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Overview

In this Lecture, you will learn:

The Routh-Hurwitz Stability Criterion:

• Determine whether a system is stable.

• An easy way to make sure feedback isn’t destabilizing

• Construct the Routh Table
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A Stability Test

We know that for a system with Transfer
function

Ĝ(s) =
n(s)

d(s)

Input-Output Stability implies that

• all roots of d(s) are in the Left Half-Plane
I All have negative real part.

Im(s)

Re(s)

CRHP

Question: How do we determine if all roots of d(s) have negative real part?

Example:

Ĝ(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + s+ 1
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A Stability Test
Another Variation

Determining stability is not that hard (Matlab).
Now suppose we add feedback:

Controller: Static Gain: K̂(s) = k

Closed Loop Transfer Function:

ŷ(s) =
Ĝ(s)K̂(s)

1 + Ĝ(s)K̂(s)
û(s)
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Closed Loop Transfer Function:

k(s2 + s+ 1)

s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)

We know that increasing the gain reduces steady-state error.
• But how high can we go?

What is the maximum value of k for which we have stability?
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A Stability Test

Suppose we are given a polynomial denominator

d(s) = sn + an−1s
n−1 + · · ·+ a0

Fact: n(s)
d(s) is unstable if any roots of d(s) have negative real part.

Question: How to determine if any roots of a(s) have negative real part

Simple Case All Real Roots.
• Suppose all the roots of d(s) had negative real parts.

d(s) = (s− p1)(s− p2) · · · (s− pn)
Observe what happens as we expand out the roots:

d(s) = (s− p1)(s− p2)(s− p3)(s− p4) · · · (s− pn)
= (s2 − (p1 + p2)s+ p1p2)(s− p3)(s− p4) · · · (s− pn)

= (s3 − (p1 + p2 + p3)s
2 + (p1p2 + p2p3 + p1p3)s− p1p2p3)(s− p4) · · · (s− pn)

= · · ·
= sn − (p1 + p2 + · · ·+ pn)s

n−1 + (p1p2 + p1p3 + · · · )sn−2

− (p1p2p3 + p1p2p4 + · · · )sn−3 + · · ·+ (−1)np1p2 · · · pn
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A Stability Test

So if we write
d(s) = sn + an−1s

n−1 + · · ·+ a0

we get

an−1 = −(p1 + p2 + · · ·+ pn)

an−2 = (p1p2 + · · · )
an−3 = −(p1p2p3 + · · · )

Critical Point: If d(s) is stable, all the pi are negative.

• an−1 = −(p1 + p2 + · · ·+ pn) > 0

• an−2 = (p1p2 + · · · ) > 0

• an−3 = −(p1p2p3 + · · · ) > 0

Conclusion: All the coefficients of d(s) are positive!!!

• Also true if the pi are complex
I Harder to show.

• If any coefficient is negative, d(s) is unstable.
• Note! If all ai are positive, that proves nothing.
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Example: Suspension Problem

Controller: Static Gain: K̂(s) = k

Closed Loop Transfer Function:

k(s2 + s+ 1)

s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)
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Examine the denominator:

d(s) = s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)

All coefficients are positive for all positive k > 0

Conclusion: We don’t know anything new.
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Example: Another Example

Consider the very simple transfer function

Ĝ(s) =
1

s3 + s2 + s+ 2

The coefficients of
d(s) = s3 + s2 + s+ 2

are all positive.

However, the roots of d(s) are at

• p1 = −1.35
I Stable

• p2,3 = .177± 1.2ı
I Positive Real Part - Unstable
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Routh’s Method

Introduced in 1874

• Generalizes the previous method

• Introduces additional combinations
of coefficients

• Based on Sturm’s theorem.

Central is the idea of the “Routh Table”

Step 1: Write the polynomial as

d(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0
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Routh’s Method
Step 2

Write the coefficients in 2 rows

• First row starts with an
• Second row starts with an−1

• Other coefficients alternate between rows
• Both rows should be same length

I Continue until no coefficients are left
I Add zero as last coefficient if necessary
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Routh’s Method
Step 3

Complete the third row.

• Call the new entries b1, · · · , bk
I The third row will be the same length as the first two

b1 = −
det

∣∣∣∣a4 a2
a3 a1

∣∣∣∣
a3

b2 = −
det

∣∣∣∣a4 a0
a3 0

∣∣∣∣
a3

b3 = −
det

∣∣∣∣a4 0
a3 0

∣∣∣∣
a3

• The denominator is the first entry from the previous row.
• The numerator is the determinant of the entries from the previous two

rows:
I The first column
I The next column following the coefficient

bk = −
det

∣∣∣∣ an an−2k

an−1 an−2k−1

∣∣∣∣
an−1

I If a coefficient doesn’t exist, substitute 0.

M. Peet Lecture 10: Control Systems 11 / 28



Routh’s Method
Step 4

Treat each following row in the same way as the third row

• There should be n+ 1 rows total, including the first row.
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Routh’s Method
Step 4

Now examine the first column

Theorem 1.

The number of sign changes in the first column of the Routh table equals the
number of roots of the polynomial in the Closed Right Half-Plane (CRHP).

Note: Any row can be multiplied by any positive constant without changing the
result.
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Routh’s Method
Numerical Example

Suppose we have a stable transfer function

Ĝ(s) =
1

(s+ 2)(s+ 3)(s+ 5)

To improve performance, we close the loop with a gain of 1000
Controller: K̂(s) = 1000

The Closed-Loop Transfer Function is

1000

s3 + 10s2 + 31s+ 1030

Question: Have we destabilized the system?
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Routh’s Method
Numerical Example

• We divide the second row by 10

• There are two sign changes: 1→ −72 and −72→ 103
I Two poles in the CRHP.

Feedback is Destabilizing!
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Another Numerical Example

Recall the suspension Problem with feedback:
Closed Loop Transfer Function:

k(s2 + s+ 1)

s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)

Question: Can feedback destabilize the
suspension system?

• Is it stable for any k > 0???
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Lets start the Routh Table:

s4 1 3 + k 1 + k
s3 2 1 + k 0
s2 b1 b2 b3

We need to find the bi.
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Another Numerical Example

Start by calculating the coefficients in the first row:

b1 = −
det

∣∣∣∣1 3 + k
2 1 + k

∣∣∣∣
2

=
1

2
(5 + k)

and

b2 = −
det

∣∣∣∣1 1 + k
2 0

∣∣∣∣
2

= 1 + k

which gives

s4 1 3 + k 1 + k
s3 2 1 + k 0
s2 1

2 (5 + k) 1+k 0
s c1 0 0

So far, so good.

• Now calculate the next row.

M. Peet Lecture 10: Control Systems 17 / 28



Another Numerical Example

The coefficients for the next row are

c1 = −
det

∣∣∣∣ 2 1 + k
1
2 (5 + k) 1 + k

∣∣∣∣
1
2 (5 + k)

=
k2 + 2k + 1

5 + k

and c2 = 0.

s4 1 3 + k 1 + k
s3 2 1 + k 0
s2 1

2 (5 + k) 1 + k 0

s k2+2k+1
5+k 0 0

1 d1 0 0

Again, the first column is all positive for any k > 0

• Now calculate the final row.
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Another Numerical Example

There is only one non-zero coefficient in the last row.

d1 = −
det

∣∣∣∣ 12 (5 + k) 1 + k
k2+2k+1

5+k 0

∣∣∣∣
k2+2k+1

5+k

= k + 1

s4 1 3 + k 1 + k
s3 2 1 + k 0
s2 1

2 (5 + k) 1+k 0

s k2+2k+1
5+k 0 0

1 1 + k 0 0

Conclusion: No matter what k > 0 is, the first column is always positive.

• No sign changes for any k.

• Stable for any k.

• We’ll find out why later on.

Feedback CANNOT destabilize the suspension system.
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Stability of Quadratics

What about a simple second-order system?

1

s2 + bs+ c

We know the poles are at

p1,2 = −b±
√
b2 − 4c
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Calculate

−
det

∣∣∣∣1 c
b 0

∣∣∣∣
b

= −−bc
b

= c

The Routh table is

s2 1 c 0
s b 0 0
1 c 0 0

Thus a quadratic is stable if and only if both coefficients are positive.
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Stability of 3rd order systems

Now consider a third order system:

1

s3 + as2 + bs+ c

−
det

∣∣∣∣1 b
a c

∣∣∣∣
a

= −c− ab
a

= b− c

a

−
det

∣∣∣∣ a c
b− c

a 0

∣∣∣∣
b− c

a

= c

The Routh table is

s3 1 b 0
s2 a c 0
s b− c

a 0 0
1 c 0 0

So for 3rd order, stability is equivalent to:

• a > 0

• c > 0

• b > c
a
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Routh’s Method
Numerical Example, Revisited

Now lets look at the previous example to determine the maximum gain:
We have the stable transfer function

Ĝ(s) =
1

(s+ 2)(s+ 3)(s+ 5)

We close the loop with a gain of size k
Controller: K̂(s) = k

The Closed-Loop Transfer Function is

k

s3 + 10s2 + 31s+ 30 + k

But this is a third order system!
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Routh’s Method
Numerical Example, Revisited

For the third-order system,

k

s3 + 10s2 + 31s+ 30 + k

we require

• a > 0, which means 10 > 0

• c > 0, which means 30 + k > 0

• b > c
a

The last requirement implies 31 > k+30
10 or

k < 310− 30 = 280

So our gain is limited to k < 280
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Limited Special Cases

Consider the transfer function

Ĝ(s) =
1

s5 + 2s4 + 2s3 + 4s2 + 11s+ 10

The Routh Table begins:

s5 1 2 11
s4 2 4 10
s3 0 6 0

The next entry in the table will be

−
det

∣∣∣∣2 4
0 6

∣∣∣∣
0

=
−12
0

Which is problematic.
Note: If there is a zero in the first column, the system is only marginally stable

• Small changes in the coefficients lead to instability.
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Limited Special Cases

The solution is to use ε instead of 0 in the first column.

s5 1 2 11
s4 2 4 10
s3 ε 6 0

Now the next entry in the table will be

−
det

∣∣∣∣2 4
ε 6

∣∣∣∣
ε

=
−(12− 4ε)

ε

Because ε is infinitely small, we let 12− 4ε = 12.
Assume ε > 0

• We have at least one sign change

• At least one unstable pole.
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Limited Special Cases

We can keep calculating if necessary.

s5 1 2 11
s4 2 4 10
s3 0 6 0
s3 ε 6 0

s2
4ε− 12

ε
10ε
ε 0

s2
−12
ε

10 0

s 10ε2+72
12 0 0

s 6 0 0
1 10 0 0

So there are two sign changes

• Two unstable poles
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Limited Special Cases

Consider the transfer function

Ĝ(s) =
1

s5 + 7s4 + 6s3 + 42s2 + 8s+ 56

The Routh Table begins:

s5 1 6 8
s4 7 42 56
s3 0 0 0

The next entry in the table will be

−
det

∣∣∣∣7 42
0 0

∣∣∣∣
0

=
0

0

Which is even more problematic - the whole row is zero.
We won’t cover this case.

• However, it can be done - see book.

M. Peet Lecture 10: Control Systems 27 / 28



Summary

What have we learned today?

The Routh-Hurwitz Stability Criterion:

• Determine whether a system is stable.

• An easy way to make sure feedback isn’t destabilizing

• Construct the Routh Table

Next Lecture: PID Control
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