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Overview

In this Lecture, you will learn:

Limits of Proportional Feedback

• Performance Specifications.

Derivative Feedback

• Pros and Cons

• PD Control

• Pole Placement

More on Steady-State Error

• Response to ramps and parabolae

• Limits of PD control

Integral Feedback

• Elimination of steady-state error

• Pole-Placement
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Recall the Inverted Pendulum Problem
Proportional Feedback cannot meet any performance specs

Transfer Function
Ĝ(s) =

1

Js2 − Mgl
2

For a simple proportional gain: K̂(s) = k
Closed Loop Transfer Function (Lower Feedback Interconnection):

GK

1 +GK
=

k

Js2 − Mgl
2 + k

There are two cases:
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Figure: Case 1: k > Mgl
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Both cases are unstable!
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Differential Control

Now suppose we furthermore have a performance specification:
• Overshoot

• Rise Time

• Settling Time
G(s)T

D
s

+

-

y(s)u(s)

Problem: There is no solution using proportional gain: K̂(s) = k.

Now we must consider a New Kind of Controller:
Derivative Control: Choose K̂(s) = TDs

The controller is of the form

u(t) = TD ė(t)

The controller is called Differential/Derivative Control because it is
proportional to the rate of change of the error.
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Differential Control (Predicting the Future)

Differential control improves performance by reacting quickly.

Prediction:

• To measure ẏ(t), recall the definition of derivative:

ẏ(t) ∼=
y(t+ ∆t)− y(t)

∆t

• The ẏ(t) term depends on both the current position and predicted position.

I A way to speed up the response (or slow it down).
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Differential Control: Implemented using Delay
(Dangerous!)

Problem: Differential control is implemented using delay.

• y(t) is the measurement.
• ẏ(t) cannot be measured directly

I Approximate using the delayed response:

ẏ(t) ∼=
y(t) − y(t− ∆t)

∆t

I Delay can cause instabilities.
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Differential Control: Produces Noise (Dangerous!)

Noise Amplification:
• Measurement of ẏ(t) is heavily influenced by noise.

ẏ(t) ∼=
y(t)− y(t−∆t)

∆t

• Sensor measurements have error (ỹ = y ± σ)
• As ∆t→ 0, the effect of noise, σ is amplified:

˙̃y(t) =
y(t)− y(t−∆t)

∆t
+

2σ

∆t
→∞
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Derivative Control Alone Rarely Works
Useless for Inverted Pendulum

Controller: K̂(s) = TDs
Closed Loop Transfer Function:

TD/Js

s2 + TD/Js− Mgl
2J

2nd-Order System As we learned last lecture, stable iff both

• TD/J > 0

• −Mgl
2J > 0

Derivative Feedback Alone cannot stabilize a system.
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Proportional-Derivative (PD) Control

Figure: Proportional and Derivative Response to Ramp input

Differential Control is usually combined with proportional control.

• To improve stability
• To reduce steady-state error.
• To reduce the effect of noise.

Controller: The form of control is

u(t) = K [e(t) + TD ė(t)]

or
û(s) = K [1 + TDs] ê(s)
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PD Control - Effect on CL Transfer Function
Applied to a 2nd-order system

Lets look at the effect of PD control on a 2nd-order system:

Ĝ(s) =
1

s2 + bs+ c

Controller: K̂(s) = K [1 + TDs]
Closed Loop Transfer Function:

K̂(s)Ĝ(s)

1 + K̂(s)Ĝ(s)
=

K [1 + TDs]

s2 + bs+ c+K [1 + TDs]

=
K [1 + TDs]

s2 + (b+KTD)s+ (c+K)

The poles of the system are freely assignable for a 2nd order system.

• The Gains TD and K allow us to construct any denominator we desire.
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Generic PD Control - Effect on Pole Locations
Applied to a 2nd-order system

Suppose we want poles at s = p1, p2.

Im(s)

Re(s)

• We want the closed loop of the form:

1

(s− p1)(s− p2)
=

1

(s2 − (p1 + p2)s+ p1p2)

Thus we want
• c+K = p1p2 which means K = p1p2 − c.
• b+KTD = −(p1 + p2) which means TD = −p1+p2+b

K = −p1+p2+b
p1p2−c

PD feedback gives Total Control over a 2nd-order system.
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Generic PD Control Example
Pole Placement: Meet Performance Specs

Suppose we have the 2nd-order system

Ĝ(s) =
1

s2 + s+ 1

and performance specifications:

• Overshoot: Mp,desired = .05

• Rise Time: Tr,desired = 1s

• Settling Time: Ts,desired = 3.5s.

Im(s)

Re(s)

As we found in Lecture 9, these specifications mean that the poles satisfy:

σ < −.9535ω, σ < −1.333, ωn > 1.8

We chose the pole locations:

s = −1.5± 1.4ı
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Generic PD Control Example
Pole Placement: Determine gains K and TD

The desired system is
1

(s2 − (p1 + p2)s+ p1p2)

The closed loop is
K [1 + TDs]

s2 + (b+KTD)s+ (c+K)

To get the pole locations:
p1,2 = −1.5± 1.4ı

we choose
• The Proportional Gain (K):

K = p1p2 − c = (−1.5 + 1.4ı)(−1.5− 1.4ı) + 1 = 1.52 + 1.42 − 1 = 3.21

• The Derivative Gain (TD)

TD = −p1 + p2 + b

K
= −−3 + 1

3.21
=

2

3.21
= .623

This gives the controller:

K̂(s) = K(1 + TDs) = 3.21 + 2s
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PD Control has NO effect on Steady-State Error

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
x 10

6 Step Response

Time (sec)

A
m

pl
itu

de

Figure: Open Loop
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Figure: Closed Loop

Although the PD controller gives us control of the pole locations, the
steady-state value is

yss =
K

c+K
=

3.21

4.21
= .7625
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PD Control Example
Inverted Pendulum

Lets look at the effect of PD control on
the inverted Pendulum:

Ĝ(s) =
1/J

s2 − Mgl
2J

Controller: K [1 + TDs]

Closed Loop Transfer Function:

K̂(s)Ĝ(s)

1 + K̂(s)Ĝ(s)
=

K/J [1 + TDs]

s2 − Mgl
2J +K/J [1 + TDs]

=
K/J [1 + TDs]

s2 +K/JTDs+ (K/J − Mgl
2J )
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PD Control Example
Inverted Pendulum : Desired Pole Locations

To achieve the performance
specifications:

• Overshoot: Mp,desired = .05

• Rise Time: Tr,desired = 1s

• Settling Time: Ts,desired = 3.5s.

We want poles at

s = −1.5± 1.4ı

Im(s)

Re(s)

Thus we want

• c+K = p1p2 which means K = p1p2 − c.
• b+KTD = −(p1 + p2) which means

TD = −p1 + p2 + b

K
= −p1 + p2 + b

p1p2 − c
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PD Control Example
Inverted Pendulum

The closed loop is

K/J [1 + TDs]

s2 +K/JTDs+ (K/J − Mgl
2J )

To get the pole locations p1,2 = −1.5± 1.4ı
we choose

• The Proportional Gain (K):

K/J = p1p2 − c = 4.21 +
Mgl

2J

• The Derivative Gain (TD):

TD = −p1 + p2 + b

p1p2 − c
=

3

4.21 + Mgl
2J

This gives the controller:

K̂(s) = K(1 + TDs) = 4.21J +
1

2
Mgl

(
1 +

3

4.21 + Mgl
2J

s

)
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PD Control Example
Inverted Pendulum: No Effect on Steady-State Error
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The steady-state error with this controller is (K = J = M = g = l = 1)

yss =
K/J

(K/J − Mgl
2J )

=
4.21

4.21− .5
= 1.135

Derivative Control has No Effect on the steady-state error!
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Recall: Steady-State Error

Lets take another look at steady-state error
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Figure: Suspension Response for k = 1

Recall:

• We measured steady-state error
using the step response.

I ess = 1 − limt→∞ y(t)

Sometimes this doesn’t work.

• Assumes objective doesn’t move.

Problems:

• If target is moving, we may never
catch up.

• Even if we can catch a moving
target, we may not catch an
accelerating target.

For these problems, the step response is
not appropriate.
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Ramp and Parabolic Inputs

There are other types of response we can consider.

• Ramp response tracks error for a target with constant velocity.

• Parabolic response tracks error for a target with a constant acceleration.
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Ramp and Parabolic Inputs

We can use the final value theorem to find the response to ramp and parabolic
inputs:

Ramp Response:
Recall the ramp input:

u(t) = t û(s) =
1

s2

The steady-state error of Ĝ to a ramp input is

ess = lim
s→0

sê(s) = lim
s→0

s(1− Ĝ(s))û(s) = lim
s→0

1− Ĝ(s)

s
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Ramp and Parabolic Inputs

We can use the final value theorem to find the response to parabolic inputs:

Parabolic Response:
Recall the parabolic input:

u(t) = t2 û(s) =
1

s3

The steady-state error in response of Ĝ to a parabolic input is

ess = lim
s→0

s(û(s)− ŷ(s)) = s(1− Ĝ(s))û(s) =
1− Ĝ(s)

s2

Note: The steady-state error to a parabolic input is usually infinite.
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Ramp and Parabolic Inputs
The effect of the numerator

For steady-state error, the numerator of the transfer function becomes
important: for

Ĝ(s) =
n(s)

d(s)

Steady state error of Ĝ is

ess = lim
s→0

(1− Ĝ(s))sû(s) = lim
s→0

(
d(s)

d(s)
− n(s)

d(s)

)
sû(s)

= lim
s→0

d(s)− n(s)

d(s)
sû(s)

û(s) is the test signal

• Step Input: sû(s) = 1

• Ramp Input: sû(s) = 1
s

• Parabolic Input: sû(s) = 1
s2
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Error Signals for Systems in Feedback
Use Ĝ(s) =

n(s)
d(s)

Lower Feedback Interconnection:
Ĝ(s)K̂(s)

1 + Ĝ(s)K̂(s)
=

n(s)K̂(s)

d(s) + n(s)K̂(s)
SS error for Lower Feedback Interconnection:

ê(s) =

(
1− Ĝ(s)K̂(s)

1 + Ĝ(s)K̂(s)

)
sû(s) =

(
1

1 + Ĝ(s)K̂(s)

)
sû(s)

Step Response:

ess,step = lim
s→0

1

1 + Ĝ(s)K̂(s)
= lim

s→0

d(s)

d(s) + n(s)K̂(s)

Ramp Response:

ess,ramp = lim
s→0

1

1 + Ĝ(s)K̂(s)

1

s
= lim

s→0

d(s)

d(s) + n(s)K̂(s)

1

s

Parabolic Response:

ess,parabola = lim
s→0

1

1 + Ĝ(s)K̂(s)

1

s2
= lim

s→0

d(s)

d(s) + n(s)K̂(s)

1

s2
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Proportional Control Can Make Ramp Response Worse!!!

Consider the Suspension Example: Open Loop:

Ĝ(s) =
s2 + s+ 1

s4 + 2s3 + 3s2 + s+ 1

1− Ĝ(s) =
s4 + 2s3 + 3s2 + s+ 1− s2 − s− 1

s4 + 2s3 + 3s2 + s+ 1
=

s4 + 2s3 + 2s2

s4 + 2s3 + 3s2 + s+ 1
Ramp Response:

lim
s→0

1− Ĝ(s)

s
= lim

s→0

s3 + 2s2 + 2s

s4 + 2s3 + 3s2 + s+ 1
= 0

What happens when we close the loop?
Closed Loop Transfer Function:

k(s2 + s+ 1)

s4 + 2s3 + (3 + k)s2 + (1 + k)s+ (1 + k)

Ramp Response:

ess,ramp = lim
s→0

1

s(1 + Ĝ(s)K̂(s))
∼= lim

s→0

s4 + 2s3 + 3s2 + s+ 1

k(s2 + s+ 1)

1

s
=∞

Proportional response isn’t capable of controlling a ramp input
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Example of Ramp Response

The only way to control a ramp input using feedback is to put a pole at the
origin:
Controller: K̂(s) = 1

TIs
Ramp Response:

ess,ramp = lim
s→0

d(s)

d(s) + n(s)K̂(s)

1

s
= lim

s→0

d(s)

sd(s)TI + n(s)

TIs

s
=
d(0)

n(0)
TI

By including 1/s in the controller, the steady-state error becomes finite.
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Integral Control is Used to Eliminate Steady-State Error

The purpose of integral control is primarily to eliminate steady-state error.
Controller: The form of control is

u(t) =
1

TI

∫ t

0

e(θ)dθ

or, in the Laplace transform

û(s) =
1

TIs
ê(s)

One must be careful when using integral feedback

• By itself, an integrator is unstable.
I A pole at the origin.
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Integral Control is Often Destabilizing
Suspension Problem Again

Now lets re-examine the suspension problem

Integral Control Alone: K̂(s) = 1
TIs

Closed Loop Transfer Function (Lower Feedback):

Ĝ(s)K̂(s)

1 + Ĝ(s)K̂(s)
=

s2 + s+ 1

TIs5 + 2TIs4 + 3TIs3 + (TI + 1)s2 + (TI + 1)s+ 1

If we set TI = .1, then the transfer function has poles at

• p1,2 = −.55± .89ı, p3 = −2.26, p4,5 = .6384± 1.877ı

Integral feedback can Destabilize the system where proportional feedback
couldn’t!
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Integral Control is Always Combined with Proportional
Control
And Sometimes with Differential Control

Integral Feedback Alone is destabilizing!

PI Feedback: Proportional-Integral

u(t) = K

(
e(t) +

1

TI

∫ t

0

e(θ)dθ

)

K̂(s) = K

(
1 +

1

TIs

)
PID Feedback:
Proportional-Integral-Differential

u(t) = K

(
e(t) +

1

TI

∫ t

0

e(θ)dθ + TD ė(t)

)

K̂(s) = K

(
1 +

1

TIs
+ TDs

)
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PID Control
Example

Finally, lets see the effect of PID control on a second-order system:

Ĝ(s) =
1

s2 + bs+ c
K̂(s) = K

(
1 +

1

TIs
+ TDs

)
Closed Loop:

ĜK̂

1 + ĜK̂
=

K
(

1 + 1
TIs

+ TDs
)

s2 + bs+ c+K
(

1 + 1
TIs

+ TDs
)

=
K
(
s+ 1

TI
+ TDs

2
)

s3 + bs2 + cs+K
(
s+ 1

TI
+ TDs2

)
=

KTDs
2 +Ks+K 1

TI

s3 + (b+KTD)s2 + (c+K)s+ K
TI

Steady-State Response:

yss,step =
K
TI

K
TI

= 1 No Steady-State Error!
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PID Control Can Be Used For Pole Placement
For a Second-Order System

Pole Placement: The three pole locations can be determined exactly.

• Given three poles: p1, p2, p3.

• Construct Desired denominator:

1

(s− p1)(s− p2)(s− p3)
=

1

s3 + ads2 + bds+ cd

Three equations:

• b+KTD = ad

• c+K = bd

• K
TI

= cd

Which can be solved as

• K = bd − c
• TI = K

cd

• TD = ad−b
K
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Summary

What have we learned today? In this Lecture, you learned:

Limits of Proportional Feedback

• Performance Specifications.

Derivative Feedback

• Pros and Cons

• PD Control

• Pole Placement

More on Steady-State Error

• Response to ramps and parabolae

• Limits of PD control

Integral Feedback

• Elimination of steady-state error

• Pole-Placement
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