Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 13: Root Locus Continued

In this Lecture, you will learn:

Review

• Definition of Root Locus

Points on the Real Axis

- Symmetry
- Drawing the Real Axis

What Happens at High Gain?

- The effect of Zeros
- Asymptotes

Root Locus

Review

Definition 1.

The **Root Locus** of G(s) is the set of all poles of

$$\frac{kG(s)}{1+kG(s)}$$

as k ranges from 0 to ∞

M. Peet

Root Locus

Review

$$G(s) = \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

For a point on the root locus:

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = 180^{\circ} \pm n \cdot 360^{\circ}$$

Im(c)

Wiley+ Root Locus Demo 1

Property of Symmetry

Constructing the Root Locus

Symmetry:

- Complex roots come in pairs: $a \pm bi$.
- Points on the root locus are mirrored above/below the real axis

We can divide points on root locus into

- Points on the real axis
- Symmetric Pairs off the real axis.

Points on the Real Axis

Phase Contribution from Zeros

What is the PHASE at a point (s = a) on the Real Axis?

We need:

$$\sum_{i=1}^{m} \angle (a - z_i) - \sum_{i=1}^{n} \angle (a - p_i) = 180^{\circ} \pm n \cdot 360^{\circ}$$

Phase Contribution from Zeros (z_i) :

Case 1: If z_i is on the Real Axis

- If $a > z_i$, then $\angle (a z_i) = 0^\circ$
 - *a* is right of the zero.

• If
$$a < z_i$$
, then $\angle (a - z_i) = -180^\circ$

► *a* is left of the zero.

Contribution is 0° or $180^{\circ}!$

Phase Contribution of Complex Zeros

Case 2: If the z_i is Complex: Complex Roots some in pairs.

$$z_{1,2} = b \pm ci$$

Since $\angle (a - z_1) = -\angle (a - z_2)$, the total contribution to phase is $0^{\circ}!$

$$\angle (a-z_1) + \angle (a-z_2) = 0^{\circ}$$

Phase Contribution from Real Poles

The Poles

$$\sum_{i=1}^{m} \angle (a - z_i) - \sum_{i=1}^{n} \angle (a - p_i) = -180^{\circ}$$

Similar to zeros

Case 1: If p_i is Real

- If a is right of p_i , then $\angle (a p_i) = 0^\circ$
- If a is left of p_i , then $\angle (a p_i) = -180^\circ$

Phase contribution from Complex Poles

Case 2: If the p_i are Complex: Complex Roots some in pairs.

$$z_{1,2} = b \pm ci$$

Again,
$$\angle (a - p_1) = -\angle (a - p_2)$$
 so the Contribution is $0^{\circ}!$

Lecture 13: Control Systems

Root Locus on the Real Axis ON-OFF

Summary: A point on the real axis: s = a

- · Complex poles and zeros don't matter
- Real poles and zeros contribute 0° or 180°
 - 0° if the pole/zero is to the left of a
 - 180° if the pole/zero is to the right of a

The **PHASE** of G(a) is $\angle G(a) = 180^{\circ} \cdot (\# \text{ of poles and zeros to the right of } a)$

A Simple Rule:

- If the # of poles and zeros to the right of a is EVEN.
 - We are OFF the root locus.
- If the # of poles and zeros to the right of a is ODD.
 - We are ON the root locus.

Examples

Examples

M. Peet

Examples

Lecture 13: Control Systems

Examples

The inverted pendulum with some derivative feedback: $\hat{K}(s) = k(1+s)$

 $k \to \infty$

Now lets look at what happens when gain increases.

Figure: Suspension Problem

Conclusion: Some stable poles oscillate more.

M. Peet

Lecture 13: Control Systems

Conclusion: Nothing Much Happens.

Again, Inverted Pendulum with derivative feedback.

Conclusion: Poles get More Stable.

Conclusion: Poles Destabilize.

Notice the Asymptotes.

М.	Peet
----	------

So what happens when k is large? Logically, there are **TWO CASES**:

- Poles can remain small.
- Poles can get big.

Consider the Small Poles ($||s|| < \infty$).

$$G(s) = \frac{\zeta}{d(s)}$$

- OL zeros are roots of n(s) = 0.
- OL poles are roots of d(s) = 0.

Now, closed loop:

$$\frac{kG(s)}{1+kG(s)} = \frac{kn(s)}{d(s)+kn(s)}$$

 $\begin{array}{l} {\rm CL} \mbox{ poles are roots of} \\ d(s) + kn(s) = 0 \end{array}$

At high gain, small CL poles are roots of

d(s) + kn(s) = 0

- If s is small, then d(s) is small
- Hence as $k \to \infty$,

 $d(s) + kn(s) \cong kn(s)$

As $k \to \infty$, small poles satisfy

 $d(s) + kn(s) \cong kn(s) = 0$

which means n(s) = 0!!!

• n(s) = 0 means s is an OL zero!

Asymptotics

Now consider the other possibility: *s* also gets Very Large

$$d(s) + kn(s) = 0$$

In this case, d(s) is not small. Very Large solutions of 1 + kG(s)are called asymptotics.

- asymptotics increase forever with \boldsymbol{k}

 $\lim_{k \to \infty} \|s\| = \infty$

Questions:

- Do asymptotes exist?
- Where do they go?

Asymptotics

Consider a point s which is Very Large Recall that a point is on the root locus if

$$\angle G(s) = 180^{\circ}$$

Which means:

$$\sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = -180^{\circ}$$

However, when $\|s\| o \infty$,

All Angles are the Same!!!

$$\angle (s - z_1) = \angle (s - z_2) = \dots = \angle (s - z_m)$$
$$= \angle (s - p_1) = \angle (s - p_2) = \dots = \angle (s - p_n) = \angle_{\infty}$$

Constructing the Root Locus

Asymptotics

This makes life easier.

• just solve for one angle, \angle_{∞} .

$$\angle_{\infty} \cdot (m-n) = 180^{\circ}$$

where

- *m* is the number of OL zeros
- n is the number of OL poles

So asymptotics occur at

$$\angle_{\infty} = \frac{1}{m-n} \left(180^{\circ} + 360^{\circ} l \right)$$

for integers $l = 0, 1, 2, \cdots$.

Asymptotes Case 1: n - m = 0

Count: 2 zeros, 2 poles.

$$m - n = 0 \qquad \qquad \angle_{\infty} = \frac{1}{0} 180^{\circ} = \infty$$

No Asymptotes.

M. Peet

Lecture 13: Control Systems

Asymptotes Case 2: n - m = 1

Count: 1 zeros, 2 poles.

$$m - n = -1 \qquad \qquad \angle_{\infty} = -180^{\circ}$$

1 asymptote at -180° .

M. Peet

Lecture 13: Control Systems

Asymptotes Case 3: n - m = 2

Poles MAY destabilize at large gain.

Asymptotes Case 4: n - m = 3

Poles WILL destabilize at large gain.

Asymptotes Case 5: n - m = 4

n(s) is degree 2, d(s) is degree 6. Root Locus $G(s) = \frac{s^2 + s + 1}{s^6 + 2s^5 + 5s^4 - s^3 + 2s^2 + 1}$ Count: 2 zeros, 6 poles. Imaginary Axis m - n = -4-6 -8 -10 -8 -2 -10 Real Axis -1

$$\mathcal{L}_{\infty} = -\frac{1}{4} \left(180^{\circ} + 360^{\circ}l \right) = -45^{\circ} - 90^{\circ}l = -45^{\circ}, -135^{\circ}, -225^{\circ}, -315^{\circ}$$

$$\text{4 asymptotes at } 45^{\circ}, 135^{\circ}, 225^{\circ} \text{ and } 315^{\circ}.$$

Poles WILL destabilize at large gain.

M. Peet

Asymptotics Summary

Asymptotes depend only on relative number of poles and zeros.

- Location of poles/zeros doesn't matter
 - At least not for the angle

One pole goes to each zero.

When there are more poles than zeros: **Cases:**

- n-m=0 No Asymptotes
- n-m=1 Asymptote at 180°
- n-m=2 Asymptotes at $\pm 90^{\circ}$
- n-m=3 Asymptotes at 180° , $\pm 60^{\circ}$
- n-m=4 Asymptotes at $\pm 45^{\circ}$ and $\pm 135^{\circ}$

Summary

What have we learned today?

Review

• Definition of Root Locus

Points on the Real Axis

- Symmetry
- Drawing the Real Axis

What Happens at High Gain?

- The effect of Zeros
- Asymptotes

Next Lecture: Centers of Asymptotes, Break Points and Departure Angles