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Lecture 9: Dynamics of Response: Complex Poles



Overview

In this Lecture, you will learn:

Characteristics of the Response

Complex Poles
e Rise Time
e Settling Time

e Percent Overshoot

Performance Specifications

e Geometric Pole Restrictions
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Complex Poles
Recall: Damping and Frequency

3 Different Forms: Each with yss =1

A b
G(s) = ———

(5) s2+as+b

2

. w
Gls) = —*m

(5) $2 4 2Cwp s + w2
G’(s) _ 02—|—w3 _ 02"“*’3 _ 02—|—w§

2 =205+ (02 +w3) (s—o+wg)(s—o—wy) (s—0)%+wi

Two Complex Poles at s = o £ wy.

e Damped Frequency: wy ¢ Natural Frequency: w,
> Wwqg = _%:wn\/l—CQ >w":\/l;:\/o-2+w§
e Damping Ratio: {

> = a = m
€= 2 = wn

e Decay Rate: ¢

> g:—%:—gwn
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Step Response for Complex Poles

w3+ o? 1 w? 1 kis + ko T2

() = = - = +2

524205 +wi+o2s 24 20wpstw2s 82+ 20wesFwl s

The poles of g are at s = 0 + wgyz. Using PFE, the solution is:

y(t) =1 — et (cos(wdt) +Z Sin(wdt))

Wd

= 1— et gin (wat + @)

Wd
_ _ 2 _ —1 (8]
Where 0 = (wn, wg = wpy/1 — (? and ¢ = tan (@T)
c(?)
The result is oscillation with an Exponential decay generated by

real part of complex pole pair

e Envelope decays at rate o

e Speed of oscillation is wy, the
Damped Frequency

Sinusoidal oscillation generated by
imaginary part of complex pole pair

M. Peet Lecture 9: Control Systems 4 /31



Complex Poles
How NOT to calculate Rise Time (77.)

Recall:
oty

e T, is the time to go from .1 to .9

1.02¢fina

Chinal 7

Suppose there were no damping poy
(0 = 0). Then the normalized solution 0sens /|
is

y(t) = 1 — cos(wqt)

O1Chnst ——|

B o o

»

The points t; and t5 occur at
wt; = cos 1(.9) = .45, waty = cos (1) = 1.47
So that
1.02

T. =ty —t; = — WRONG!!!!
wq
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Complex Poles

An Approximation for Rise Time (77.)

However, with Damping, the situation changes.
e Damping slows the response.
e No easy formula for rise time of a complex pole!
e When (= 5,7, = ? (We will use this approximation)

M. Peet

Rise time x Natural frequency
[ ]
[3%]
T

Damping
ratio
0.1
02
0.3
04

Normalized
rise time
1.104
1.203
1.321
1.463
1.638
1.854
2.126
2.467
2.883

1 !

04

1
0.5

0.6 0.7

Damping ratio
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Complex Poles
How to Calculate Settling Time (7%)

Recall the step response

y(t) =1—¢" <Cos(wdt)

d

Oscillations are confined within an Exponential Envelope
e The exponential envelop decays at rate o.

e Settling Time for a complex pole is given by contraction of the envelope

L=yl < e < .01

o
+ — sin(wgt
5 (wat)

e Thus we use the same formula as for a real pole - i.e.

c(t)

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair
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Complex Poles
What is Time to Peak (Peak Time)

The time of MAXIMUM deflection.

o)

e Only Complex poles have peaks.
Definition 1. - ,
The Peak Time, 7, is time at which e A
the step response obtains its maximum -
value.
To calculate T}, we must find when
[0 P p—

o R T, £
y(t) =1—¢" (cos(wdt) +— sin(wdt)>

Wd

=1 e gin (wat + &)
W

Achieves its maximum.
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Complex Poles
How to Calculate Peak Time (7})

To find the extrema, we set y(t) = 0,
where it can be shown that

ot

. Wn ) -
y(t) = ——e"" sinwgyt 10265

/ 1 _ 2 Cinal ra
9 C 0.98¢hinal
w : g /
— Jegt sin Wdt 0.9¢fnay
Wq

So j(t) = 0 when t = 77

w7 e, 7, !

Because of the exponential envelope, the first peak will always be largest
(n=1).

™ ™
Tp:—:

Wd  wp/1— (2
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Complex Poles

What is Percent Overshoot?

Unique to complex poles is the concept
of overshoot:

Definition 2. e

The Percent Overshoot, I, is the “”‘/
peak value of the signal, as a

percentage of steady-state
(Cma;(f_lcfinal . 100%)

nal

To find M,,, we need the max of y(¢)
(We need (¢max))-

* Cmax = Y(T}) where T), = o

Systems with high overshoot may move violently before settling.

e May diverge from acceptable path
e Can cause crashes, un-modeled dynamics, etc.
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Complex Poles

How to Calculate Percent Overshoot (M)

To calculate M,,, we need the maximum
value of y(t).

o

® Occurs at time T}, = .

d 1.02¢

c
final 7

0.98¢(ipa) /
0.9¢fnat

Since cfinal =1 (yss = 1)
Mp = y(Tp) -1

— _eoTy (cos(wdTp) +Z sin(wdTp)>
wa

O.1¢finat ——mt

o o 7 e A T *
= T (cos(w) +— Sin(w))
wd
=

o —
:ean —ewd = e Vi-¢2

s __m¢
M,=evi =e¢ vV1-¢

M, depends only on (.
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Complex Poles
Lab Example

S

Estimate:
o Rise/Peak Time
e Percent Overshoot
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BallonBeamControlLab.mp4
Media File (video/mp4)


Complex Poles

Numerical Example

Lets look at the suspension problem
Open Loop:

m

<

The poles are:
® p12=—.9567£1.2272%

® p34= —.0433 £ .64122
Because there are two sets of poles, we should consider both.

I
“ s2+s+1 J_
G p—
(5) st +283 43524541 L‘J X,
Tu

g1 = —.9567 Wd,1 = 1.2272
g9 = —.0433 Wd,2 = .6412

Wg = Jol +w2, = 15561 (1= w‘”' — 6148
n,l

wno = 6427 (= .0674
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Complex Poles

Numerical Example
Closed Loop (Upper Feedback): Let k =1

G(s)— s24+s54+1
st 42834+ (34+K)s2+ (1+k)s+ (1+k)

The poles are:
® Do = —.8624 +1.4391:
® p34 = —.1376 + .83167

Consider both sets of poles.
o1 = —.8624 wg1 = 1.4391
o9 = —.1376 wq,2 = .8316
The natural frequency and damping ratios are
W1 = 1.6777 (1 = .5140
Wp,2 = .8429 (o = .1632
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Complex Poles

Numerical Example: Percent Overshoot
y(

yt)
7\
VN

06

o4 | \ /

Figure: Closed Loop

Overshoot: Open Loop (easiest to use o and w directly)

My, =e“ =.0864 M,y = 8088

Overshoot: Closed Loop (Upper Feedback)
M,, =152 M, = 5946

A substantial improvement in performance.
Lecture 9: Control Systems

M. Peet

Figure: Open Loop

15 / 31



Complex Poles

Numerical Example: Settling Time

yt)
/’“
A
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Figure: Closed Loop

Settling Time: Open Loop
4.
Tsq1 = —6 =4.81

5

Settling Time: Closed Loop (Upper Feedback)
Ty = 33.43

T,1 =533

M. Peet

Figure: Open Loop

T, = 106.23
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Complex Poles

Numerical Example: Peak Time

it

o7 | \
[ \ /

06 /

A o
al L \/\/\ N / \//

04t

Figure: Closed Loop

Peak Time: Open Loop
Tyy=— =256 Tpy=4.90
W

Peak Time: Closed Loop
Tp1 =218 Tpo =378
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Performance Specifications

Dynamic response is determined by pole

locations. A Im(s)
e Except Steady-State Error
Usually, dynamic response improves X
with feedback.
. < © >
e Recall the numerical examples. Re(s)
e Pole locations change under X
feedback.
e The choice of £ =1 was just a
guess. v

Consider: The goal of a controller is to change the location of the poles.

e But where do we want them?

Performance Specifications create in the Complex Plane.
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Pole Locations

Constraint on Peak Time

Suppose we have performance specs for A Im(s)
e T, T, M, etc.

We can translate this to regions of the X
complex plane.

< < >
Maximum Peak Time: T, 4esired- \ Re(s)

X
A 4

We usually require T}, < T}, desired-

m
- = Tp < Tp,desired
Wq

Which means
Vs

Wq >
i

p,desired

The geometric interpretation is that the imaginary part be sufficiently large.
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Pole Locations

Constraint on Settling Time

Maximum Settling Time: T jesired- A/fmis)

We want quick convergence.

e So we require Ts < T gesired- X
Hence, < > >
4.6 / e

—70' = Ts < Ts,desired X

Which translates to
4.6

ol —/——
Ts,desired

The geometric interpretation is that the real part be sufficiently negative.
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Pole Locations

Constraint on Percent Overshoot

Maximum Overshot: M, jcsired- ;;//u(s)

We don't like hitting things,
e So we need M, < Mp desired-

2 roots (0 £ wqt) give two constraints: <

O}
v

Re(s

efwa = Mp < Mp,desi’red X

E < 1n<Mp,des7L7‘ed) \ //

Wd

or since In(M,, gesired) < 0,

< ul > T
d — O, Wq ——— O
hl(Mp,desi'red)

w,
ln(Mp,desired)
A sector constraint on o and w?
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Complex Poles

Percent Overshoot

Alternatively, M), jesireq is determined by damping ratio alone:

Invert:

Percent overshoot, %08

M. Peet
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Complex Poles

Percent Overshoot

A fixed (gesireq defines an angle in the complex plane.

jo

_________ - +jw V1= 82 = oy

I

} ay, s-plane
\

\

|

=

p ST - o,V - £ =—jo,

0= g - Sinil(Cdesired)
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Pole Locations

Constraint on Rise Time

The expression for rise time is Inp5)
complicated. We use ( = .5, to get

1.8
T, =2 X
wn
Maximum Rise Time: T} jcsired- Re(s)
e We want quick response. X

o We require T, < T} desired-

1.8
- = Tr < Tr,desired
w

n
Thus we require

N\

- 1.8
w -
" Tr,desired

Recall that w,, = \/0? + w?, so the geometric interpretation is a circle:
1.8
sl > =

rodesired
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Complex Poles

)
3 -
E jo
nvelope the same 2
3
) s-pline
2 e
Pole
; \ | motion
2
3
1
(@)
cln)
Frequency the same jo
21
1 X
2 s-plane
"
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2 1
‘
()
)
Same overshoot =
2
3 A 1| splane
A R — o
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K motion
1
2
3
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Pole Locations

Multiple Constraints

Mostly, we have several constraints

Y

> ™
Wy e
Tp,desired
< 4.6
o -
Ts,desir@d <
< ™
W< ———0o
ln(Mp,desired)
- 1.8
Wn,
Tr,desired

Any pole locations not prohibited are allowed.

X 7<><
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Pole Locations

Multiple Constraints: Example

High Performance Aircraft:
e Overshoot: Reduce overshoot to less than 5%.

Mp,desired =.05

™
wg < —— o0 = —1.050
ln(Mp,desired)

e A difficult requirement to meet?

¢ Rise Time: Quick response is critical. Limit Rise Time to 1s or less

Tr,desired =1

o 1.8 18
w — = |.
" Tr,desired

¢ Settling Time: Limit settling time to T gesirea = 3.55.

Ts,desired = 3.5s

4.
o< oAb = —1.333

Ts,desi'red
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Pole Locations

Multiple Constraints: Example

We have the required

. A Im(s)
Overshoot: Along a line of about

0 = atan (ﬂ) X (-
o
| ) A}
= atan <_.9535> \ / Re(s)
= 46° X &

Which means a damping ratio of
¢ = sin(90 — 46°) = .69. v
e Roughly wy = 0o

To satisfy T, 0 < —1.333, so lets try o = —1.5.
e Then wy < 1.5
e Choose wg = 1.4
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Pole Locations

Multiple Constraints: Example

For T}, need w,, > 1.8. However,

wp = /w2 4+ 02 =2.05

So rise time is already satisfied.

If we need to decrease rise time, increase omega, while staying on lines of

constant overshoot

M. Peet

N Im(s)

A
1

N~

Re(s)

Lecture 9: Control Systems

=
o

A

4

29 / 31



Pole Locations
Missile Video

N

Estimate Performance Specs:

M. Peet
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Summary

What have we learned today?
In this Lecture, you will learn:

Characteristics of the Response

Complex Poles
e Rise Time
e Settling Time

e Percent Overshoot

Performance Specifications
e Geometric Pole Restrictions

Next Lecture: Designing Controllers
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