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Overview

In this Lecture, you will learn:

Review of Feedback
e Closing the Loop

e Pole Locations

Changing the Gain
e Numerical Examples
» Pole Locations

e Routh-Hurwitz vs. Root Locus

A Review of Complex Numbers
e Polar Form

e Multiplication-Division
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The Effect of Feedback

Feedback changes the open loop

Bro—d o | Ko b

G(s)f((s) _ ng(s)nk(s)
1+ G(s)K(s)  da(s)dr(s) +na(s)nk(s)
The pole locations are the roots of

de(s)di(s) + ng(s)nk(s) =0

Objective: A closed loop denominator.
d(s) = (s =p1)--- (s — pn)
Big Question: How to choose nk(s) and dx(s) so that

d(s) = da(s)dx (s) + na(s)nx(s)
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The Effect of Feedback

PD Control

For a Second-Order System
A Im(s)

A 1
— _ X
G(s) s24+as+b

A
Y

—
wn
z

Re
s /X
with PD feedback

K(s) =K (14 Tps) v
We can achieve any denominator
d(s) =s*+cs+d

Question: What happens for more complicated systems:
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The Effect of Feedback

Suspension Problem

Open Loop:
24+ s5+1
544253 4+3s2+s+1

Closed Loop:
K(1+Tps)(s*+s+1)
s1 423432 +s+1+K(1+Tps) (s> +s+1)
_ K (Tps®+ (1+Tp)s®* + (1+Tp)s +1)
s+ (2+KTp)s+ 3+ K+ KTp)s2+ (1+ K+ KTp)s+1+ K

Given a desired denominator

d(s) = s*+as® +bs* +cs+d
Which gives 4 equations and 2 unknowns

a=2+KTp b=3+K+ KIp
c=1+K+KTp d=1+K

There is
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The Effect of Feedback

Solution
We rarely need to achieve a precise set of poles.

Performance Specifications Determine Regions of the Complex Plane.

e Stability
e Rise Time ‘y/r(s)
e Settling time
>{% \Qe(s’)

X

New Question: What controller will ensure all roots of

dg(s)dk (s) +ng(s)nk(s)

lie in the desired region of the complex plane.
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The Effect of Feedback

Proportional Feedback
More fundamentally, how does changing nx (s) and dgk(s) change the roots of
da(s)di(s) + ng(s)nk(s)?

The answer is complicated
e Must account for the effect of each term in nx and dg

So simplify, lets consider a controller with only a single free parameter.
K(s)=k

Other options include:
 PD Control: K(s) =1+ Tps
K — 1
* Pl Control: K(s) =1+ 7
Question: How do the roots of

da(s) + kng(s)?

change with k7
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Root Locus

Formal Definition

Definition 1.
The Root Locus of GI(s) is the set of all poles of

kG(s) . ng(s)

1+kG(s)  da(s) +kng(s)

as k ranges from 0 to co

Alternatively:
o The roots of 1+ kG(s) for k >0
e The roots of dg(s) + kng(s) for k>0

o The solutions of G(s) = %1 for k>0

* Values of s where ZG(s) = 180° (Woah... Not so fast)
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Root Locus

Video Surveillance System.

We can estimate the root locus by finding the roots for several different values
of k

Example: Video Surveillance System.
Pole at s = 0 to eliminate steady-state error.

Open Loop:
A 1
Gls) = s(s+10)
Closed Loop:
k
s2+10s+ k

Pole Locations:

1
p12=-5% 5\/ 100 — 4k
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Root Locus

Video Surveillance System

TABLE 8.1 Pole location as function of gain for the
system of Figure 8.4

K Pole 1 Pole 2

0 -10 0

5 -9.47 -0.53

10 —8.87 —-1.13

15 —8.16 —1.84

20 —-7.24 —2.76

25 -5 -5

30 -5+ j2.24 -5 —j2.24
35 =5 +j3.16 -5 —j3.16
40 -5 +j3.87 -5 —j3.87
45 -5 +j4.47 -5 — j4.47
50 -5+j5 -5-j5

1
P12 = -5+ 5\/ 100 — 4k
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Root Locus

Video Surveillance System

We can visualize the effect of changing k by plotting the poles on the complex

plane.

TABLE 8.1 Pole location as function of gain for the
system of Figure 8.4

K Pole 1 Pole 2

0 —10 0

5 —9.47 -0.53

10 —8.87 -1.13

15 —8.16 —1.84
20 -7.24 -2.76
25 -5 =5
30 -5 +j2.24 -5 —j224
35 -5+ j3.16 -5 —j3.16
40 -5 4 j3.87 -5 —j3.87
45 =5 + j4.47 -5 — j4a47
50 =5+j5 =5-Jj5

M. Peet
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Root Locus

Video Surveillance System

Plotting every possible

s-plane

K=0 51015 20

-0 9 8 -7 6

M. Peet

K=350%
453
40X
ERD

30X

25

30X

35X
40X
45X
K=50%

=5 -

value of k yields the root locus.

Ji

Jiw

14 K=50 /s
1. 45 .
# s-plane 40 14
43 35 1
42 30 42
141 44l
105 [0=K  g=0 5 10 15 20 25 20 15 105 |0=K
K= 7 % i L L - - . -
-1 -0 9 8 -7 6 -5 3 -2 A
<=l -+ =1
-2 30 -+ -2
1B 35 1R
4 -} 40 s
45 #H
15 K=30 — -5

Connect the dots.
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Root Locus

Example: Suspension System

Root Locus

Imaginary Axis

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Real Axis

From Routh Test: Stable for all £ > 0.
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Root Locus

Example: Suspension System with Integral Feedback

- 1
Now, if we add integral feedback: K(s) = k-

S
Root Locus
4
3k e
//’/
21 - 8
///
//
2 af X\O e 4
< o
>
©
£ 0 B
=)
@
E
b X/O i
2 4
3 il
4 I I I I I I i I I
-35 -3 -25 -2 -15 -1 -0.5 0 0.5 1 15
Real Axis

From Routh Test: Stable for all £ < .1.
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Root Locus

Example: Inverted Pendulum Model

V)
I
N

Root Locus

0.8 T T T T T T

0.6 1

0.4 1

0.2 1

Imaginary Axis

-0.4} 4

-0.6 1

—0.8 L L L L L L
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Real Axis
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Root Locus

Example: Inverted Pendulum Model
Now an inverted pendulum with some derivative feedback: K (s) = k(1 + s)

Root Locus

0.8

041 b

Imaginary Axis

-0.2 b

-0.6 b

0.8 L L L L L L L i L
-4 -3.5 -3 -2.5 -2 -15 -1 -0.5 0 0.5 1
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Root Locus

Complex Numbers

Root Locus

Imaginary Axis

Real Axis

When Matlab calculates the root locus, it plots every point.
e Impractical for students
e Yields no intuition.
» Root Locus is only one parameter.
» We must know how to manipulate the root locus by changes in controller
type.

Before we analyze the root locus, we begin with a review of
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Complex Numbers

Polar Form

. A _ f
Consider a Complex Number: me A s=a+bi
—> @
s=a-+b
b
The Complex Plane is the a-b plane. < >
Re(s)
Y

A complex number can also be represented in
s=rcos(0) +rsin(®) i polar form

Im(s)

[
s =17 (cosf + 1sin )
P R Recall the Euler equation
l Re(s) 0 .
e"” =cosf +sinf

Euler yields the more practical form:

s=re”
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Complex Numbers
Magnitude and Phase

Rectilinear Polar

_ 02
s=a+b s=re

[ ]
<

is called the Magnitude
Denoted r = |s|

is called the Phase
Denoted 6 = Zs

v

v

The relationship between Polar and Rectilinear coordinates is obvious

o = tan—! (b> e a=rcosf
a e b=rsind
= VETR
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Complex Numbers

Multiplication

In polar form, Multiplying and Dividing complex numbers is cleaner.

51 = ref

Sg = roef?

5189 = e/ ree?? = rirge

(01 +92)Z

0116021

=T17r2€

For multiplication

e magnitudes and phases decouple.

e magnitudes multiply
e phases add

M. Peet

S1 = ay +b1’L

S92 = ag + byt

S1 89 = (a1 + blz)(a2 + bQZ)
= (ayaz — b1b2) + (a1ba + azby )

¥

(0,0)
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Complex Numbers

Division
For Division, the benefit is even greater.
S1 = "nre

S9 = TIq€

$1/82 = rleg”rgle

— L (01-02)
T2

—021

For division in polar form,

e Again, magnitudes and phases
decouple.

e magnitudes divide
e phases subtract

M. Peet

s1 = a1 + b2

So = a9 + bat

aiaz + b1bo
a3 + b3

b1a2 — a1b2
a3 + b3

81/52 =

2 3 4

% A@—q: )

Fig. 17: Division
using Polar Form
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Complex Numbers

Root Locus

What does this mean for the root locus?
Recall the root locus is the set of s such that

1+kG(s)=0
In other words, )
G(s) = -+
(5) =~
In polar coordinates, this means
A 1
G(s) = %em

o Magnitude is 1/k
e Phase is mrad = 180°

Since k can be anything greater than 0:
e Root locus is all points such that

Z/G(s) =180° £ n - 360°
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Complex Numbers

Root Locus

Since Im(s)

Then / <sz

LG(s)=L(s—2z1)+ -+ Z(5s— 2) Re(s)
—L(s—p1)— - —ZL(s—pn)
m n <s-p,
= Zl(s—zi) —Zé(s—pi)
i=1 i=1 A
For a point on the root locus:

> L(s—z) =Y ZL(s—p;) = 180° £ n - 360°
i=1 i=1
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Summary

What have we learned today?

Review of Feedback
e Closing the Loop

e Pole Locations

The Effect of Changes in Gain
e Numerical Examples
» Pole Locations

e Routh-Hurwitz

A Review of Complex Numbers
e Polar Form

e Multiplication-Division
Next Lecture: Constructing the Root Locus
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