Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 14: Root Locus Continued

Overview

In this Lecture, you will learn:

Review: What happens at high gain?

Angles of Departure

The Case of 90° Departure

Calculating the center of asymptotes

Breaking off the Real Axis

Break Points

What is the effect of small gain?

Departure Angles

Root Locus

Review of Asymptotes

Pole locations change at high gain.

- Some poles stay small
- Some poles get large
 - Asymptotes depend on relative number of poles and zeros.

Small poles go to zeros.

Big poles leave on asymptotes:

Cases:

- n m = 0 No Asymptotes
- n-m=1 Asymptote at 180°
- n-m=2 Asymptotes at $\pm 90^\circ$
- n-m=3 Asymptotes at 180° , $\pm 60^{\circ}$
- n-m=4 Asymptotes at $\pm 45^\circ$ and $\pm 135^\circ$

Root Locus

 90° Asymptotes

Recall the suspension

system:
$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}.$$

Count: 2 zeros, 4 poles.

$$n-m=2$$

$$\angle_{\infty} = -90^{\circ}, -270^{\circ}$$

2 vertical asymptotes at 90° and 270° .

Poles MAY destabilize at large gain. But will they???

• Why these poles?

The Asymptotic Center

Recall

- m=# of zeroes
- n=# of poles

Problem 1: When n - m = 2.

• Is high gain destabilizing?

Problem 2: When n - m > 2.

Which poles get big?

Definition 1.

The **Center of Asymptotes** is where all asymptotes meet.

The center of asymptotes is only for the big poles on the root locus.

• The center of asymptotes is the average of these points as $k \to \infty$.

$$center = \frac{\sum q_{i_{BIG}}}{\#_{i_{BIG}}}$$

$$center = \frac{\sum q_{i_{BIG}}}{\#_{i_{BIG}}}$$

Denote

- ullet q_i are the CLOSED-LOOP poles
 - q_i are roots of d(s) + kn(s)
- z_i are the zeros (open and closed loop)
 - $ightharpoonup z_i$ are roots of n(s)
- ullet p_i are the OPEN-LOOP poles
 - $ightharpoonup p_i$ are roots of d(s)

Calculating $\#_{i_{BIG}}$ is easy!

- Small poles go to zeroes
- Big poles form asymptotes

$$\#_{i_{BIG}} = n - m = \#OL \ poles - \#OL \ zeroes$$

Real Problem: How to calculate

$$\sum q_{i_{BIG}}$$
?

Recall from Routh-Hurwitz: Let p_i be the roots of d(s).

$$d(s) = s^{n} + a_{1}s^{n-1} + \dots + a_{n} = (s - p_{1})(s - p_{2}) \cdot \dots (s - p_{n})$$

Observe what happens as we expand out the roots:

$$d(s) = (s - p_1)(s - p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$$

$$= (s^2 - (p_1 + p_2)s + p_1p_2)(s - p_3)(s - p_4) \cdots (s - p_n)$$

$$= (s^3 - (p_1 + p_2 + p_3)s^2 + (p_1p_2 + p_2p_3 + p_1p_3)s - p_1p_2p_3)(s - p_4) \cdots (s - p_n)$$

$$= \cdots$$

$$= s^n - (p_1 + p_2 + \cdots + p_n)s^{n-1} + \cdots + (-1)^n p_1 p_2 \cdots p_n$$

The second coefficient is the negative sum of the roots

$$a_1 = -(p_1 + p_2 + \dots + p_n) = -\sum p_i$$

Since $\frac{kG}{1+kG}=\frac{kn}{d+kn}$, $\sum q_i$ is the second coefficient of

$$d(s) + kn(s)$$

Only interested in the case when $n-m \geq 2$

• 90° asymptotes or more.

$$d(s) = s^{n} + a_{1}s^{n-1} + \cdots$$

$$n(s) = s^{m} + \cdots$$

When n - m = 2,

$$d(s) + kn(s) = s^{n} + a_{1}s^{n-1} + (a_{2} + k)s^{n-2} + \cdots$$

Conclusion: Changing k doesn't change the second coefficient.

Sum of poles doesn't change under feedback.

$$\sum p_i = \sum q_i = -a_1$$

This sum is the second coefficient of d(s).

M. Peet

Recall we want to find

$$center = \frac{\sum q_{i_{BIG}}}{\#_{i_{BIG}}}$$

It is obvious that

$$\sum q_i = \sum q_{i_{BIG}} + \sum q_{i_{SMALL}} = -a_1$$

So that

$$\sum q_{i_{BIG}} = -a_1 - \sum q_{i_{SMALL}}$$

So how do we find $\sum q_{i_{SMALL}}$?

• As $k \to \infty$ small poles go to zeroes.

At high gain

$$\sum q_{i_{SMALL}} \cong \sum z_i$$

$$G(s) = \frac{n(s)}{d(s)}$$

The zeros, z_i are the roots of n(s).

$$n(s) = s^m + b_1 s^{m-1} + \dots = (s - z_1) \cdots (s - z_m)$$

As before

$$\sum z_i = -b_1$$

Finally

$$center = \frac{\sum q_{i_{BIG}}}{\#_{i_{BIG}}} = \frac{-a_1 - \sum q_{i_{SMALL}}}{n - m}$$

$$\cong \frac{-a_1 - \sum z_i}{n - m}$$

$$= \frac{b_1 - a_1}{n - m}$$

Where

- a_1 is the first coefficient of d(s)
- b_1 is the first coefficient of n(s)

Example: Suspension System

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

$$#_{i_{BIG}} = n - m$$

= $#poles - #zeroes$
= 2.

Read off the coefficients

- $a_1 = 2$
- $b_1 = 1$

$$center = \frac{b_1 - a_1}{n - m} = \frac{1 - 2}{2} = -\frac{1}{2}$$

Conclusion: High gain is stable.

M. Peet

Lecture 14: Control Systems

Example: Tweaked Suspension System

Look what happens if we change 2^{nd} coefficient in n(s) from 1 to 3.

$$G(s) = \frac{s^2 + 3s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

$$\#_{i_{BIG}} = n - m = \#poles - \#zeroes = 2$$

Read off the coefficients

- $a_1 = 2$
- $b_1 = 3$

Thus

$$center = \frac{b_1 - a_1}{n - m} = \frac{3 - 2}{2} = \frac{1}{2}$$

Now high gain is unstable.

Example: Suspension System with Integral Feedback

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1} \frac{1}{s}$$
$$= \frac{s^2 + s + 1}{s^5 + 2s^4 + 3s^3 + 1s^2 + s}$$

$$\#_{i_{BIG}} = n - m =$$

 $\#poles - \#zeroes = 3.$

Again, we have the same coefficients

- $a_1 = 2$
- $b_1 = 1$

Thus

$$center = \frac{b_1 - a_1}{a_1 - a_2} = \frac{1 - 2}{3} = -\frac{1}{3}$$

M. Peet

Another Example

$$G(s) = \frac{s^2 + s + 1}{s^6 + 2s^5 + 5s^4 - s^3 + 2s^2 + 1}$$

First, $\#_{i_{BIG}} = n - m = 4$.

Again, we have the same coefficients

- $a_1 = 2$
- $b_1 = 1$

Thus

$$center = \frac{b_1 - a_1}{n - m} = \frac{1 - 2}{4} = -\frac{1}{4}$$

Using poles and zeros directly

Expand the formula for asymptotic center:

$$center = \frac{b_1 - a_1}{n - m} = \frac{\sum p_i - \sum z_i}{n - m}$$

If we know the p_i and z_i , we can use these instead of the a_1 and b_1

$$G(s) = \frac{1}{s(s+4)(s+6)}$$

First, $\#_{i_{BIG}} = n - m = 3$

This time, we directly use poles and zeros

- No Zeroes
- $p_1 = 0$, $p_2 = -4$, $p_3 = -6$.

$$\sum p_i = -4 - 6 = -10$$

center =
$$\frac{\sum p_i - \sum z_i}{n - m} = \frac{-10 - 0}{3} = -3.33\overline{3}$$

M. Peet

DIY Example

Recall the inverted pendulum with derivative feedback.

$$G(s) = \frac{1+s}{s^2 - \frac{1}{2}}$$

When do the poles become imaginary?

• Important for choosing optimal k.

Other Examples

Recall for a point on the root locus

$$d(s) + kn(s) = 0$$

or for a point on the real axis: s=a

$$k(a) = -\frac{d(a)}{n(a)} = -\frac{1}{G(a)}$$

Idea: Use maximum principle to find the maximum and minimum of k on the real axis.

Definition 2.

The extrema of a continuous function of a real variable, f(a), occur at the boundary or when

$$\frac{d}{da}f(a) = 0$$

M. Peet

To find the point when the root locus leaves the real axis, we calculate the extrema of

$$k(a) = -\frac{1}{G(a)}$$

We need to solve

$$\frac{d}{da}k(a) = 0$$

or

$$\frac{d}{da}k(a) = -\frac{d}{da}\frac{1}{G(a)} = \frac{d(a)}{n(a)^2}n'(a) - \frac{d'(a)}{n(a)} = \frac{d(a)n'(a) - d'(a)n(a)}{n(a)^2} = 0$$

Break Points occur at real-valued solutions of

$$d(a)n'(a) - d'(a)n(a) = 0$$

Numerical Example

$$G(s) = \frac{1}{s(s+4)(s+6)} = \frac{1}{s^3 + 10s^2 + 24s}$$

Break points occur when

$$d(a)n'(a) - d'(a)n(a)$$

= 0 - (3a² + 20a + 24) = 0

which has roots

$$a_{1,2} = \frac{-20 \pm \sqrt{20^2 - 4 * 24 * 3}}{6}$$

\$\text{\text{\text{\text{\text{\text{20}}}}} - 5.1, -1.57\$}

Numerical Example

$$G(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)} = \frac{s^2 + 7s + 12}{s^2 + 3s + 2}$$

Break points occur when

$$d(a)n'(a) - d'(a)n(a) = (a^2 + 3a + 2)(2a + 7) - (2a + 3)(a^2 + 7a + 12)$$
$$= (a^2 + 3a + 2)(2a + 7) - (2a + 3)(a^2 + 7a + 12)$$
$$= -2(2a^2 + 10a + 11) = 0$$

Which has roots

$$a_{1,2} = -1.634, -3.366$$

Break points at -1.634 and -3.366.

Numerical Example

$$G(s) = \frac{1+s}{s^2 - \frac{1}{2}}$$

Break points occur when

$$d(a)n'(a) - d'(a)n(a)$$

= $(a^2 - .5) \cdot 1 - 2a \cdot (1 + a)$
= $-(a^2 + 2a + .5) = 0$

Which has roots

$$a_{1,2} = -.293, -1.707$$

Break points at -.293 and -1.707

Summary

Step 1: Root Locus starts at Open Loop Poles.

Step 2: At Large Gain, $k \to \infty$

- Small Poles go to zeroes
- Large Poles approach asymptotes
- Center at

$$\sigma = \frac{\sum p_i - \sum z_i}{n - m} = \frac{b_1 - a_1}{n - m}$$

Step 3: On real axis

- When odd number of poles/zeroes to the right.
- Break points when

$$-\frac{d}{da}\frac{1}{G(a)}=0 \qquad \text{or} \qquad d(a)n'(a)-d'(a)n(a)=0$$

The root locus starts at the poles.

- What is the effect of small gain?
- Do the poles become more or less stable?

To find the departure angle, we look at a very small region around the departure point.

For a point to be on the root locus, we want phase of 180° .

$$\angle G(s) = \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = 180^{\circ}$$

If we make the point s extremely close to the pole p.

- The angle to other poles and zeros from s is the same as from p.
 - $ightharpoonup \angle (s-z_i) \cong \angle (p-z_i)$ for all i
 - $ightharpoonup \angle(s-p_i) \cong \angle(p-p_i)$ for all i
- The only difference is the phase from p itself.

The phase due to p equals the departure angle,

$$\angle_{dep}$$

$$\angle(s-p) = \angle_{dep}$$

The total phase is

$$\angle G(s) \cong \angle G(p) - \angle (s-p) = \angle G(p) - \angle_{dep} = 180^{\circ}$$

$$\angle_{dep} = \angle G(p) + 180^{\circ}$$

Therefore, to find the departure angle from pole p, just find the phase at p.

Numerical Examples

The phase at p is based on geometry.

$$\angle G(p) = 150^{\circ} - 90^{\circ} - 45^{\circ} = 15^{\circ}$$

So the departure angle is easy to calculate.

$$\angle_{dep} = \angle G(p) + 180^{\circ} = 195^{\circ}$$

M. Peet

Numerical Examples

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + 1s + 1}$$

Poles at

•
$$p_{1,2} = -.957 \pm 1.23i$$

•
$$p_{3,4} = -.0433 \pm .641i$$

Zeroes at

•
$$z_{1,2} = -.5 \pm .866i$$

Problem:

Find departure angle at

$$p_1 = -.957 + 1.23i.$$

$$\angle_{dep} = 180^{\circ} + \angle(p_1 - z_1) + \angle(p_1 - z_2) - \angle(p_1 - p_2) - \angle(p_1 - p_3) - \angle(p_1 - p_4)$$

The difficulty is calculating the phase.

Numerical Examples

$$\angle(p_1 - z_1) = \angle(-.957 + 1.23i + .5 - .866i) \times p_1$$

$$= \angle(-.457 + .364i)$$

$$= \tan^{-1} \left(\frac{.364}{-.457}\right)$$

$$= 141.46^{\circ}$$

$$\times (-.457 + .364i)$$

$$\angle(p_1 - z_2) = \angle(-.457 + 2.096i) = 102.3^{\circ}$$

Obviously,

$$\angle(p_1 - p_2) = 90^{\circ}$$

 $\angle(p_1 - p_3) = 147.2^{\circ}, \qquad \angle(p_1 - p_4) = 116.03^{\circ}$

Numerical Examples

Now that we have all the angles:

$$\angle G(p_1) = \angle (p_1 - z_1) + \angle (p_1 - z_2) - \angle (p_1 - p_2) - \angle (p_1 - p_3) - \angle (p_1 - p_4)$$

$$= 141.46^{\circ} + 102.3^{\circ} - 90^{\circ} - 147.2^{\circ} - 116.03^{\circ}$$

$$= -109.47^{\circ}$$

We conclude

$$\angle_{dep,p_1} = \angle G(p_1) + 180^{\circ} = 70.53^{\circ}$$

By symmetry we could find

$$\angle_{dep,p_2} = -70.53^{\circ}$$

Numerical Examples

What about a pole on the real axis?

$$\angle G(p) = 0^{\circ}$$
 or 180°

Calculating the Departure Angle

DIY Example

Summary

What have we learned today?

Review: What happens at high gain?

Angles of Departure

The Case of 90° Departure

Calculating the center of asymptotes

Breaking off the Real Axis

Break Points

What is the effect of small gain?

Departure Angles

Next Lecture: Arrival Angles, Summary + Examples