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Overview

In this Lecture, you will learn:

Characteristics of the Response

Complex Poles

• Rise Time

• Settling Time

• Percent Overshoot

Performance Specifications

• Geometric Pole Restrictions

M. Peet Lecture 9: Control Systems 2 / 31



Complex Poles
Recall: Damping and Frequency

3 Different Forms: Each with yss = 1

Ĝ(s) =
b

s2 + as+ b

Ĝ(s) =
ω2
n

s2 + 2ζωns+ ω2
n

Ĝ(s) =
σ2 + ω2

d

s2 − 2σs+ (σ2 + ω2
d)

=
σ2 + ω2

d

(s− σ + ıωd)(s− σ − ıωd)
=

σ2 + ω2
d

(s− σ)2 + ω2
d

Two Complex Poles at s = σ ± ıωd.

• Damped Frequency: ωd

I ωd =
√
b− a2

4
= ωn

√
1− ζ2

• Decay Rate: σ
I σ = −a

2
= −ζωn

• Natural Frequency: ωn
I ωn =

√
b =

√
σ2 + ω2

d

• Damping Ratio: ζ
I ζ = a

2ωn
= |σ|

ωn
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Step Response for Complex Poles

ŷ(s) =
ω2
d + σ2

s2 + 2σs+ ω2
d + σ2

1

s
=

ω2
n

s2 + 2ζωns+ ω2
n

1

s
=

k1s+ k2
s2 + 2ζωns+ ω2

n

+
r2
s

The poles of ŷ are at s = σ ± ωdı. Using PFE, the solution is:

y(t) = 1− eσt
(
cos(ωdt) +

σ

ωd
sin(ωdt)

)
= 1− eσtωn

ωd
sin (ωdt+ φ)

Where σ = ζωn, ωd = ωn
√
1− ζ2 and φ = tan−1

(
ωd
ζωn

)
.

The result is oscillation with an
Exponential Envelope.

• Envelope decays at rate σ

• Speed of oscillation is ωd, the
Damped Frequency
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Complex Poles
How NOT to calculate Rise Time (Tr)

Recall:

• Tr is the time to go from .1 to .9
of the final value.

Suppose there were no damping
(σ = 0). Then the normalized solution
is

y(t) = 1− cos(ωdt)

The points t1 and t2 occur at

ωt1 = cos−1(.9) = .45, ωdt2 = cos−1(.1) = 1.47

So that

Tr = t2 − t1 =
1.02

ωd
WRONG!!!!
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Complex Poles
An Approximation for Rise Time (Tr)

However, with Damping, the situation changes.
• Damping slows the response.
• No easy formula for rise time of a complex pole!
• When ζ = .5, Tr ∼= 1.8

ωn
(We will use this approximation)
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Complex Poles
How to Calculate Settling Time (Ts)

Recall the step response

y(t) = 1− eσt
(
cos(ωdt) +

σ

ωd
sin(ωdt)

)
Oscillations are confined within an Exponential Envelope
• The exponential envelop decays at rate σ.
• Settling Time for a complex pole is given by contraction of the envelope

‖1− y(t)‖ ≤ eσt ≤ .01
• Thus we use the same formula as for a real pole - i.e.

Ts =
4.6

−σ
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Complex Poles
What is Time to Peak (Peak Time)

The time of MAXIMUM deflection.

• Only Complex poles have peaks.

Definition 1.

The Peak Time, Tp is time at which
the step response obtains its maximum
value.

To calculate Tp, we must find when

y(t) = 1− eσt
(
cos(ωdt) +

σ

ωd
sin(ωdt)

)
= 1− eσtωn

ωd
sin (ωdt+ φ)

Achieves its maximum.
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Complex Poles
How to Calculate Peak Time (Tp)

To find the extrema, we set ẏ(t) = 0,
where it can be shown that

ẏ(t) =
ωn√
1− ζ2

eσt sinωdt

=
ω2
n

ωd
eσt sinωdt

So ẏ(t) = 0 when t = nπ
ωd

.

Because of the exponential envelope, the first peak will always be largest
(n = 1).

Tp =
π

ωd
=

π

ωn
√
1− ζ2
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Complex Poles
What is Percent Overshoot?

Unique to complex poles is the concept
of overshoot:

Definition 2.

The Percent Overshoot, Mp is the
peak value of the signal, as a
percentage of steady-state
(
cmax−cfinal

cfinal
· 100%).

To find Mp, we need the max of y(t)
(We need (cmax)).

• cmax = y(Tp) where Tp =
π
ωd

.

Systems with high overshoot may move violently before settling.

• May diverge from acceptable path

• Can cause crashes, un-modeled dynamics, etc.
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Complex Poles
How to Calculate Percent Overshoot (Mp)

To calculate Mp, we need the maximum
value of y(t).

• Occurs at time Tp =
π
ωd

.

Since cfinal = 1 (yss = 1):

Mp = y(Tp)− 1

= −eσTp
(
cos(ωdTp) +

σ

ωd
sin(ωdTp)

)
= −eσTp

(
cos(π) +

σ

ωd
sin(π)

)
= eσTp = e

πσ
ωd = e

− πζ√
1−ζ2

Mp = e
πσ
ωd = e

− πζ√
1−ζ2

Mp depends only on ζ.

M. Peet Lecture 9: Control Systems 11 / 31



Complex Poles
Lab Example

Estimate:
• Rise/Peak Time
• Percent Overshoot
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BallonBeamControlLab.mp4
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Complex Poles
Numerical Example

Lets look at the suspension problem
Open Loop:

Ĝ(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + s+ 1

The poles are:

• p1,2 = −.9567± 1.2272ı

• p3,4 = −.0433± .6412ı

x
1

x
2

m
c

m
w

u

Because there are two sets of poles, we should consider both.

σ1 = −.9567 ωd,1 = 1.2272

σ2 = −.0433 ωd,2 = .6412

ωn,1 =
√
σ2
1 + ω2

d,1 = 1.5561 ζ1 =
|σ|
ωn,1

= .6148

ωn,2 = .6427 ζ2 = .0674
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Complex Poles
Numerical Example

Closed Loop (Upper Feedback): Let k = 1

Ĝ(s) =
s2 + s+ 1

s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)

The poles are:

• p1,2 = −.8624± 1.4391ı

• p3,4 = −.1376± .8316ı

x
1

x
2

m
c

m
w

u

Consider both sets of poles.

σ1 = −.8624 ωd,1 = 1.4391

σ2 = −.1376 ωd,2 = .8316

The natural frequency and damping ratios are

ωn,1 = 1.6777 ζ1 = .5140

ωn,2 = .8429 ζ2 = .1632
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Complex Poles
Numerical Example: Percent Overshoot
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Figure: Closed Loop
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Figure: Open Loop

Overshoot: Open Loop (easiest to use σ and ω directly)

Mp,1 = e
πσ1
ω1 = .0864 Mp,2 = .8088

Overshoot: Closed Loop (Upper Feedback)

Mp,1 = .152 Mp,2 = .5946

A substantial improvement in performance.
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Complex Poles
Numerical Example: Settling Time
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Figure: Closed Loop
5 10 15 20 25 30

t

0.5

1.0

1.5

yHtL

Figure: Open Loop

Settling Time: Open Loop

Ts,1 =
4.6

−σ
= 4.81 Ts,2 = 106.23

Settling Time: Closed Loop (Upper Feedback)

Ts,1 = 5.33 Ts,2 = 33.43
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Complex Poles
Numerical Example: Peak Time
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Figure: Closed Loop
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Figure: Open Loop

Peak Time: Open Loop

Tp,1 =
π

ωd
= 2.56 Tp,2 = 4.90

Peak Time: Closed Loop

Tp,1 = 2.18 Tp,2 = 3.78
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Performance Specifications

Dynamic response is determined by pole
locations.

• Except Steady-State Error

Usually, dynamic response improves
with feedback.

• Recall the numerical examples.

• Pole locations change under
feedback.

• The choice of k = 1 was just a
guess.

Im(s)

Re(s)

Consider: The goal of a controller is to change the location of the poles.

• But where do we want them?

Performance Specifications create Geometric Constraints in the Complex Plane.
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Pole Locations
Constraint on Peak Time

Suppose we have performance specs for

• Tp, Tr, Mp etc.

We can translate this to regions of the
complex plane.

Maximum Peak Time: Tp,desired.

Im(s)

Re(s)

We usually require Tp < Tp,desired.

π

ωd
= Tp < Tp,desired

Which means
ωd >

π

Tp,desired

The geometric interpretation is that the imaginary part be sufficiently large.
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Pole Locations
Constraint on Settling Time

Maximum Settling Time: Ts,desired.

We want quick convergence.

• So we require Ts < Ts,desired.

Hence,

4.6

−σ
= Ts < Ts,desired

Im(s)

Re(s)

Which translates to

σ < − 4.6

Ts,desired

The geometric interpretation is that the real part be sufficiently negative.
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Pole Locations
Constraint on Percent Overshoot

Maximum Overshot: Mp,desired.

We don’t like hitting things,

• So we need Mp < Mp,desired.

2 roots (σ ± ωdı) give two constraints:

e
πσ

±ωd =Mp < Mp,desired

πσ

±ωd
< ln(Mp,desired)

or since ln(Mp,desired) < 0,

ωd <
π

ln(Mp,desired)
σ, ωd > −

π

ln(Mp,desired)
σ

Im(s)

Re(s)

A sector constraint on σ and ω?
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Complex Poles
Percent Overshoot

Alternatively, Mp,desired is determined by damping ratio alone:

Invert:

Mp = e
− πζ√

1−ζ2 , ζ =
|σ|
ωn
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Complex Poles
Percent Overshoot

A fixed ζdesired defines an angle in the complex plane.

θ =
π

2
− sin−1(ζdesired)

M. Peet Lecture 9: Control Systems 23 / 31



Pole Locations
Constraint on Rise Time

The expression for rise time is
complicated. We use ζ = .5, to get

Tr ∼=
1.8

ωn

Maximum Rise Time: Tr,desired.

• We want quick response.

• We require Tr < Tr,desired.

1.8

ωn
= Tr < Tr,desired

Im(s)

Re(s)

Thus we require

ωn >
1.8

Tr,desired

Recall that ωn =
√
σ2 + ω2

d, so the geometric interpretation is a circle:
‖s‖ > 1.8

Tr,desired
.
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Complex Poles
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Pole Locations
Multiple Constraints

Mostly, we have several constraints

ωd >
π

Tp,desired

σ < − 4.6

Ts,desired

ωd <
π

ln(Mp,desired)
σ

ωn >
1.8

Tr,desired

Im(s)

Re(s)

Any pole locations not prohibited are allowed.
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Pole Locations
Multiple Constraints: Example

High Performance Aircraft:

• Overshoot: Reduce overshoot to less than 5%.

Mp,desired = .05

ωd <
π

ln(Mp,desired)
σ = −1.05σ

• A difficult requirement to meet?

• Rise Time: Quick response is critical. Limit Rise Time to 1s or less

Tr,desired = 1

ωn >
1.8

Tr,desired
= 1.8

• Settling Time: Limit settling time to Ts,desired = 3.5s.

Ts,desired = 3.5s

σ < − 4.6

Ts,desired
= −1.333

M. Peet Lecture 9: Control Systems 27 / 31



Pole Locations
Multiple Constraints: Example

We have the required
Overshoot: Along a line of about

θ = atan
(ωd
σ

)
= atan

(
1

−.9535

)
= 46◦

Which means a damping ratio of
ζ = sin(90− 46◦) = .69.

• Roughly ωd = σ

Im(s)

Re(s)

To satisfy Ts, σ < −1.333, so lets try σ = −1.5.

• Then ωd < 1.5

• Choose ωd = 1.4
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Pole Locations
Multiple Constraints: Example

For Tr, need ωn > 1.8. However,

ωn =
√
ω2
d + σ2 = 2.05

So rise time is already satisfied.

Im(s)

Re(s)

If we need to decrease rise time, increase omega, while staying on lines of
constant overshoot
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Pole Locations
Missile Video

Estimate Performance Specs:
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Summary

What have we learned today?

In this Lecture, you will learn:

Characteristics of the Response

Complex Poles

• Rise Time

• Settling Time

• Percent Overshoot

Performance Specifications

• Geometric Pole Restrictions

Next Lecture: Designing Controllers
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