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Lecture 11: Proportional, Integral and Differential Control



Overview

In this Lecture, you will learn:

Limits of Proportional Feedback
e Performance Specifications.

Derivative Feedback
e Pros and Cons
e PD Control
e Pole Placement

More on Steady-State Error
e Response to ramps and parabolae
e Limits of PD control

Integral Feedback
e Elimination of steady-state error
e Pole-Placement
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Recall the Inverted Pendulum Problem

Proportional Feedback cannot meet any performance specs

Transfer Function A 1

For a simple proportional gain: X(s) =k
Closed Loop Transfer Function (Lower Feedback Interconnection):
GK k
= Mgl

Impulse Response o Impulse Response

Amplitude
Amplitude

o 2 8 10 12 20 25

6 10 15
Time (sec) Time (sec)

Figure: Case 1: k > 242! Figure: Case 2: k < 22

Rath rases are ninstahlel
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Differential Control

Now suppose we furthermore have a performance specification:
e Overshoot

e Rise Time

e Settling Time

u(s) + ° y(s)

Problem: There is no solution using proportional gain: K(s) =k.

Now we must consider a
Derivative Control: Choose K(s) =Tps

The controller is of the form

u(t) = Tpé(t)

The controller is called Differential/Derivative Control because it is
proportional to the rate of change of the error.
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Differential Control (Predicting the Future)

Differential control improves performance by reacting quickly.

First Order Quantizer

//\ -— overshoot

Set point //\ N
v
/ ‘\_/ o,
Time

Prediction:

[
<
Temperature

Increasing Tp,

e To measure y(t), recall the definition of derivative:

oyl A —y(0)
A

e The y(t) term depends on both the current position and predicted position.

> A way to speed up the response (or slow it down).
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Differential Control: Implemented using Delay

(Dangerous!)

Response of Feedback Control System Subject to Delay in the Loop

Amplitude
Response

Target Pasition

1/ Shert Delay - Smeoth Response
Time

Amplitude | --£-- 7N\

~— .. Target Position
Response

1/ Moderate Delay - Hunts but Setties
Time

Amplitude
Response

Disturbance

Problem: Differential control is implemented using delay.
e y(t) is the measurement.
e y(t) cannot be measured directly
» Approximate using the delayed response:
, y(t) —y(t — At)
[ A A S——
y(t) AL
» Delay can cause instabilities.
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Differential Control: Produces Noise (Dangerous!)

Heat Exchanger Plvs PID (Aggressive Tuning)

s5: Heal Exchanger Cont.:PID (P=DA. I= ARW, D=Ideal (meas). F = of)
sP Pl
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Ke=-17 Ti=13 Ke=-31 Ti=17 Td=031

2
H

PV & SP (degrees)

50

PIIE ccoe CONE SORNS OSY of Be

CO (%)

@
8

30
Time (mins)
Sample Time, T=1 sec

Noise Amplification:
e Measurement of y(¢) is heavily influenced by noise.
y(t) —y(t — At)
t) =
y(t) Al
e Sensor measurements have error (§ =y £ o)
e As At — 0, the effect of noise, o is amplified:

_y) —y(t—At) | 20

()= At At
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Derivative Control Alone Rarely Works

Useless for Inverted Pendulum

Controller: K(s) = Tps
Closed Loop Transfer Function:

m

TD/JS

2nd-Order System As we learned last lecture, stable iff both

° TD/J>O

o —Al >0

Derivative Feedback Alone cannot stabilize a system.

M. Peet Lecture 11: Control Systems 8 /32



Proportional-Derivative (PD) Control

S MR S
«Proporﬁonal alone

Figure: Proportional and Derivative Response to Ramp input

Differential Control is usually combined with proportional control.
e To improve stability
e To reduce steady-state error.
e To reduce the effect of noise.

Controller: The form of control is

u(t) = K [et) + Toé(t)]
or

(s) = K14 Tps]é(s)
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PD Control - Effect on CL Transfer Function

Applied to a 2nd-order system

Lets look at the effect of PD control on a 2nd-order system:

A 1
Gls) = s2+bs+c
Controller: K(s) = K [1 + Tps]
Closed Loop Transfer Function:
K(s)G(s) K[1+4Tps)
1+ K(s)G(s) s2+bs+c+ K[1+Tps|
K [1 + TDS]

- s24+ (b+ KTp)s+ (c+ K)

The poles of the system are freely assignable for a 2nd order system.

e The Gains Tp and K allow us to construct any denominator we desire.
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Generic PD Control - Effect on Pole Locations
Applied to a 2nd-order system

Suppose we want poles at s = p1, ps.

A Im(s)

A
A

Re(s)

A4

e We want the closed loop of the form:
1 1

(s =p1)(s—p2)  (s* = (p1+p2)s +pip2)

Thus we want

e c+ K =pips which means K = pips —c.
e b+ KTp=—(p1+p2)  which means Tp = —Fp2tl = —Eripeid

PD feedback gives Total Control over a 2nd-order system.
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Generic PD Control Example

Pole Placement: Meet Performance Specs

Suppose we have the 2nd-order system

A 1
G(s)= ———
() s24+s5+1
and performance specifications:
e Overshoot: M, jesired = -05
e Rise Time: T, gegirca = 15
e Settling Time: T jesirea = 3.55.

Y
As we found in Lecture 9, these specifications mean that the poles satisfy:

y

K Im(s)

A
1

N~

Y

Re(s

=
u

o < —.9535w, o < —1.333, wn > 1.8

We chose the pole locations:

s=—-15+1.4

M. Peet
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Generic PD Control Example

Pole Placement: Determine gains K and T

The desired system is
1

(52 — (p1 + p2)s + pip2)

The closed loop is
K [1 + TDS]

s24+ (b+ KTp)s+ (c+ K)
To get the pole locations:

pi2=—15+14

we choose
e The Proportional Gain (K):

K=pips—c=(-15+141)(~1.5—1.42) + 1 = 15"+ 1.4> - 1 = 3.21
e The Derivative Gain (1)
_p1+p2+b o =3+1 2

K T 77321 321

Tp = 623

This gives the controller:
K(s) = K(1+Tps) =321+ 2s
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PD Control has NO effect on Steady-State Error

6 Step Response Step Response
x 10
3 1
25 0.8
@ 2 o
] 3 os
e 15 g
< < o4
1
05 0.2
0 0
0 2 4 6 8 10 0 05 1 15 2 25 3 35
Time (sec) Time (sec)
Figure: Open Loop Figure: Closed Loop

Although the PD controller gives us control of the pole locations, the

steady-state value is
K 3.21
g = ——— = = 762
Yss = CPR T a1 0%
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PD Control Example

Inverted Pendulum

Lets look at the effect of PD control on
the inverted Pendulum:

m

A 1/J
Gls) = 5 3im ¢
27 1
Controller: K [1 + Tps] ¥

Closed Loop Transfer Function:

K(s)G(s) _ K/J[1+ Tps]
1+ K(s)G(s) 82— 29 4 K/J[1+ Tps]
K/J[1+Tps]

2+ K/JTps + (K/J — 44l
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PD Control Example

Inverted Pendulum : Desired Pole Locations

To achieve the performance
specifications: A Im(s)

e Overshoot: M), jesireq = -05
e Rise Time: Tr,desired =1s X

e Settling Time: T gesired = 3.5s.

We want poles at Re(s

A
1
N

Y

=
u

s=-—-15+14

Thus we want
e c+ K =pips which means K = p1ps — c.
e b+ KTp =—(p1 +p2) which means

_pitptb  prtpatd

Tp =
K pip2 — ¢
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PD Control Example
Inverted Pendulum
The closed loop is
K/J[1+Tps]
s2+ K/JTps + (K/J — %9

To get the pole locations p; 2 = —1.5 £ 1.42
we choose
e The Proportional Gain (K):
K/J = 4214 M9
=
Pip2 i

e The Derivative Gain (Tp):
pL+p2+b 3
pip2—c  4.21+ M4

Tp = —

This gives the controller:

. 1 3
K(s)= K(1+Tps) =4.21J + ~Mgl [ 14+ —2
(s) = K(1+Tps) 2 g( 4.21+J‘§§’>
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PD Control Example

Inverted Pendulum: No Effect on Steady-State Error

Step Response

1.4

1.2

0.8

Amplitude

0.6

0.4

0.2

0 0.5 1 1.5 2 25 3 35
Time (sec)

The steady-state error with this controlleris (K = J =M =g=1=1)
K/J 421

= =1.135
(K/J—Maly 4215

Yss =

Derivative Control has No Effect on the steady-state error!
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Recall: Steady-State Error

Lets take another look at steady-state error
v Recall:
\
o7 f\\ e We measured steady-state error
using the step response.

o ||
I No~e— e = i
B,

oaf | \v Sometimes this doesn’t work.
i
S I e Assumes objective doesn’t move.
Figure: Suspension Response for k = 1
P r Obl ems: Satellite in geostationary orbit m.
Satellite orbiting at E
e If target is moving, we may never ”"S‘“"“’*“’““—V‘@
catch up. WN
missile RN

e Even if we can catch a moving
target, we may not catch an
accelerating target.

For these problems, the step response is
not appropriate.

M. Peet Lecture 11: Control Systems 19 / 32



Ramp and Parabolic Inputs

There are other types of response we can consider.

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Physical Time Laplace
Waveform Name interpretation function transform

Ste Constant position ! 1
D P P =
s

e
“ Ramp Constant velocity t 1
2

-’
"y Parabola Constant acceleration 2 1
2 $

i L t

e Ramp response tracks error for a target with constant velocity.
o Parabolic response tracks error for a target with a constant acceleration.

M. Peet Lecture 11: Control Systems 20 /32



Ramp and Parabolic Inputs

We can use the final value theorem to find the response to ramp and parabolic

inputs:

< Output 3

Ramp Response:
Recall the ramp input:

u(t) =t u(s) = =

The steady-state error of G to a ramp input is

€ss = liII(l) sé(s) = lim s(1 — G(s))a(s) = lim
5—

s—0
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Ramp and Parabolic Inputs

We can use the final value theorem to find the response to parabolic inputs:

gt Input=purpls, Output-yellow

2X
Er
E
=L
% 50 100 50 200
Time?seos)
Parabolic Response:
Recall the parabolic input:
1
u(t) = t2 u(s) = —«
(v ()=

The steady-state error in response of G to a parabolic input is

ess = lim 5(a(s) — §(5)) = s(1 = G(s))as) = 1_8—5(5)

The steady-state error to a parabolic input is usually infinite.

Lecture 11: Control Systems
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Ramp and Parabolic Inputs

The effect of the numerator

For steady-state error, the numerator of the transfer function becomes
important: for

Steady state error of Gis

cer = limy(1 = Go)si(e) = Iy (521 = 57 ) e

s—0 s—0

4(s) is the test signal
o Step Input: si(s) =1
e Ramp Input: si(s) = 1
e Parabolic Input: si(s) = %
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Error Signals for Systems in Feedback

Use G(s) = %

Lower Feedback Interconnection: G(f)K(:S) = n(s)
1+ G(s)K(s) d(s)+n(s)
SS error for Lower Feedback Interconnection:

%
)= (1 COK Y oo (1)
6(8)_<l 1+é<s>f<<s>> ) <1+@(s>k(s>> (5)

Step Response:

. 1 . d(s)
€ss,step — lm ———=1lm ————
52014+ G(s)K(s) 520d(s) +n(s)K(s)
Ramp Response:
€ss,ramp = lm —————-=lim——-4*————
52014+ G(s)K(s)s  s=0d(s)+n(s)K(s) s
Parabolic Response:
L e 1

€ss,parabola = lim ——————— = lim

5201+ G(s)K(s) 82 s=0d(s) +n(s)K(s) s?
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Proportional Control Can Make Ramp Response Worsel!!!

Consider the Suspension Example: Open Loop:

A 2+ s+1
G =
(s) st +283+3s2+s5+1
1 G’() s* 4253432 +s+1—s2—s5—1 s* 4253 + 252
—_ S) = =
st 42534352 4+5+1 s4 425343524+ 541
Ramp Response:
_ 1-G(s) .. s34+ 2s% + 2s
lim —= = lim - =
50 s s—0 54+ 253 + 352 +s5+1

What happens when we close the loop?
Closed Loop Transfer Function:
k(s> +s+1)
st 42834+ (B3+k)s2+(1+k)s+ (1+k)

Ramp Response:
1 o P23 435+ s+ 11
z

lim ——————— = lim
520 5(1 + G(s)K(s)) 50 k(s2+s+1) s

Proportional response isn't capable of controlling a ramp input

€ss,ramp =
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Example of Ramp Response

Input-purple, Sutput-yellow

50

Amplitude

0
0 20 a 65 80 100
'ﬁime(secs%

The only way to control a ramp input using feedback is to put a pole at the
origin:
. K _ 1
Controller: K(s) = 7
Ramp Response:

d(s) ] I I d(s) Trs  d(0)

A LK) s A& T +ns) s n0)

€ss,ramp =

By including 1/s in the controller, the steady-state error becomes finite.
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Integral Control is Used to Eliminate Steady-State Error

The purpose of integral control is primarily to eliminate steady-state error.
Controller: The form of control is

or, in the Laplace transform

One must be careful when using integral feedback
e By itself, an integrator is unstable.
> A pole at the origin.
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Integral Control is Often Destabilizing

Suspension Problem Again

Now lets re-examine the suspension problem

Integral Control Alone: K (s) = -1
Is

Closed Loop Transfer Function (Lower Feedback):

G(s)K(s) s24+s+1
1+ G(s)K(s) Tis®+2Tyst +3Tys + (Tr + 1)s + (Tr + 1)s + 1

If we set T7 = .1, then the transfer function has poles at
® pro=—.55%.8%, p3 =—2.26, py5 =.6384 = 1.877¢

Integral feedback can the system where proportional feedback
couldn't!
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Integral Control is Always Combined with Proportional
Control

And Sometimes with Differential Control

Integral Feedback Alone is destabilizing!
Pl Feedback: Proportional-Integral

PID Feedback:
Proportional-Integral-Differential

I

u(t) = K <e(t) + Ti /Ot e(0)dd + TDé(t)) LN

A 1
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PID Control

Example

Finally, lets see the effect of PID control on a second-order system:
A 1
G(s) = ——F—
() s2+bs+c
Closed Loop:

A 1

GE K<1+ﬁ+TDs)
1+GK sQ—i—bs—i-c—l—K(l—i—ﬁ—l—TDs)

K <s+ T% +TD52)

s3+b82+cs+K(s+%’+TD52)
KTD32+K5+KT%
s3+(b—|—KTD)52+(c+K)s—|—T£I

Steady-State Response:

Yss,step =

Hx| =)=
[
—_
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PID Control Can Be Used For Pole Placement

For a Second-Order System

Pole Placement: The three pole locations can be determined exactly.

e Given three poles: p1, p2, ps3.
e Construct Desired denominator:

1 1

(s =p1)(s —p2)(s —p3) 83+ aq8? + bgs + cq

Three equations:
e b+ KTp = aq

e c+ K =y
° %:Cd

Which can be solved as
e K=0b;—c
°T1:§d
o Tp = 2=t
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Summary

What have we learned today? In this Lecture, you learned:

Limits of Proportional Feedback
e Performance Specifications.

Derivative Feedback
e Pros and Cons
e PD Control
e Pole Placement

More on Steady-State Error
e Response to ramps and parabolae
e Limits of PD control

Integral Feedback
e Elimination of steady-state error
e Pole-Placement
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