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Overview

In this Lecture, you will learn:

Review of Feedback

• Closing the Loop

• Pole Locations

Changing the Gain

• Numerical Examples
I Pole Locations

• Routh-Hurwitz vs. Root Locus

A Review of Complex Numbers

• Polar Form

• Multiplication-Division
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The Effect of Feedback

Feedback changes the open loop

Ĝ(s) =
nG(s)

dG(s)
K̂(s) =

nK(s)

dK(s)

u(s) y(s)

-

+
G(s) K(s)

to
Ĝ(s)K̂(s)

1 + Ĝ(s)K̂(s)
=

nG(s)nK(s)

dG(s)dK(s) + nG(s)nK(s)

The pole locations are the roots of

dG(s)dK(s) + nG(s)nK(s) = 0

Objective: A closed loop denominator.

d(s) = (s− p1) · · · (s− pn)

Big Question: How to choose nK(s) and dK(s) so that

d(s) = dG(s)dK(s) + nG(s)nK(s)
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The Effect of Feedback
PD Control

For a Second-Order System

Ĝ(s) =
1

s2 + as+ b

Im(s)

Re(s)

with PD feedback
K̂(s) = K (1 + TDs)

We can achieve any denominator

d(s) = s2 + cs+ d

Question: What happens for more complicated systems:
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The Effect of Feedback
Suspension Problem

Open Loop:
s2 + s+ 1

s4 + 2s3 + 3s2 + s+ 1

Closed Loop:

K (1 + TDs) (s
2 + s+ 1)

s4 + 2s3 + 3s2 + s+ 1 +K (1 + TDs) (s2 + s+ 1)

=
K
(
TDs

3 + (1 + TD)s
2 + (1 + TD)s+ 1

)
s4 + (2 +KTD)s3 + (3 +K +KTD)s2 + (1 +K +KTD)s+ 1 +K

Given a desired denominator

d(s) = s4 + as3 + bs2 + cs+ d

Which gives 4 equations and 2 unknowns

a = 2 +KTD b = 3 +K +KTD

c = 1 +K +KTD d = 1 +K

There is No Solution!!!.
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The Effect of Feedback
Solution

We rarely need to achieve a precise set of poles.

Performance Specifications Determine Regions of the Complex Plane.

• Stability

• Rise Time

• Settling time

• Overshoot

Im(s)

Re(s)

New Question: What controller will ensure all roots of

dG(s)dK(s) + nG(s)nK(s)

lie in the desired region of the complex plane.
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The Effect of Feedback
Proportional Feedback

More fundamentally, how does changing nK(s) and dK(s) change the roots of

dG(s)dK(s) + nG(s)nK(s)?

The answer is complicated

• Must account for the effect of each term in nK and dK

So simplify, lets consider a controller with only a single free parameter.

K̂(s) = k

Other options include:

• PD Control: K̂(s) = 1 + TDs

• PI Control: K̂(s) = 1 + 1
TIs

Question: How do the roots of

dG(s) + knG(s)?

change with k?
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Root Locus
Formal Definition

Ĝ(s) =
nG(s)

dG(s)

Definition 1.

The Root Locus of Ĝ(s) is the set of all poles of

kĜ(s)

1 + kĜ(s)
=

nG(s)

dG(s) + knG(s)

as k ranges from 0 to ∞

Alternatively:

• The roots of 1 + kĜ(s) for k ≥ 0

• The roots of dG(s) + knG(s) for k > 0

• The solutions of Ĝ(s) =
−1
k

for k ≥ 0

• Values of s where ∠G(s) = 180◦ (Woah... Not so fast)
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Root Locus
Video Surveillance System.

We can estimate the root locus by finding the roots for several different values
of k
Example: Video Surveillance System.
Pole at s = 0 to eliminate steady-state error.

Open Loop:

Ĝ(s) =
1

s(s+ 10)

Closed Loop:

k

s2 + 10s+ k

Pole Locations:

p1,2 = −5± 1

2

√
100− 4k
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Root Locus
Video Surveillance System

p1,2 = −5± 1

2

√
100− 4k
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Root Locus
Video Surveillance System

We can visualize the effect of changing k by plotting the poles on the complex
plane.
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Root Locus
Video Surveillance System

Plotting every possible value of k yields the root locus.

Connect the dots.
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Root Locus
Example: Suspension System
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From Routh Test: Stable for all k > 0.
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Root Locus
Example: Suspension System with Integral Feedback

Now, if we add integral feedback: K̂(s) = k
1

s
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From Routh Test: Stable for all k < .1.
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Root Locus
Example: Inverted Pendulum Model

Ĝ(s) =
1

s2 − 1
2
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Root Locus
Example: Inverted Pendulum Model

Now an inverted pendulum with some derivative feedback: K̂(s) = k(1 + s)
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Root Locus
Complex Numbers
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When Matlab calculates the root locus, it plots every point.

• Impractical for students
• Yields no intuition.

I Root Locus is only one parameter.
I We must know how to manipulate the root locus by changes in controller

type.

Before we analyze the root locus, we begin with a review of Complex Numbers.
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Complex Numbers
Polar Form

Consider a Complex Number:

s = a+ bı

The Complex Plane is the a-b plane.

Im(s)

Re(s)

b

s = a + b i
a

Im(s)

Re(s)

s = r cos(θ) + r sin(θ) ¡

θ

r

A complex number can also be represented in
polar form

s = r (cos θ + ı sin θ)

Recall the Euler equation

eıθ = cos θ + ı sin θ
Euler yields the more practical form:

s = reθı
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Complex Numbers
Magnitude and Phase

Rectilinear

s = a+ bı

Polar
s = reθı

Notation:

• r is called the Magnitude
I Denoted r = |s|

• θ = is called the Phase
I Denoted θ = ∠s

Im(s)

Re(s)

s = r cos(θ) + r sin(θ) ¡

θ

r

The relationship between Polar and Rectilinear coordinates is obvious

• θ = tan−1

(
b

a

)
• r =

√
a2 + b2

• a = r cos θ

• b = r sin θ
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Complex Numbers
Multiplication

In polar form, Multiplying and Dividing complex numbers is cleaner.

s1 = r1e
θ1ı

s2 = r2e
θ2ı

s1s2 = r1e
θ1ır2e

θ2ı = r1r2e
θ1ıeθ2ı

= r1r2e
(θ1+θ2)ı

s1 = a1 + b1ı

s2 = a2 + b2ı

s1 · s2 = (a1 + b1ı)(a2 + b2ı)

= (a1a2 − b1b2) + (a1b2 + a2b1)ı

For multiplication

• magnitudes and phases decouple.

• magnitudes multiply

• phases add
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Complex Numbers
Division

For Division, the benefit is even greater.

s1 = r1e
θ1ı

s2 = r2e
θ2ı

s1/s2 = r1e
θ1ır−1

2 e−θ2ı =

=
r1
r2
e(θ1−θ2)ı

s1 = a1 + b1ı

s2 = a2 + b2ı

s1/s2 =
a1a2 + b1b2
a22 + b22

+
b1a2 − a1b2
a22 + b22

ı

For division in polar form,

• Again, magnitudes and phases
decouple.

• magnitudes divide

• phases subtract
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Complex Numbers
Root Locus

What does this mean for the root locus?
Recall the root locus is the set of s such that

1 + kĜ(s) = 0

In other words,

Ĝ(s) = −1

k
In polar coordinates, this means

Ĝ(s) =
1

k
eπı

• Magnitude is 1/k

• Phase is πrad = 180◦

Since k can be anything greater than 0:

• Root locus is all points such that

∠Ĝ(s) = 180◦ ± n · 360◦
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Complex Numbers
Root Locus

Since

Ĝ(s) =
(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

Then

∠Ĝ(s) = ∠(s− z1) + · · ·+ ∠(s− zm)

− ∠(s− p1)− · · · − ∠(s− pn)

=

m∑
i=1

∠(s− zi)−
n∑
i=1

∠(s− pi)

Im(s)

Re(s)

< s-p
1

< s-p
2

< s-z

For a point on the root locus:

m∑
i=1

∠(s− zi)−
n∑
i=1

∠(s− pi) = 180◦ ± n · 360◦
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Summary

What have we learned today?

Review of Feedback

• Closing the Loop

• Pole Locations

The Effect of Changes in Gain

• Numerical Examples
I Pole Locations

• Routh-Hurwitz

A Review of Complex Numbers

• Polar Form

• Multiplication-Division

Next Lecture: Constructing the Root Locus
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