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Lecture 14: Root Locus Continued



Overview

In this Lecture, you will learn:

Review: What happens at high gain?
e Angles of Departure

The Case of 90° Departure

e Calculating the center of asymptotes

Breaking off the Real Axis
e Break Points

What is the effect of small gain?
e Departure Angles
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Root Locus

Review of Asymptotes

Pole locations change at high gain.
e Some poles stay small

e Some poles get large
» Asymptotes depend on relative number of poles and zeros.

Small poles go to zeros.

Big poles leave on asymptotes: o

Cases: /

e n—m =0 - No Asymptotes

Y

A

e n—m = 1- Asymptote at 180°
e n —m = 2 - Asymptotes at +90° >\
e n—m = 3 - Asymptotes at 180°, +60° O
e n—m = 4 - Asymptotes at +45° and £135°
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Root Locus
90° Asymptotes

Root Locus

Recall the suspension
system:

_ 82+S+1
G(S) T 5442834352 +1s+1"

Imaginary Axis

Count: 2 zeros, 4 poles. ol —_—

n—m=2

8 L L L L L I
-12 -1 -08 -06 -0.4 -02 0 0.2

Loo = —90°,—-270°
2 vertical asymptotes at 90° and 270°.

Poles MAY destabilize at large gain. But will they??7?
e Why these poles?
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The Asymptotic Center

Recall

Root Locus
o m = # of zeroes . N

e n = # of poles

Problem 1: When n — m = 2.

Imaginary Axis.
e}

e |s high gain destabilizing?

Problem 2: When n —m > 2. - \\
e Which poles get big?

Definition 1.

The Center of Asymptotes is where all asymptotes meet.

The center of asymptotes is only for the big poles on the root locus.
e The center of asymptotes is the of these points as k — oc.

E dipic
#iBIG
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Calculating the Asymptotic Center

Z Qigra
#iBIG

center =

Denote
e ¢; are the CLOSED-LOOP poles
> g; are roots of d(s) + kn(s)
e z; are the zeros (open and closed loop)
> z; are roots of n(s) —
e p; are the OPEN-LOOP poles \1

> p; are roots of d(s) N—

wwwwwww

uuuuuuuu

e Small poles go to zeroes
e Big poles form asymptotes

#inie =n —m = F#OL poles — #OL zeroes
Real Problem: How to calculate

Z quIG?
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Calculating the Asymptotic Center

Recall from Routh-Hurwitz: Let p; be the roots of d(s).
d(s) = 5" +a1s" " -t an = (s —p1)(s —p2) - (s — pn)
Observe what happens as we expand out the roots:

d(s) = (s =p1)(s —p2)(s = p3)(s —pa) -+ (s — pn)
= (s> = (p1 +p2)s+pip2) (s —p3)(s —pa) - (s — pn)
= (s* = (p1 + p2 +p3)s> + (p1p2 + P2p3 + P1p3)s — P1p2ap3) (s — pa) -+ (s — pn)

=" = (pr+p2t -+ pa)s"T A+ (21) b2 pa
The second coefficient is the negative sum of the roots

a1 = —(p1 +P2+"'+pn):—2pz‘
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Calculating the Asymptotic Center

kzn, >~ q; is the second coefficient of

. kG __
Since 1+kG — d+

d(s) + kn(s)

Only interested in the case when n — m > 2
e 90° asymptotes or more.

d(s)=s"+a;s" 14

When n —m = 2,
d(s) + kn(s) = s" +a1s" 1 + (ag + k)s" 2 4 - -

Conclusion: Changing k doesn't change the second coefficient.
e Sum of poles doesn’'t change under feedback.

Zpi = Z(h‘ = —a1

This sum is the second coefficient of d(s).
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Calculating the Asymptotic Center

Recall we want to find

Z Qigic "
#iBIG

center =

It is obvious that

Z(h‘ = ZQiBIG +ZqiSMALL =

So that

10
E — E 3 10 8 6 4 2 o
quIG = —a1 — qzsjuALL Real Axis

So how do we find > qiguyurs?

Imaginary Axis
Q
x
/

e As k — oo small poles go to zeroes.

E ~ E )
Qisparr = Zi

At high gain
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Calculating the Asymptotic Center

n(s)
G =
The zeros, z; are the roots of n(s).
n(s)=s"+bs™ = (s—21) (85— 2m)
As before
SRR
Finally Where
e ay is the first coefficient of d(s)
center = 2 diprc e T 2 Gisnars e by is the first coefficient of n(s)
#iBIG n—m
~ —a1 — Z Z;
- n-m
. b1 — a

n—m
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Calculating the Asymptotic Center

Example: Suspension System

s24+s+1
G =
(=) st +2s34+3s2+1s+1
#iBIG =n—-m . Root Locus
= #poles — #zeroes .
f— 2. 4

|
|
|
|

Read off the coefficients

“ =2 TN

e b1 =1 N

center =

Conclusion: High gain is stable.

M. Peet Lecture 14: Control Systems 11 /34



Calculating the Asymptotic Center

Example: Tweaked Suspension System
Look what happens if we change 2"? coefficient in n(s) from 1 to 3.

s24+3s+1
s 4+ 283 4352 +1s+1

G(s) =

Hipie =N —m = #poles — #zeroes = 2

nnnnnnnn

Read off the coefficients

e a1 =2
° b1 =3
Thus

NNNNNNNN

Now high gain is unstable.
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Calculating the Asymptotic Center

Example: Suspension System with Integral Feedback

Gls) = 2 +s+1 1
s 4+2s3 4352+ 1s+1s
- s2+s5+1
P+ 254 43534152+ 5
H#ipig =N — M=
#poles — #zeroes = 3. 4
Again, we have the same coefficients
® a; = 2 g ~
© b =1 T
o
Thus

b17a171—27 1

t =
center n—m 3 3
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Calculating the Asymptotic Center

Another Example

s24+s+1
$0 + 285 + 55t — s34+ 25241

G(s) =

First, #i5,6 =n—m =4.

Again, we have the same . Root Locus
coefficients .
e a1 =2 6
° bl = ]_ ‘
2 2
Thus 7 N
= 2 X
b1 — a1 1-2 1 -4
center = ——— = —— = ——
n—m 4 4 %
-8
10

-10 -8 -6 -4 -2 0 2 4 6 8
Real Axis
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Calculating the Asymptotic Center
Using poles and zeros directly
Expand the formula for asymptotic center:

bi—ar _ Ypi—) z

n—m n—m

center =

If we know the p; and z;, we can use these instead of the a; and b

1

CO=Groerey 0

First, #ip,c =n—m =3

This time, we directly use poles
and zeros

e No Zeroes

e p1 =0, po =—4, p3 = —6.

> pi=-4-6=-10

i — i —-10—-0 _
center = Ep EZ = = -3.333
n—m 3
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Calculating the Asymptotic Center

DIY Example

s+ 2

) = eI )

X A Im(s)

A
)
i 4

Re(s
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Break points

Recall the inverted pendulum with derivative feedback.

G(s) =

1+4+s
1
82—5

When do the poles become imaginary?

e Important for choosing optimal k.

M. Peet

Imaginary Axis

0.8

0.6

0.4

02

Root Locus

-15 -1 -0.5 0 0.5
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Break points

Other Examples

(s s+4)
G(s) =
(5) (s+1)(s+2)
Jjo
/\ splane il
—O % a3 o
-4 -3 -2 -1
-
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Break points

Recall for a point on the root locus
d(s) + kn(s) =0

or for a point on the real axis: s =a

Idea: Use maximum principle to find the maximum and minimum of k on the
real axis.

Definition 2.

The extrema of a continuous function of a real variable, f(a), occur at the
boundary or when

d
%f(a) =0
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Break points

To find the point when the root locus leaves the real axis, we calculate the
extrema of

k(a) = Gza)
We need to solve J
d 0 = _d 1 da) () d'(a) _ d(a)n/(a) — d'(a)n(a) _
da (a) da G(a) n(a)? (a) n(a) n(a)? 0

Break Points occur at real-valued solutions of

d(a)n/(a) —d'(a)n(a) =0
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Break points

Numerical Example

Gls) = 1 _ 1
C s(s+4)(s+6) s34+ 10s2 + 24s

Break points occur when

dan' (@) - d'(@nl@ T
=0— (3a® +20a + 24) = 0

which has roots

—204+ 202 —4 %24 % 3
a1,2 =
6
—5.1, —1.57

1%

RRRRRRRR
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Break points

Numerical Example

(s+3)(s+4) 2+ 7s+12
(s+1)(s+2) s24+3s5+2

Break points occur when
d(a)n'(a) — d'(a)n(a) = (a* + 3a + 2)(2a +7) — (2a + 3)(a® + Ta + 12)
= (a® +3a+2)(2a+7) — (2a + 3)(a* + 7a + 12)
= —2(2a®> +10a+11) =0

Which has roots jo

@12 = —1634, —3.366

s-plane 141
Break points at —1.634 and —3.366. m
‘O AVa

Ay

-4 -3 -2 -1

x
a
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Break points

Numerical Example

1 + S Root Locus
Break points occur when oal /\\
f \
d(a)n’(a) — d'(a)n(a) ( \
£ | \
=(@®—-5)-1-2a-(1+a) ¢
=—(a*+2a+.5)=0
Which has roots o6l
ay2 = —.293, —1.707 T as s 2s 2 Re;\lAils a2 05 o o0s 1

Break points at —.293 and —1.707
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Break points

Summary

Step 1: Root Locus starts at Open Loop Poles.
Step 2: At Large Gain, k — oo

e Small Poles go to zeroes
e Large Poles approach asymptotes

:sz‘*zzi :b1*a1

n—m n—m

e Center at

g

Step 3: On real axis
e When odd number of poles/zeroes to the right.
e Break points when

a1
da G(a)

=0 or d(a)n'(a)—d(a)n(a) =0
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Departure Angle

The root locus starts at the poles.

. . d A Im(s)
o What is the effect of small gain? SO
e Do the poles become more or less stable?
Re(s)

<dep
g E S o b
§ ' — " f . — -
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Departure Angle

To find the departure angle, we look at a very small region around the departure
point.

Aims)

< dep

s

For a point to be on the root locus, we want phase of 180°.

m n

LG(s) = Z L(s—z) — Z Z(s —p;) = 180°

i=1 i=1
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Departure Angle

If we make the point s to the pole p.
e The angle to other poles and zeros from s is the

same as from p. < dep
> L(s—z;) 2 L(p— z) for all i 4
> L(s—pi) 2 L(p—p;) forall i
e The only difference is the phase from p itself.
The phase due to p equals the departure angle,
édep Alm(s)
Z(s —p) = Lgep

The total phase is
LG(s) = LG(p)—L(s—p) = LG(p)—Laep = 180°~ s
Thus the departure angle from pole p is

Laep = £G(p) + 180°

Therefore, to find the departure angle from pole p, just find the phase at p.
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Departure Angle

Numerical Examples

A
/
o
S
\4

45°

90°

The phase at p is based on geometry.
ZG(p) = 150° — 90° — 45° = 15°
So the departure angle is easy to calculate.

Lgep = ZG(p) + 180° = 195°
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Departure Angle

Numerical Examples

G(s) =

Poles at
® pro=—.957+£1.23%
® p3 4 = —.0433 &+ .641¢
Zeroes at
® 212 = —.51.866:

Problem:
Find departure angle at
p1 = —.957 + 1.23.

s24+s+1

Imaginary Axis

st 42834352 +1s+1

Liep = 180° + L(p1 — 21) + £(p1 — 22) — £(p1 — p2) — £(p1 — p3) — £(p1 — p4)

The difficulty is calculating the phase.

M. Peet
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Departure Angle

Numerical Examples

L(pr — z1) = £(—.957 + 1.231 + .5 — .8661) % P
— /(— 457 + 364)

— tan-l ( 364 ) < (-457 +.3641)

—.457
= 141.46°

Z(py — 22) = Z(—.A57 + 2.0961) = 102.3°

Obviously,
Z(p1 — p2) = 90°
Z(p1 —ps3) = 147.2°, Z(p1 — pg) = 116.03°
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Departure Angle

Numerical Examples

Now that we have all the angles:

ZG(p1) = Z(p1 — 21) + L(p1 — 22) — Z(p1 — p2) — Z(p1 — p3) — Z(p1 — pa)
= 141.46° +102.3° — 90° — 147.2° — 116.03°

= —109.47°
We conclude
Laep.py = LG (p1)+180° = 70.53°
By symmetry we could find

Laeppy = —70.53°

M. Peet

Imaginary Axis.
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Departure Angle

Numerical Examples

What about a pole on the real axis?

Jjw
s-plane 1 Jjl
O K % o
-4 -3 -2 -1
-l

ZG(p) =0° or 180°
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Calculating the Departure Angle

DIY Example

s+ 2

) = eI )

X A Im(s)

A
)
i 4

Re(s
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Summary

What have we learned today?

Review: What happens at high gain?
e Angles of Departure

The Case of 90° Departure

e Calculating the center of asymptotes

Breaking off the Real Axis
e Break Points

What is the effect of small gain?
e Departure Angles

Next Lecture: Arrival Angles, Summary 4+ Examples
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