x}(0) + s^{2}\mathcal{L}(\dot{x}(t))$$

$$= -\ddot{x}(0) - s\dot{x}(0) - s^{2}x(0) + s^{3}\hat{x}(s)$$

General Formula:

$$\mathcal{L}(x^{(n)}(t)) = s^n \hat{x}(s) - s^{n-1} x(0) - \dots - x^{n-1}(0)$$

Integration

Importantly, the Laplace transform can also be applied to integration:

• An immediate consequence of differentiation

$$\mathcal{L}\left(\dot{f}(t)\right) = -f(0) + s\mathcal{L}(f(t))$$

• If $f(t) = \int_0^t x(\tau) d\tau$, then $\dot{f}(t) = x(t)$, and f(0) = 0, so

$$\hat{x}(s) = \mathcal{L}(x(t)) = \mathcal{L}\left(\dot{f}(t)\right)$$

$$= -f(0) + s\mathcal{L}(f(t))$$

$$= s\mathcal{L}\left(\int_{0}^{t} x(\tau)d\tau\right)$$

Hence

$$\mathcal{L}\left(\int_0^t x(\tau)d\tau\right) = \frac{\hat{x}(s)}{s}$$

Convolution

Recall the solution of a state-space system:

$$y(t) = \int_0^t Ce^{A(t-s)}Bu(s)ds + Du(t)$$

This is a special kind of integral called the Convolution Integral.

Definition 3.

The **Convolution Integral** of u(t) with v(t) is defined as

$$(u * v)(t) := \int_0^t u(\tau)v(t - \tau)d\tau$$

Thus roughly speaking

$$y(t) = u(t) * (Ce^{At}B)$$

Convolution

M. Peet

Convolution

The convolution of two signals has a remarkable property:

$$\mathcal{L}(u * v) = \hat{u}(s)\hat{v}(s)$$

Proof.

Since
$$u(t)=v(t)=0$$
 for $t<0$, we have that $u(\tau)v(t-\tau)=0$ for $\tau<0$ or $\tau>t$. Thus:
$$\int_0^t u(\tau)v(t-\tau)d\tau=\int_0^\infty u(\tau)v(t-\tau)d\tau$$

Now using the delay property:

$$\mathcal{L}(u*v) = \int_0^\infty e^{-st} \int_0^t u(\tau)v(t-\tau)d\tau dt = \int_0^\infty e^{-st} \int_0^\infty u(\tau)v(t-\tau)d\tau dt$$
$$= \int_0^\infty u(\tau) \int_0^\infty e^{-st}v(t-\tau)dt d\tau$$
$$= \int_0^\infty u(\tau)e^{-s\tau}\hat{v}(s)d\tau = \hat{u}(s)\hat{v}(s)$$

Properties of the Laplace Transform

Summary

Summary: Simple functions and properties can be combined to calculate the Laplace Transform.

	u(t)	$\hat{u}(s)$
Delay	u(t- au)	$e^{\tau s}\hat{u}(s)$
Time-Scaling	u(at)	$\frac{1}{a}\hat{u}\left(\frac{s}{a}\right)$
Differentiation	u'(t)	$s\hat{u}(s) - u(0)$
Integration	$\int_0^t u(\tau)d\tau$	$\frac{1}{s}\hat{u}(s)$
Frequency Differentiation	tu(t)	$\frac{d}{ds}\hat{u}(s)$
Frequency Shift	$e^{at}u(t)$	$\hat{u}(s-a)$
Convolution	$\int_0^t u(\tau)v(t-\tau)d\tau$	$\hat{u}(s)\hat{v}(s)$

The Inverse Laplace Transform

An Important Case

Consider the simple case of a cosine with an exponential:

$$u(t) = e^{\sigma t} \sin \omega t$$

Approach:

- $\mathcal{L}(\sin \omega t) = \frac{\omega}{s^2 + \omega^2}$
- Exponential means frequency shift: $e^{\sigma t}u(t) \mapsto \hat{u}(s-\sigma)$.

Hence the Laplace transform is

$$\hat{u}(s) = \frac{\omega}{(s-\sigma)^2 + \omega^2} = \frac{\omega}{s^2 - 2\sigma s + (\sigma^2 + \omega^2)}$$

Problem: Can we go the other direction? Calculate u(t) if

$$\hat{u}(s) = \frac{1}{s^2 + bs + c}$$

Solution: Use a combination sinusoid and frequency shift First recall that

$$\mathcal{L}(\sin \omega t) = \frac{\omega}{s^2 + \omega^2}$$

An Important Case, continued

If $\hat{u}(s) = \frac{1}{s^2 + bs + c}$, the roots of the denominator are

$$s_{1,2} = -b/2 \pm \frac{1}{2} \sqrt{b^2 - 4c}$$

Hence

$$\hat{u}(s) = \frac{1}{(s+b/2 + \frac{1}{2}\sqrt{b^2 - 4c})(s+b/2 - \frac{1}{2}\sqrt{b^2 - 4c})}$$

$$= \frac{1}{((s+b/2) + \frac{1}{2}\sqrt{b^2 - 4c})((s+b/2) - \frac{1}{2}\sqrt{b^2 - 4c})}$$

$$= \frac{1}{(s+b/2)^2 - \frac{1}{4}(b^2 - 4c)}$$

Now assume $4c > b^2$. Then $\hat{u}(s) = \hat{h}(s + b/2)$, where

$$\hat{h}(s) = \frac{1}{s^2 + \frac{1}{4}(4c - b^2)}.$$

Numerical Example

$$\hat{h}(s) = \frac{1}{s^2 + \frac{1}{4}(4c - b^2)}.$$

This is a simple sine function:

$$h(t) = \frac{1}{\omega} \sin{(\omega t)} \label{eq:hamiltonian}$$
 where $\omega = \sqrt{c - \frac{b^2}{4}}$

- Recall the frequency-shift property: $\mathcal{L}^{-1}\hat{u}(s)=\mathcal{L}^{-1}\hat{h}(s+\frac{b}{2})=e^{-\frac{b}{2}t}h(t).$
- We conclude that

$$u(t) = \frac{1}{\sqrt{4c - \frac{b^2}{4}}} e^{-\frac{b}{2}t} \sin\left(\sqrt{4c - \frac{b^2}{4}}t\right)$$

Numerical Example: Let $\hat{u}(s) = \frac{1}{s^2 + 2s + 2}$. Taking the roots, we find

$$\hat{u}(s) = \frac{1}{(s+1)^2 + 1}.$$

This is a sine function with a frequency shift of 1. Therefore

$$u(t) = e^{-t} \sin t$$

M. Peet

The Laplace Transform of a State-Space System

Transfer Functions

Recall the State-Space System

$$\dot{x} = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t) \qquad x(0) = 0$$

Applying the Laplace Transform to the first signal:

$$s\hat{x}(s) - x(0) = A\hat{x}(s) + B\hat{u}(s)$$

where we used

- Linearity
- Differentiation Property

Since x(0) = 0 we have

$$(sI - A)\hat{x}(s) = B\hat{u}(s)$$
 or $\hat{x}(s) = (sI - A)^{-1}B\hat{u}(s)$

The Laplace Transform of a State-Space System

Transfer Functions

Applying the Laplace Transform to the output equation,

$$y(t) = Cx(t) + Du(t)$$

we get

$$\hat{y}(s) = C\hat{x}(s) + D\hat{u}(s)$$

Solving for $\hat{y}(s)$, we get

$$\hat{y}(s) = \left(C(sI - A)^{-1}B + D\right)\hat{u}(s)$$

Thus we have a Transfer Function for the system which can be used to construct a solution for any input using the frequency-domain representation.

Theorem 4.

The Transfer Function for a state-space system is

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

Summary

What have we learned today?

Laplace Transform of Simple Signals.

- Step, Exponentials, Ramps.
- Impulse

Properties of the Laplace Transform.

- delay, scaling
- convolution
- etc.

Transfer Functions

State Space to Transfer Function

Next Lecture: More on Transfer Functions