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Lecture 5: Calculating the Laplace Transform of a Signal



Introduction

In this Lecture, you will learn:

Laplace Transform of Simple Signals.

• Step, Exponentials, Ramps.

• Impulse

Properties of the Laplace Transform.

• delay, scaling

• convolution

• etc.

Transfer Functions

• State Space to Transfer Function
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Previously:
The Laplace Transform

Definition 1.

The Laplace Transform of the signal u(t) is

û(s) =

∫ ∞
0

e−stu(t)dt

The Laplace Transform is not the same as the Fourier transform.

• Assumes that signals begin at time t = 0 and u(t) = 0 for t < 0.

• Tends to flatten out peaks.
Signal:

u(t) = sin at

Laplace Transform: (Recall FT was a
Dirac δ..)

û(s) =
a

s2 + a2
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The Laplace Transform
Example: Step Function

Consider the input signal:

u(t) =

{
0 t < 0

1 t ≥ 0

The Laplace transform is

û(s) =

∫ ∞
0

e−stdt

=
1

−s
[
e−st

]∞
0

=
1

−s
[0− 1]

=
1

s

Note that limt→∞ e−st = 0.

• Because we assume the real part of
s is negative.
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Review: Integration by parts

A very useful formula for finding the Laplace Transform is

• integration by parts.∫ b

a

u(s)v′(s)ds = [u(s)v(s)]
s=b
s=a −

∫ b

a

u′(s)v(s)ds
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The Laplace Transform
Example: Ramp Function

Consider the input signal:

u(t) =

{
0 t < 0

t t ≥ 0

= t · 1(t)

Recall 1(t) is the step function.

The Laplace transform is

û(s) =

∫ ∞
0

te−stdt

=

[
1

−s
te−st

]∞
0

+
1

s

∫ ∞
0

e−stdt

= [0− 0]− 1

s2
[e−st]∞0 dt

= − 1

s2
[0− 1] =

1

s2

We used integration by parts and
limt→∞ e−st = 0.
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The Laplace Transform
Example: Quadratic Function

The Quadratic is similar to the Ramp.

u(t) =

{
0 t < 0

t2 t ≥ 0

= t21(t)

Recall 1(t) is the step function.

The Laplace transform is

û(s) =

∫ ∞
0

t2e−stdt

=

[
1

−s
t2e−st

]∞
0

+
1

s

∫ ∞
0

te−stdt

=
1

s3
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The Laplace Transform
Example: exponential

The Sinusoid is created from the complex exponentials.
• Lets do exponentials first.

Consider the input signal:

u(t) =

{
0 t < 0

eat t ≥ 0

= eat1(t)

Recall 1(t) is the step function.

The Laplace transform is

û(s) =

∫ ∞
0

e(a−s)tdt

=

[
1

a− s
e(a−s)t

]∞
0

=
1

s− a
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The Laplace Transform
Linearity

u u^=Λu

Input Output

Λ

The Laplace Transform is itself a LINEAR SYSTEM.
• The Input is u
• The Output is û
• Lets call the system L

û = Lu
• As for any linear system,

L(αu1 + βu2) = αLu1 + βLu2
= αû1 + βû2

We can compute the Laplace transform by using simple parts.
Example: Sinusoids

cosωt =
eıωt + e−ıωt

2
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The Laplace Transform
Example: Sinusoids

Recall that

cosωt =
eıωt + e−ıωt

2

But the Laplace transform of eat is

L(eat) = 1

s− a

So the Laplace transforms of eıωt and e−ıωt are

û1(s) = L(eıωt) =
1

s− ıω
and û2(s) = L(e−ıωt) =

1

s+ ıω

Which shows us how to find L(cos(ωt))

L(cos(ωt)) = L
(
eıωt + e−ıωt

2

)
= L

(
eıωt

2

)
+ L

(
e−ıωt

2

)
=
û1
2

+
û2
2

=
1

2

(
1

s− ıω
+

1

s+ ıω

)
=

1

2

(
2s

(s− ıω)(s+ ıω)

)
=

s

s2 + ω2
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The Laplace Transform
Example: Sinusoids

Likewise, for the sin function,

sinωt =
eıωt − e−ıωt

2ı

=
1

2ı
(u1(t)− u2(t))

u1(t) = eıωt

u2(t) = e−ıωt

Which shows us how to find L(sin(ωt))

L(sin(ωt)) = 1

2ı
(û1(s)− û2(s))

=
1

2ı

(
1

s− ıω
− 1

s+ ıω

)
=

1

2ı

(
2ıω

(s− ıω)(s+ ıω)

)
=

ω

s2 + ω2
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The Laplace Transform
Example: Impulse functions

Definition 2.

An Impulse is a significant strike which occurs in an infinitesimally short time.
Mathematically, we model the impulse as a Dirac delta function, δ(t).

Question: What is the Laplace transform of an
Impulse?
Answer: By definition of the Dirac Delta:

δ̂(s) =

∫ ∞
0

e−stδ(t)dt

= e−st|t=0

= 1

0 time

m
a
g
n
it
u
d
e

• The Impulse has a Uniform Frequency Response!!!!

• The opposite of the step function (1(s) = Lδ(t)).
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Laplace Transform Table
Simple Signals

Summary: We can find the Laplace Transform for many simple signals

u(t) û(s)

Step 1(t) 1
s

Power tm m!
sm+1

Exponential e−at 1
s+a

Power Exponential tm−1e−at

(m−1)!
1

(s+a)m

Sine sin(at) a
s2+a2

Cosine cos(at) s
s2+a2

Impulse δ(t) 1

Remember that all functions are only for t ≥ 0.

• We always have u(t) = 0 for t < 0

Question: How to use these functions to solve for more complex functions?
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The Laplace Transform
Other Properties

Properties: What properties of the Laplace transform can we exploit?

• We have already discussed Linearity.

Other Examples:

• Delay: The signal is delayed

u(t)→ u(t− τ)

• Time-Scale: The signal is slowed down or speeded up

u(t)→ u(at)

• Differentiation: The signal is a differential in time:

u(t)→ u′(t)

How do these changes affect the the Laplace transform?

û(s)→?????
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The Laplace Transform
Delay

What is the effect of a delay on the Laplace Transform?

Use a change of variables: t′ = t− τ , dt′ = dt

ûdelayed(s) = L(u(t− τ)) =
∫ ∞
0

e−stu(t− τ)dt

=

∫ ∞
0

e−s(t
′+τ)u(t′)dt′

= e−sτ
∫ ∞
0

e−st
′
u(t′)dt′

= e−sτ û(s)
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The Laplace Transform
Time-Scaling

What is the effect of scaling time?

Use a change of variables: t′ = at, dt′ = adt

ûscaled(s) = L(u(at))

=

∫ ∞
0

e−stu(at)dt

=
1

a

∫ ∞
0

e−
st′
a u(t′)dt′

=
1

a
û
( s
a

)
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Example: Watch The Order of Operations

What is the Laplace Transform of

u(t) = sin(a(t− τ))

We know that ûsin(s) = L(sin(t)) = 1
s2+1 .

• The change is sin t→ sin(at)→ sin(a(t− τ))
• Time-Scaling: ûs(s) =

1
a û
(
s
a

)
• Time-Delay: ûd(s) = e−τsû (s)

Thus we have

ûds(s) = e−τsûs(s)

= e−τs

(
1
a(

s
a

)2
+ 1

)
= e−τs

a

s2 + a2
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The Laplace Transform Properties
Differentiation

A very common case is when a signal has been differentiated. e.g.:

ẋ(t) = Ax(t) +Bu(t)

In this case we use integration by parts:

L (ẋ(t)) =
∫ ∞
0

e−stẋ(t)dt

=
[
e−stx(t)

]∞
0

+ s

∫ ∞
0

e−stx(t)dt

= −x(0) + s

∫ ∞
0

e−stx(t)dt

= −x(0) + sx̂(s)
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The Laplace Transform Properties
Multiple Differentiation

The differentiation property can be applied recursively:

L (...x (t)) = −ẍ(0) + sL(ẍ(t))
= −ẍ(0)− sẋ(0) + s2L(ẋ(t))
= −ẍ(0)− sẋ(0)− s2x(0) + s3x̂(s)

General Formula:

L(x(n)(t)) = snx̂(s)− sn−1x(0)− · · · − xn−1(0)
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The Laplace Transform Properties
Integration

Importantly, the Laplace transform can also be applied to integration:

• An immediate consequence of differentiation

L
(
ḟ(t)

)
= −f(0) + sL(f(t))

• If f(t) =
∫ t
0
x(τ)dτ , then ḟ(t) = x(t), and f(0) = 0, so

x̂(s) = L(x(t)) = L
(
ḟ(t)

)
= −f(0) + sL(f(t))

= sL
(∫ t

0

x(τ)dτ

)
• Hence

L
(∫ t

0

x(τ)dτ

)
=
x̂(s)

s
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The Laplace Transform Properties
Convolution

Recall the solution of a state-space system:

y(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)

This is a special kind of integral called the Convolution Integral.

Definition 3.

The Convolution Integral of u(t) with v(t) is defined as

(u ∗ v)(t) :=
∫ t

0

u(τ)v(t− τ)dτ

Thus roughly speaking
y(t) = u(t) ∗

(
CeAtB

)
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The Laplace Transform Properties
Convolution

(f ∗ g)(t) :=
∫ t

0

f(τ)g(t− τ)dτ
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The Laplace Transform Properties
Convolution

The convolution of two signals has a remarkable property:

L(u ∗ v) = û(s)v̂(s)

Proof.

Since u(t) = v(t) = 0 for t < 0, we have that u(τ)v(t− τ) = 0 for τ < 0 or
τ > t. Thus: ∫ t

0

u(τ)v(t− τ)dτ =

∫ ∞
0

u(τ)v(t− τ)dτ

Now using the delay property:

L(u ∗ v) =
∫ ∞
0

e−st
∫ t

0

u(τ)v(t− τ)dτdt =
∫ ∞
0

e−st
∫ ∞
0

u(τ)v(t− τ)dτdt

=

∫ ∞
0

u(τ)

∫ ∞
0

e−stv(t− τ)dtdτ

=

∫ ∞
0

u(τ)e−sτ v̂(s)dτ = û(s)v̂(s)
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Properties of the Laplace Transform
Summary

Summary: Simple functions and properties can be combined to calculate the
Laplace Transform.

u(t) û(s)

Delay u(t− τ) eτsû(s)

Time-Scaling u(at) 1
a û
(
s
a

)
Differentiation u′(t) sû(s)− u(0)
Integration

∫ t
0
u(τ)dτ 1

s û(s)

Frequency Differentiation tu(t) d
ds û(s)

Frequency Shift eatu(t) û(s− a)
Convolution

∫ t
0
u(τ)v(t− τ)dτ û(s)v̂(s)
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The Inverse Laplace Transform
An Important Case

Consider the simple case of a cosine with an exponential:

u(t) = eσt sinωt

Approach:
• L(sinωt) = ω

s2+ω2

• Exponential means frequency shift: eσtu(t) 7→ û(s− σ).
Hence the Laplace transform is

û(s) =
ω

(s− σ)2 + ω2
=

ω

s2 − 2σs+ (σ2 + ω2)

Problem: Can we go the other direction? Calculate u(t) if

û(s) =
1

s2 + bs+ c

Solution: Use a combination sinusoid and frequency shift First recall that

L(sinωt) = ω

s2 + ω2
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An Important Case, continued

If û(s) = 1
s2+bs+c , the roots of the denominator are

s1,2 = −b/2± 1

2

√
b2 − 4c

Hence

û(s) =
1

(s+ b/2 + 1
2

√
b2 − 4c)(s+ b/2− 1

2

√
b2 − 4c)

=
1

((s+ b/2) + 1
2

√
b2 − 4c)((s+ b/2)− 1

2

√
b2 − 4c)

=
1

(s+ b/2)2 − 1
4 (b

2 − 4c)

Now assume 4c > b2. Then û(s) = ĥ(s+ b/2), where

ĥ(s) =
1

s2 + 1
4 (4c− b2)

.
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Numerical Example

ĥ(s) =
1

s2 + 1
4 (4c− b2)

.

This is a simple sine function:

h(t) =
1

ω
sin (ωt)

where ω =
√
c− b2

4

• Recall the frequency-shift property: L−1û(s) = L−1ĥ(s+ b
2 ) = e−

b
2 th(t).

• We conclude that

u(t) =
1√

4c− b2

4

e−
b
2 t sin

(√
4c− b2

4
t

)

Numerical Example: Let û(s) = 1
s2+2s+2 . Taking the roots, we find

û(s) =
1

(s+ 1)2 + 1
.

This is a sine function with a frequency shift of 1. Therefore

u(t) = e−t sin t
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The Laplace Transform of a State-Space System
Transfer Functions

Recall the State-Space System

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0

Applying the Laplace Transform to the first signal:

sx̂(s)− x(0) = Ax̂(s) +Bû(s)

where we used

• Linearity

• Differentiation Property

Since x(0) = 0 we have

(sI −A)x̂(s) = Bû(s) or x̂(s) = (sI −A)−1Bû(s)
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The Laplace Transform of a State-Space System
Transfer Functions

Applying the Laplace Transform to the output equation,

y(t) = Cx(t) +Du(t)

we get
ŷ(s) = Cx̂(s) +Dû(s)

Solving for ŷ(s), we get

ŷ(s) =
(
C(sI −A)−1B +D

)
û(s)

Thus we have a Transfer Function for the system which can be used to
construct a solution for any input using the frequency-domain representation.

Theorem 4.

The Transfer Function for a state-space system is

Ĝ(s) = C(sI −A)−1B +D
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Summary

What have we learned today?

Laplace Transform of Simple Signals.

• Step, Exponentials, Ramps.

• Impulse

Properties of the Laplace Transform.

• delay, scaling

• convolution

• etc.

Transfer Functions

• State Space to Transfer Function

Next Lecture: More on Transfer Functions
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