Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 9: Dynamics of Response: Complex Poles

In this Lecture, you will learn:

Characteristics of the Response

Complex Poles

- Rise Time
- Settling Time
- Percent Overshoot

Performance Specifications

• Geometric Pole Restrictions

Recall: Damping and Frequency

3 Different Forms: Each with $y_{ss} = 1$

$$\begin{split} \hat{G}(s) &= \frac{b}{s^2 + as + b} \\ \hat{G}(s) &= \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \\ \hat{G}(s) &= \frac{\sigma^2 + \omega_d^2}{s^2 - 2\sigma s + (\sigma^2 + \omega_d^2)} = \frac{\sigma^2 + \omega_d^2}{(s - \sigma + i\omega_d)(s - \sigma - i\omega_d)} = \frac{\sigma^2 + \omega_d^2}{(s - \sigma)^2 + \omega_d^2} \end{split}$$

Two Complex Poles at $s = \sigma \pm \imath \omega_d$.

- Damped Frequency: ω_d • $\omega_d = \sqrt{b - \frac{a^2}{4}} = \omega_n \sqrt{1 - \zeta^2}$
- Decay Rate: σ

•
$$\sigma = -\frac{a}{2} = -\zeta \omega_n$$

- Natural Frequency: ω_n
 ω_n = √b = √σ² + ω²_d
- Damping Ratio: ζ
 ζ = ^a/_{2ωn} = ^{|σ|}/_{ωn}

Step Response for Complex Poles

$$\hat{y}(s) = \frac{\omega_d^2 + \sigma^2}{s^2 + 2\sigma s + \omega_d^2 + \sigma^2} \frac{1}{s} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \frac{1}{s} = \frac{k_1 s + k_2}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{r_2}{s}$$

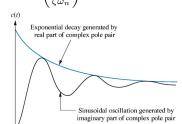
The poles of \hat{y} are at $s=\sigma\pm\omega_d\imath.$ Using PFE, the solution is:

$$y(t) = 1 - e^{\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$= 1 - e^{\sigma t} \frac{\omega_n}{\omega_d} \sin(\omega_d t + \phi)$$

Where
$$\sigma = \zeta \omega_n$$
, $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ and $\phi = \tan^{-1} \left(\frac{\omega_d}{\zeta \omega_n}\right)$.

The result is oscillation with an Exponential Envelope.

- Envelope decays at rate σ
- Speed of oscillation is ω_d, the Damped Frequency



- 1

Complex Poles How NOT to calculate Rise Time (T_r)

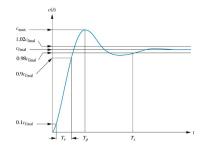
Recall:

• T_r is the time to go from .1 to .9 of the final value.

Suppose there were no damping ($\sigma = 0$). Then the normalized solution is

$$y(t) = 1 - \cos(\omega_d t)$$

The points t_1 and t_2 occur at



$$\omega t_1 = \cos^{-1}(.9) = .45, \qquad \omega_d t_2 = \cos^{-1}(.1) = 1.47$$

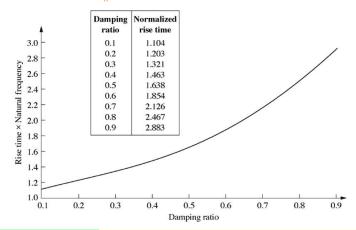
So that

$$T_r = t_2 - t_1 = \frac{1.02}{\omega_d} \qquad \text{WRONG!!!}$$

An Approximation for Rise Time (T_r)

However, with **Damping**, the situation changes.

- Damping *slows* the response.
- No easy formula for rise time of a complex pole!
- When $\zeta = .5$, $T_r \cong \frac{1.8}{\omega_r}$ (We will use this approximation)



Complex Poles How to Calculate Settling Time (T_s)

Recall the step response

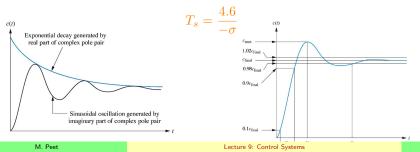
$$y(t) = 1 - e^{\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$

Oscillations are confined within an Exponential Envelope

- The exponential envelop decays at rate σ .
- Settling Time for a complex pole is given by contraction of the envelope

$$||1 - y(t)|| \le e^{\sigma t} \le .01$$

• Thus we use the same formula as for a real pole - i.e.



7 / 31

The time of MAXIMUM deflection.

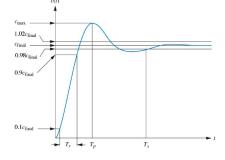
• Only Complex poles have peaks.

Definition 1.

The **Peak Time**, T_p is time at which the step response obtains its maximum value.

To calculate T_p , we must find when

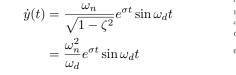
$$y(t) = 1 - e^{\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$= 1 - e^{\sigma t} \frac{\omega_n}{\omega_d} \sin(\omega_d t + \phi)$$



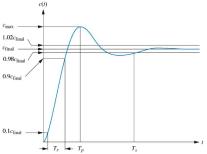
Achieves its maximum.

How to Calculate Peak Time (T_p)

To find the extrema, we set $\dot{y}(t)=0, \label{eq:constraint}$ where it can be shown that



So
$$\dot{y}(t) = 0$$
 when $t = \frac{n\pi}{\omega_d}$.



Because of the exponential envelope, the first peak will always be largest (n = 1).

$$T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

What is Percent Overshoot?

Unique to complex poles is the concept of overshoot:

Definition 2.

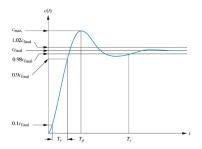
The **Percent Overshoot**, M_p is the peak value of the signal, as a percentage of steady-state $\left(\frac{c_{\max}-c_{final}}{c_{final}}\cdot 100\%\right)$.

To find M_p , we need the max of y(t) (We need (c_{\max})).

•
$$c_{\max} = y(T_p)$$
 where $T_p = \frac{\pi}{\omega_d}$.

Systems with high overshoot may move violently before settling.

- May diverge from acceptable path
- Can cause crashes, un-modeled dynamics, etc.



How to Calculate Percent Overshoot (M_p)

To calculate M_p , we need the maximum value of y(t).

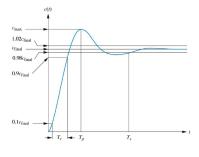
• Occurs at time $T_p = \frac{\pi}{\omega_d}$.

Since $c_{final} = 1$ ($y_{ss} = 1$):

J

$$M_p = y(T_p) - 1$$

= $-e^{\sigma T_p} \left(\cos(\omega_d T_p) + \frac{\sigma}{\omega_d} \sin(\omega_d T_p) \right)$
= $-e^{\sigma T_p} \left(\cos(\pi) + \frac{\sigma}{\omega_d} \sin(\pi) \right)$
= $e^{\sigma T_p} = e^{\frac{\pi\sigma}{\omega_d}} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$



$$M_p = e^{\frac{\pi\sigma}{\omega_d}} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$$

 M_p depends only on ζ .

Lecture 9: Control Systems

Lab Example

Estimate:

- Rise/Peak Time
- Percent Overshoot

M. Peet

Complex Poles Numerical Example

Lets look at the suspension problem **Open Loop:**

$$\hat{G}(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

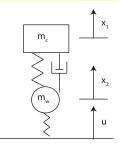
The poles are:

- $p_{1,2} = -.9567 \pm 1.2272i$
- $p_{3,4} = -.0433 \pm .6412i$

Because there are two sets of poles, we should consider both.

$$\sigma_1 = -.9567 \qquad \omega_{d,1} = 1.2272 \sigma_2 = -.0433 \qquad \omega_{d,2} = .6412$$

$$\omega_{n,1} = \sqrt{\sigma_1^2 + \omega_{d,1}^2} = 1.5561 \qquad \zeta_1 = \frac{|\sigma|}{\omega_{n,1}} = .6148$$
$$\omega_{n,2} = .6427 \qquad \zeta_2 = .0674$$



Lecture 9: Control Systems

Complex Poles Numerical Example

Closed Loop (Upper Feedback): Let k = 1

$$\hat{G}(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + (3+k)s^2 + (1+k)s + (1+k)}$$

The poles are:

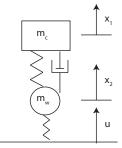
- $p_{1,2} = -.8624 \pm 1.4391i$
- $p_{3,4} = -.1376 \pm .8316i$

Consider both sets of poles.

 $\sigma_1 = -.8624$ $\omega_{d,1} = 1.4391$ $\sigma_2 = -.1376$ $\omega_{d,2} = .8316$

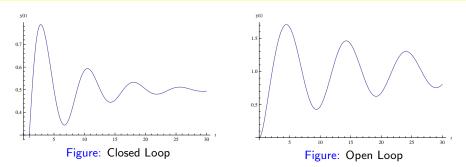
The natural frequency and damping ratios are

$$\omega_{n,1} = 1.6777$$
 $\zeta_1 = .5140$
 $\omega_{n,2} = .8429$ $\zeta_2 = .1632$



Lecture 9: Control Systems

Numerical Example: Percent Overshoot



Overshoot: Open Loop (easiest to use σ and ω directly)

$$M_{p,1} = e^{\frac{\pi \sigma_1}{\omega_1}} = .0864 \qquad M_{p,2} = .8088$$

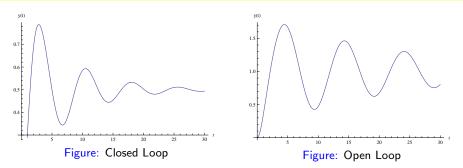
Overshoot: Closed Loop (Upper Feedback)

$$M_{p,1} = .152$$
 $M_{p,2} = .5946$

A substantial improvement in performance.

M. Peet

Numerical Example: Settling Time



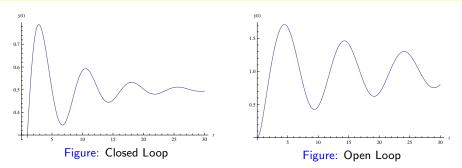
Settling Time: Open Loop

$$T_{s,1} = \frac{4.6}{-\sigma} = 4.81$$
 $T_{s,2} = 106.23$

Settling Time: Closed Loop (Upper Feedback)

 $T_{s,1} = 5.33$ $T_{s,2} = 33.43$

Numerical Example: Peak Time



Peak Time: Open Loop

$$T_{p,1} = \frac{\pi}{\omega_d} = 2.56$$
 $T_{p,2} = 4.90$

Peak Time: Closed Loop

$$T_{p,1} = 2.18$$
 $T_{p,2} = 3.78$

Performance Specifications

Dynamic response is determined by *pole locations*.

• Except Steady-State Error

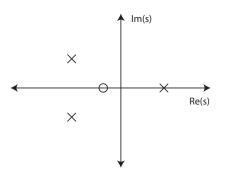
Usually, dynamic response **improves** with feedback.

- Recall the numerical examples.
- Pole locations change under feedback.
- The choice of k = 1 was just a guess.

Consider: The goal of a controller is to change the location of the poles.

• But where do we want them?

Performance Specifications create Geometric Constraints in the Complex Plane.



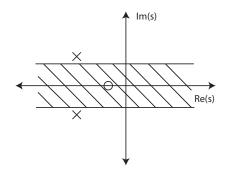
Constraint on Peak Time

Suppose we have performance specs for

• T_p , T_r , M_p etc.

We can translate this to regions of the complex plane.

Maximum Peak Time: $T_{p,desired}$.



We usually require $T_p < T_{p,desired}$.

$$\frac{\pi}{\omega_d} = T_p < T_{p,desired}$$

Which means

$$\omega_d > \frac{\pi}{T_{p,desired}}$$

The geometric interpretation is that the imaginary part be sufficiently large.

M. Peet

Constraint on Settling Time

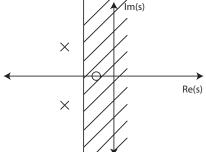
 Maximum Settling Time: $T_{s,desired}$.

 We want quick convergence.

 • So we require $T_s < T_{s,desired}$.

 Hence,

 $\frac{4.6}{-\sigma} = T_s < T_{s,desired}$



Which translates to

$$\sigma < -\frac{4.0}{T_{s,desired}}$$

1 0

The geometric interpretation is that the real part be sufficiently negative.

Constraint on Percent Overshoot

Maximum Overshot: $M_{p,desired}$.

We don't like hitting things,

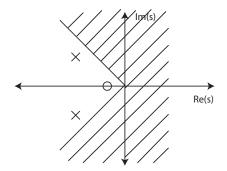
- So we need $M_p < M_{p,desired}$.
- 2 roots $(\sigma \pm \omega_d \imath)$ give two constraints:

 $e^{\frac{\pi\sigma}{\pm\omega_d}} = M_p < M_{p,desired}$

$$\frac{\pi\sigma}{\pm\omega_d} < \ln(M_{p,desired})$$

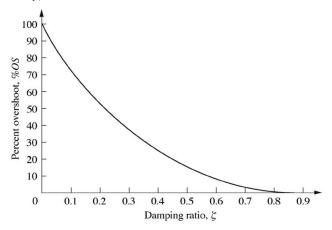
or since $\ln(M_{p,desired}) < 0$,

 $\omega_d < \frac{\pi}{\ln(M_{p,desired})}\sigma, \qquad \omega_d > -\frac{\pi}{\ln(M_{p,desired})}\sigma$ A sector constraint on σ and ω ?



Percent Overshoot

Alternatively, $M_{p,desired}$ is determined by damping ratio alone:



Invert:

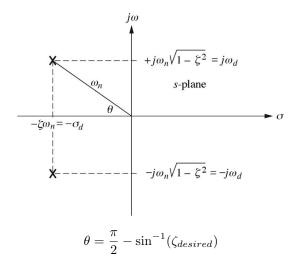
$$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}, \qquad \zeta = \frac{|\sigma|}{\omega_n}$$

M. Peet

Lecture 9: Control Systems

Complex Poles Percent Overshoot

A fixed $\zeta_{desired}$ defines an angle in the complex plane.



Constraint on Rise Time

The expression for rise time is complicated. We use $\zeta = .5$, to get

$$T_r \cong \frac{1.8}{\omega_n}$$

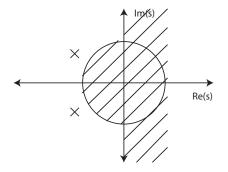
Maximum Rise Time: $T_{r,desired}$.

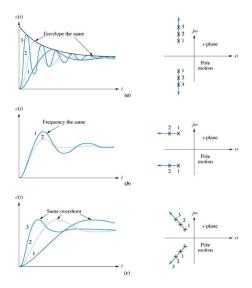
- We want quick response.
- We require $T_r < T_{r,desired}$. $\frac{1.8}{T_r} = T_r < T_{r,desired}$

Thus we require

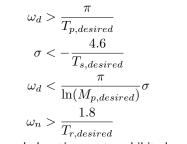
$$\omega_n > \frac{1.8}{T_{r,desired}}$$

Recall that $\omega_n = \sqrt{\sigma^2 + \omega_d^2}$, so the geometric interpretation is a circle: $\|s\| > \frac{1.8}{T_{r,desired}}$.

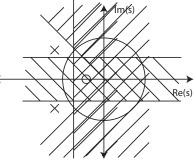




Mostly, we have several constraints



Any pole locations not prohibited are allowed.



Multiple Constraints: Example

High Performance Aircraft:

• Overshoot: Reduce overshoot to less than 5%.

$$M_{p,desired} = .05$$

$$\omega_d < \frac{\pi}{\ln(M_{p,desired})}\sigma = -1.05\sigma$$

- A difficult requirement to meet?
- Rise Time: Quick response is critical. Limit Rise Time to 1s or less

$$T_{r,desired} = 1$$

 $\omega_n > \frac{1.8}{T_{r,desired}} = 1.8$

• Settling Time: Limit settling time to $T_{s,desired} = 3.5s$.

$$T_{s,desired} = 3.5s$$

$$\sigma < -\frac{4.6}{T_{s,desired}} = -1.333$$

Multiple Constraints: Example

We have the required **Overshoot:** Along a line of about

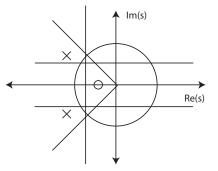
$$\theta = \operatorname{atan}\left(\frac{\omega_d}{\sigma}\right)$$
$$= \operatorname{atan}\left(\frac{1}{-.9535}\right)$$
$$= 46^{\circ}$$

Which means a damping ratio of $\zeta = \sin(90 - 46^\circ) = .69.$

• Roughly $\omega_d = \sigma$

To satisfy T_s , $\sigma < -1.333$, so lets try $\sigma = -1.5$.

- Then $\omega_d < 1.5$
- Choose $\omega_d = 1.4$

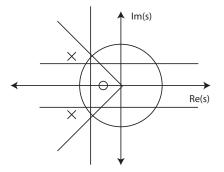


Multiple Constraints: Example

For T_r , need $\omega_n > 1.8$. However,

$$\omega_n = \sqrt{\omega_d^2 + \sigma^2} = 2.05$$

So rise time is already satisfied.



If we need to decrease rise time, increase omega, while staying on lines of constant overshoot

Missile Video

Estimate Performance Specs:

M. Peet

Summary

What have we learned today?

In this Lecture, you will learn:

Characteristics of the Response

Complex Poles

- Rise Time
- Settling Time
- Percent Overshoot

Performance Specifications

• Geometric Pole Restrictions

Next Lecture: Designing Controllers