Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 10: Routh-Hurwitz Stability Criterion

In this Lecture, you will learn:

The Routh-Hurwitz Stability Criterion:

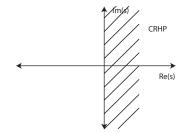
- Determine whether a system is stable.
- An easy way to make sure feedback isn't destabilizing
- Construct the Routh Table

We know that for a system with Transfer function

$$\hat{G}(s) = \frac{n(s)}{d(s)}$$

Input-Output Stability implies that

- all roots of d(s) are in the Left Half-Plane
 - All have negative real part.



Question: How do we determine if all roots of d(s) have negative real part? **Example:**

$$\hat{G}(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

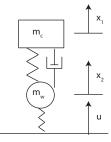
Another Variation

Determining stability is not that hard (Matlab). Now suppose we add feedback:

Controller: Static Gain: $\hat{K}(s) = k$

Closed Loop Transfer Function:

$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s)$$



Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$

We know that increasing the gain reduces steady-state error.

• But how high can we go?

What is the maximum value of k for which we have stability?

Suppose we are given a polynomial denominator

$$d(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}$$

Fact: $\frac{n(s)}{d(s)}$ is unstable if any roots of d(s) have negative real part. **Question:** How to determine if any roots of a(s) have negative real part **Simple Case** All Real Roots.

• Suppose all the roots of d(s) had negative real parts.

$$d(s) = (s - p_1)(s - p_2) \cdots (s - p_n)$$

Observe what happens as we expand out the roots:

$$d(s) = (s - p_1)(s - p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$$

= $(s^2 - (p_1 + p_2)s + p_1p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$
= $(s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_1p_3)s - p_1p_2p_3)(s - p_4) \cdots (s - p_n)$
= \cdots
= $s^n - (p_1 + p_2 + \cdots + p_n)s^{n-1} + (p_1p_2 + p_1p_3 + \cdots)s^{n-2}$

$$-(p_1p_2p_3+p_1p_2p_4+\cdots)s^{n-3}+\cdots+(-1)^np_1p_2\cdots p_n$$

So if we write

$$d(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{0}$$

we get

$$a_{n-1} = -(p_1 + p_2 + \dots + p_n)$$

$$a_{n-2} = (p_1 p_2 + \dots)$$

$$a_{n-3} = -(p_1 p_2 p_3 + \dots)$$

Critical Point: If d(s) is stable, all the p_i are negative.

•
$$a_{n-1} = -(p_1 + p_2 + \dots + p_n) > 0$$

•
$$a_{n-2} = (p_1 p_2 + \cdots) > 0$$

•
$$a_{n-3} = -(p_1 p_2 p_3 + \cdots) > 0$$

Conclusion: All the coefficients of d(s) are positive!!!

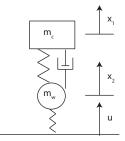
- Also true if the p_i are complex
 - Harder to show.
- If any coefficient is negative, d(s) is unstable.
- **Note!** If all a_i are positive, that proves nothing.

Example: Suspension Problem

Controller: Static Gain: $\hat{K}(s) = k$

Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$



Examine the denominator:

$$d(s) = s^{4} + 2s^{3} + (3+k)s^{2} + (1+k)s + (1+k)s$$

All coefficients are positive for all positive k > 0

Conclusion: We don't know anything new.

Example: Another Example

Consider the very simple transfer function

$$\hat{G}(s) = \frac{1}{s^3 + s^2 + s + 2}$$

The coefficients of

$$d(s) = s^3 + s^2 + s + 2$$

are all positive.

However, the roots of d(s) are at

•
$$p_1 = -1.35$$

- Stable
- $p_{2,3} = .177 \pm 1.2i$
 - Positive Real Part Unstable

Introduced in 1874

- Generalizes the previous method
- Introduces additional combinations of coefficients
- Based on Sturm's theorem.

Central is the idea of the "Routh Table"

Step 1: Write the polynomial as

$$d(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Step 2

Write the coefficients in 2 rows

- First row starts with a_n
- Second row starts with a_{n-1}
- Other coefficients alternate between rows
- Both rows should be same length
 - Continue until no coefficients are left
 - Add zero as last coefficient if necessary

IADLL	U.I IIIu	ai layout ioi	Kouth table	
<i>s</i> ⁴	a_4	a_2	a_0	
s^3	a_3	a_1	0	
s^2				
s^1				
s^0				

TABLE 6.1 Initial layout for Routh table

Step 3

Complete the third row.

- Call the new entries b_1, \cdots, b_k
 - The third row will be the same length as the first two

$$b_1 = -\frac{\det \begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} \qquad b_2 = -\frac{\det \begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} \qquad b_3 = -\frac{\det \begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3}$$

- The denominator is the first entry from the previous row.
- The numerator is the determinant of the entries from the previous two rows:
 - The first column
 - The next column following the coefficient

$$b_k = -\frac{\det \begin{vmatrix} a_n & a_{n-2k} \\ a_{n-1} & a_{n-2k-1} \end{vmatrix}}{a_{n-1}}$$

If a coefficient doesn't exist, substitute 0.

Step 4

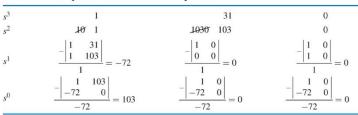
TABLE 6.2 Completed Routh table				
s^4	a_4	a_2	a_0	
s^3	a_3	a_1	0	
<i>s</i> ²	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$	
s^1	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\frac{-\begin{vmatrix} a_3 & 0\\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	
<i>s</i> ⁰	$\frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$	$\frac{-\begin{vmatrix} b_1 & 0\\ c_1 & 0 \end{vmatrix}}{c_1} = 0$	

Treat each following row in the same way as the third row

• There should be n+1 rows total, including the first row.

Step 4

Now examine the first column



Theorem 1.

The number of sign changes in the first column of the Routh table equals the number of roots of the polynomial in the Closed Right Half-Plane (CRHP).

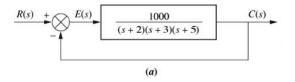
Note: Any row can be multiplied by any positive constant without changing the result.

Numerical Example

Suppose we have a stable transfer function

$$\hat{G}(s) = \frac{1}{(s+2)(s+3)(s+5)}$$

To improve performance, we close the loop with a gain of 1000 Controller: $\hat{K}(s)=1000$

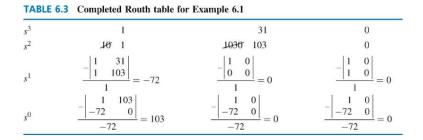


The Closed-Loop Transfer Function is

$$\frac{1000}{s^3 + 10s^2 + 31s + 1030}$$

Question: Have we destabilized the system?

Numerical Example



- We divide the second row by 10
- There are **two** sign changes: $1 \rightarrow -72$ and $-72 \rightarrow 103$
 - Two poles in the CRHP.

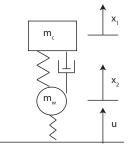
Feedback is **Destabilizing**!

Recall the suspension Problem with feedback: Closed Loop Transfer Function:

$$\frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}$$

Question: Can feedback destabilize the suspension system?

• Is it stable for any k > 0???



Lets start the Routh Table:

We need to find the b_i .

Start by calculating the coefficients in the first row:

$$b_1 = -\frac{\det \begin{vmatrix} 1 & 3+k \\ 2 & 1+k \end{vmatrix}}{2} = \frac{1}{2}(5+k)$$

and

$$b_2 = -\frac{\det \begin{vmatrix} 1 & 1+k \\ 2 & 0 \end{vmatrix}}{2} = 1+k$$

which gives

So far, so good.

• Now calculate the next row.

The coefficients for the next row are

$$c_{1} = -\frac{\det \begin{vmatrix} 2 & 1+k \\ \frac{1}{2}(5+k) & 1+k \end{vmatrix}}{\frac{1}{2}(5+k)} \\ = \frac{k^{2}+2k+1}{5+k}$$

and $c_2 = 0$.

Again, the first column is all positive for any k > 0

• Now calculate the final row.

There is only one non-zero coefficient in the last row.

$$d_{1} = -\frac{\det \left|\frac{\frac{1}{2}(5+k) + k}{\frac{k^{2}+2k+1}{5+k}} - 0\right|}{\frac{k^{2}+2k+1}{5+k}} = k+1$$

$$\frac{1}{\frac{s^{4}}{s^{3}}} \frac{1}{2} + \frac{1}{2} + k + 0}{\frac{1}{2}(5+k) + 1} = k + 1$$

$$\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + k + 0$$

$$\frac{1}{s} + \frac{1}{s} +$$

Conclusion: No matter what k > 0 is, the first column is always positive.

- No sign changes for any k.
- Stable for any k.
- We'll find out why later on.

Feedback **CANNOT** destabilize the suspension system.

Stability of Quadratics

What about a simple second-order system?

 $\frac{1}{s^2 + bs + c}$

We know the poles are at

$$p_{1,2} = -b \pm \sqrt{b^2 - 4c}$$

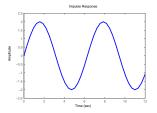
Calculate

$$-\frac{\det \begin{vmatrix} 1 & c \\ b & 0 \end{vmatrix}}{b} = -\frac{-bc}{b} = c$$

The Routh table is

Thus a quadratic is stable if and only if both coefficients are positive.

.



Stability of 3rd order systems

Now consider a third order system:

 $\frac{1}{s^3 + as^2 + bs + c}$

$$-\frac{\det \begin{vmatrix} 1 & b \\ a & c \end{vmatrix}}{a} = -\frac{c-ab}{a} = b - \frac{c}{a}$$
$$-\frac{\det \begin{vmatrix} a & c \\ b - \frac{c}{a} & 0 \end{vmatrix}}{b - \frac{c}{a}} = c$$

The Routh table is

$$\begin{array}{c|cccccc} s^3 & 1 & b & 0 \\ s^2 & a & c & 0 \\ s & b - \frac{c}{a} & 0 & 0 \\ 1 & c & 0 & 0 \end{array}$$

So for 3rd order, stability is equivalent to:

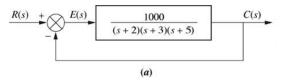
- *a* > 0
- c > 0
- $b > \frac{c}{a}$

Numerical Example, Revisited

Now lets look at the previous example to determine the maximum gain: We have the stable transfer function

$$\hat{G}(s) = \frac{1}{(s+2)(s+3)(s+5)}$$

We close the loop with a gain of size k Controller: $\hat{K}(s)=k$



The Closed-Loop Transfer Function is

$$\frac{k}{s^3 + 10s^2 + 31s + 30 + k}$$

But this is a third order system!

Numerical Example, Revisited

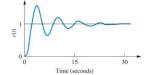
For the third-order system,

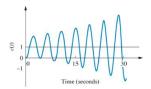
$$\frac{k}{s^3 + 10s^2 + 31s + 30 + k}$$

we require

- a > 0, which means 10 > 0
- c > 0, which means 30 + k > 0

•
$$b > \frac{a}{a}$$





The last requirement implies $31 > \frac{k+30}{10}$ or

$$k < 310 - 30 = 280$$

So our gain is limited to $k<280\,$

Consider the transfer function

$$\hat{G}(s) = \frac{1}{s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10}$$

The Routh Table begins:

s^5	1	2	11
s^4	2	4	10
s^3	0	6	0

The next entry in the table will be

$$-\frac{\det \begin{vmatrix} 2 & 4 \\ 0 & 6 \end{vmatrix}}{0} = \frac{-12}{0}$$

Which is problematic.

Note: If there is a zero in the first column, the system is only marginally stable

• Small changes in the coefficients lead to instability.

The solution is to use ϵ instead of 0 in the first column.

s^5	1	2	11
s^4	2	4	10
s^3	ϵ	6	0

Now the next entry in the table will be

$$-\frac{\det \begin{vmatrix} 2 & 4 \\ \epsilon & 6 \end{vmatrix}}{\epsilon} = \frac{-(12 - 4\epsilon)}{\epsilon}$$

Because ϵ is infinitely small, we let $12 - 4\epsilon = 12$. Assume $\epsilon > 0$

- We have at least one sign change
- At least one unstable pole.

We can keep calculating if necessary.

s^5	1	2	11
s^4	2	4	10
$egin{array}{c} s^5 \ s^4 \ s^3 \ s^3 \ s^3 \end{array}$	0	6	0
s^3	ϵ	6	0
s^2	$\frac{4\epsilon - 12}{\epsilon}$	$\frac{10\epsilon}{\epsilon}$	0
s^2	$\left \begin{array}{c} -12\\ \epsilon \end{array} \right $	10	0
s	$\frac{10\epsilon^2 + 72}{12}$	0	0
s	6	0	0
1	10	0	0

So there are two sign changes

• Two unstable poles

Consider the transfer function

$$\hat{G}(s) = \frac{1}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$

The Routh Table begins:

s^5	1	6	8
s^4	7	42	56
s^3	0	0	0

The next entry in the table will be

$$-\frac{\det \begin{vmatrix} 7 & 42 \\ 0 & 0 \end{vmatrix}}{0} = \frac{0}{0}$$

Which is even more problematic - the whole row is zero. We won't cover this case.

However, it can be done - see book.

What have we learned today?

The Routh-Hurwitz Stability Criterion:

- Determine whether a system is stable.
- An easy way to make sure feedback isn't destabilizing
- Construct the Routh Table

Next Lecture: PID Control