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Introduction

In this Lecture, you will learn:

Laplace Transform of Simple Signals.
e Step, Exponentials, Ramps.

e Impulse

Properties of the Laplace Transform.
e delay, scaling
e convolution

* etc.

Transfer Functions

e State Space to Transfer Function
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Previously:

The Laplace Transform

Definition 1.

The Laplace Transform of the signal () is

i(s) = /0 " st ()t

The Laplace Transform is not the same as the Fourier transform.
o Assumes that signals begin at time ¢t = 0 and u(t) = 0 for ¢ < 0.

e Tends to flatten out peaks.
Signal:

u(t) = sinat

Laplace Transform: (Recall FT was a
Dirac 4..)
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The Laplace Transform

Example: Step Function
Consider the input signal:

u(t):{o t<0

1 t>0 2]

0.8
06

The Laplace transform is 02
B 1 7 L 3 4 5
o0
12(3):/ e Stdt

0
1 —st] 1

=—le | =—[0-1
L =L

1

s

Note that lim;_,oc e =5 = 0.

e Because we assume the real part of
s is negative.
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Review: Integration by parts

A very useful formula for finding the Laplace Transform is

e integration by parts.
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The Laplace Transform
Example: Ramp Function

Consider the input signal:

u(t)_{o t<0

t t>0
—t-1(t)

Ramp Function

Recall 1(¢) is the step function.

The Laplace transform is '

ﬁ(s)—/ te~stdt
0

1 SO B e
= {te_sﬂ + f/ e~ Stdt
—S 0 S 0

5.
4
34
2
14
0

5

1 —st]o0
=[0-0]— ?[6 ecdt s
1 1 )
— _? [O — 1} = 32 Imag(s) 5 Real(s)
M. Peet
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The Laplace Transform

Example: Quadratic Function

The Quadratic is similar to the Ramp. 2
0 t<0 *
u(t) = .
®) {t2 t>0
= t21(t) §o
Recall 1(¢) is the step function. |

The Laplace transform is
o0

a(s) :/ t2e~stdt
0

1 © 1 [
= [t%“} + 7/ te Stdt
—S 0 S 0

1
53 0

Mo -~ N w s oo

Imag(s) S5 Real(s)
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The Laplace Transform

Example: exponential

The Sinusoid is created from the complex exponentials.

e Lets do exponentials first.
Consider the input signal:

) 0 t<0
u =
e t>0
=e"1(2)
Recall 1(¢) is the step function.

The Laplace transform is

11(5)2/ ela=)tqy
0

1
— |:6(as)t:|
a—S

1

s—a

M. Peet

Exponential Function
o o o

oo

0

R
Imag(s) 5 5
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The Laplace Transform

Linearity
Input Output
u A u'=Au
The Laplace Transform is itself a
e The Input is u
e The Output is 4
e Lets call the system L
u=Lu

e As for any linear system,
L(auy + Pug) = aluy + fLug
= a1 + Pls
We can compute the Laplace transform by using simple parts.
Example: Sinusoids
ezwt +e—zwt

t =
COS W B
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The Laplace Transform

Example: Sinusoids

Recall that Transform of cos(2)

ezwt + e—zwt
2

cos wt =

But the Laplace transform of %t is

1

s—a

E(eat) —

Real(s) S5 5

So the Laplace transforms of ¢*’* and e~*! are

1 1
G1(s) = L(e™") — an Ua(s) = L(e™™) P
Which shows us how to find £(cos(wt))

ezwt + efzwt ezwt efzwt ﬁl ﬁ2
cleoswy = £ () — g () e () = B 2

:;<s—11w+s+lzw>:;(@—%jz9+w)):

M. Peet
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The Laplace Transform

Example: Sinusoids

Likewise, for the sin function,

wt efzwt

sinwt =
2
= 5 ()~ w (1)

uy (t) = et

us(t) = et

Which shows us how to find L(s

/—\

L(sin(wt)) =

| m‘Hm‘H

M. Peet

Transform of sin(2t)

Imag(s)

in(wt))
(G1(s) — t2(s))

(- 5s)
(i

(s —w) s—l—zw)) -
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The Laplace Transform

Example: Impulse functions

Definition 2.

An Impulse is a significant strike which occurs in an infinitesimally short time.
Mathematically, we model the impulse as a Dirac delta function, 0(t).

Question: What is the Laplace transform of an
Impulse? A

Answer: By definition of the Dirac Delta:

) o 3
5(s) = / =t §(1)dt E
0 5
— eist|t:0 g
=1
>
0 time

e The Impulse has a 1

o The opposite of the step function (1(s) = LJ(t)).
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Laplace Transform Table
Simple Signals

Summary: We can find the Laplace Transform for many simple signals

| u®)

|_i(s)

Step 1(2) 2
Power tm S,Til
Exponential et B
Power Exponential t(;ie;;t G +1a)m
Sine sin(at) FEm
Cosine cos(at) i
Impulse o(t) 1

Remember that all functions are only for ¢ > 0.

e We always have u(t) =0 for t <0

Question: How to use these functions to solve for more complex functions?

M. Peet
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The Laplace Transform
Other Properties

Properties: What properties of the Laplace transform can we exploit?
e We have already discussed Linearity.

Other Examples:
e Delay: The signal is delayed

u(t) = u(t —7)
e Time-Scale: The signal is slowed down or speeded up
u(t) — u(at)
o Differentiation: The signal is a differential in time:
u(t) — ' (t)

How do these changes affect the the Laplace transform?
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The Laplace Transform
Delay

What is the effect of a delay on the Laplace Transform?

: N N W
Y Y Y

delayed signal

b ——
AN S Y A
original signal .~ w_/ NN
.' I -' 1 1 1 1 1 imilliseconds
0 0.5 1 15 2 25 3 35 4

Use a change of variables: ¢/ =t — 7, dt’ = dt
Udetayed(s) = L(u(t — 1)) = / e Stu(t — 7)dt
0
— / e Syt at!
0
— e—s‘r/ e—st/u(t/)dt/
0

=e Tu(s)
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The Laplace Transform

Time-Scaling

What is the effect of scaling time? @ x()

Use a change of variables: ¢’ = at, dt’ = adt /
Uscated(s) = L(u(at)) ot t

= / e *tu(at)dt
0

= i/ooo e_%u(t’)dt’
L) AN AWAYAS
a \a IVERVEARVERV
© Xy
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Example: Watch The Order of Operations
What is the Laplace Transform of
u(t) = sin(a(t — 7))

We know that g, (s) = L(sin(t)) = 2+1
e The change is sint — sm(at) sin(a(t — 7))

e Time-Scaling: i,(s) = 14 (2)
e Time-Delay: 4,4(s ) e~ ()
ThUS we haVe Transform of sin(2(t-1))

Ugs(s) = e " as(s)

) |
:677'5 a 5%
((;)2+1>

—TS a
52 + a2

Imag(s) 5¥ — 0
5
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The Laplace Transform Properties

Differentiation

A very common case is when a signal has been differentiated. e.g.:
#(t) = Ax(t) + Bu(t)

In this case we use integration by parts:

L) = /OOO =i (t)dt
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The Laplace Transform Properties
Multiple Differentiation

The differentiation property can be applied recursively:

L(@(t) = —#(0) + sL(E(t))

—i(0) — s2(0) + s*L(&(1))
= —i(0) — 52(0) — s22(0) + s3#(s)
General Formula:
Lz () = s"@(s) — s"Lz(0) — - — 2" 71(0)
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The Laplace Transform Properties

Integration

Importantly, the Laplace transform can also be applied to integration:

e An immediate consequence of differentiation

£(f®) = =1(0) +sL(f®)

o If f(t) = [ (7)dr, then f(t) = x(t), and f(0) =0, so

e Hence
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The Laplace Transform Properties

Convolution

Recall the solution of a state-space system:

y(t) = /0 CeA'=%) Bu(s)ds 4+ Du(t)

This is a special kind of integral called the Convolution Integral.

Definition 3.

The Convolution Integral of u(t) with v(t) is defined as

(ux*v)(t) :== /0 u(T)v(t — 7)dr

Thus roughly speaking
y(t) = u(t) x (Ce™'B)

M. Peet Lecture 5: Control Systems 21 /30



The Laplace Transform Properties

Convolution

[N ©

(f * 9)t /f ot —7)d
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ConvolutionPulse.mp4
Media File (video/mp4)


The Laplace Transform Properties

Convolution
The convolution of two signals has a remarkable property:
L(uxv) =u(s)o(s)

Proof.
Since u(t) = v(t) = 0 for ¢ < 0, we have that u(7)v(t —7) =0 for 7 < 0 or

T >t. Thus: t 0o
/0 u(T)v(t — 7)dT = /o u(T)v(t — 7)dr

Now using the delay property:

Luxo) = [T e / oft = rdrdt = [~ et [Tty - ryara
_/O u(r)/o e *tv(t — 7)dtdr

:/muhk”WQMTZMQM@
0

M. Peet Lecture 5: Control Systems 23 /30



Properties of the Laplace Transform

Summary

Summary: Simple functions and properties can be combined to calculate the

Laplace Transform.

| u(t) | a(s)

Delay u(t —7) e u(s)
Time-Scaling u(at) La(2)
Differentiation u'(t) sti(s) —u(0)
Integration [y u(r)dr La(s)
Frequency Differentiation tu(t) diﬂ(s)
Frequency Shift e“u(t) i(s —a)
Convolution fot w(T)v(t — 7)dr u(s)0(s

M. Peet
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The Inverse Laplace Transform

An Important Case

Consider the simple case of a cosine with an exponential:
u(t) = e sinwt
Approach:
o L(sinwt) = ¥
o Exponential means frequency shift: e?tu(t) — (s — o).

Hence the Laplace transform is

i(s) = -
i(s) = =
(s—0)2+w? s2—20s+ (024 w?)

Problem: Can we go the other direction? Calculate u(t) if
. 1
u(s) = ————
() s2+bs+c
Solution: Use a combination sinusoid and frequency shift First recall that
w
L(sinwt) = ——
(sin wt) T
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An Important Case, continued

If a(s) = m the roots of the denominator are
1
5172 = —b/2 + 5\/ b2 —4C
Hence
i(s) = -
C (s+b/2+ VB2 —4c)(s + /2 — VB2 — 4c)
1
C ((s+0/2) + VB2 —40)((s + b/2) — LVB2 —4e)

1
- (s+b/2)% — 1(b* — 4c)

Now assume 4c > b2. Then i(s) = h(s + b/2), where

A 1
W(s) = —
(5) 5% + 1 (4c — b?)
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Numerical Example

2
where w = c—%

o Recall the frequency-shift property: £ 1i(s) = £~ h(s + by = e~ 3th(t).
e We conclude that

1 / b2
u(t) = — ¢ 3'sin de — —t
4e — 2 4

1
Numerical Example: Let i(s) = sz Taking the roots, we find
. 1
ii(s) = (s+1)2+1°

This is a sine function with a frequency shift of 1. Therefore

u(t) = e 'sint
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The Laplace Transform of a State-Space System
Transfer Functions
Recall the State-Space System

& = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)  x(0)=0

Applying the Laplace Transform to the first signal:
si(s) —x(0) = Az(s) + Bi(s)

where we used
e Linearity
e Differentiation Property

Since z(0) = 0 we have

(sI — A)z(s) = Bu(s) or i(s) = (sI — A)~'Ba(s)
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The Laplace Transform of a State-Space System

Transfer Functions
Applying the Laplace Transform to the output equation,

y(t) = Cx(t) + Du(t)

we get

Solving for §(s), we get
9(s) = (C(sI — A)"'B+ D) a(s)

Thus we have a for the system which can be used to
construct a solution for any input using the frequency-domain representation.

Theorem 4.

The Transfer Function for a state-space system is

G(s)=C(sI—A)'B+D
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Summary

What have we learned today?

Laplace Transform of Simple Signals.
e Step, Exponentials, Ramps.

e Impulse

Properties of the Laplace Transform.
e delay, scaling
e convolution

e etc.

Transfer Functions

e State Space to Transfer Function

Next Lecture: More on Transfer Functions
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