Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 16: Generalized Root Locus and Controller Design

Overview

In this Lecture, you will learn:

Generalized Root Locus?

- What about changing OTHER parameters
- T_D , T_I , et c.
- mass, damping, et c.

Compensation via Root-Locus

- Introduction
- Pole-Zero Compensation
- Lead-Lag

Generalized Root Locus

We may want to know the effect of changing other parameters.

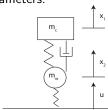
Examples:

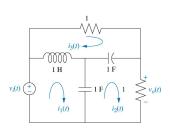
Physics (e.g. Suspension System)

- Spring Constant
- Damper
- Wheel Mass

Circuits (e.g. Toaster, Video Surveillance)

- Resisters
- Capacitors
- Inductors





Maybe there is no control at all!

What do parameters do?

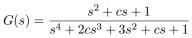
Suspension system: The full TF:

$$\frac{K_2(m_cs^2+cs+K_1)}{m_cm_ws^4+c(m_w+m_c)s^3+(K_1m_c+K_1m_w+K_2m_c)s^2+cK_2s+K_1K_2}$$

The Effect of Damping Constant: c

- No Feedback
- Only examine c
 - Everything else is 1.

$$G(s) = \frac{s^2 + cs + 1}{s^4 + 2cs^3 + 3s^2 + cs + 1}$$

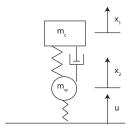


Where are the Poles?

$$s^{4} + 2cs^{3} + 3s^{2} + cs + 1 = 0$$

$$s^{4} + 3s^{2} + 1 + c(2s^{3} + s)$$

$$= d(s) + c n(s) = 0$$



Looks like the root locus!

What do parameters do?

$$G(s) = \frac{s^2 + cs + 1}{d(s) + c n(s)}$$

- $d(s) = s^4 + 3s^2 + 1$
- $n(s) = 2s^3 + s$

The root locus is the set of roots of

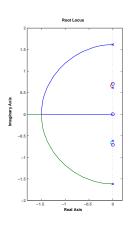
$$d(s) + kn(s)$$

We plot the root locus for

$$G_c(s) = \frac{n(s)}{d(s)} = \frac{2s^3 + s}{s^4 + 3s^2 + 1}$$

Note that G_c is totally fictional!

 G_c must still be proper (n is lower degree than d).



The effect of changing c is small.

Suspension Example: Damping Ratio

Root locus tells us:

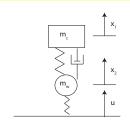
- ullet Changing c won't help with overshoot.
- We need Feedback!

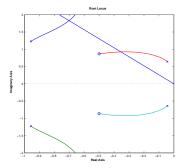
Set c=1 and plot the root locus

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

- Examine the gain at
 - $s_1 = -.3536 + .922i$
 - $s_2 = -.7 + 1.83i$
- Find Crossover Points
 - k = 3.58
 - k = 2.61

We'll want $k \cong 3$.





Suspension Example: Damping Ratio

Closed Loop Transfer Function:

$$\frac{kG(s)}{1+kG(s)} = \frac{k(s^2+cs+1)}{k(s^2+cs+1)+s^4+2cs^3+3s^2+cs+1}$$

Can damping ratio get us to 30% overshoot?

- With feedback
- $\bullet \ \, \mathsf{Set} \,\, k = 3 \,\, \mathsf{and} \,\, \mathsf{plot} \,\, \mathsf{root} \,\, \mathsf{locus} \,\,$

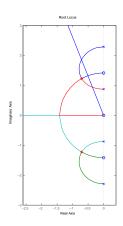
Closed Loop Transfer Function (k = 3):

$$G_{kc}(s) = \frac{s^2 + cs + 1}{(s^4 + 6s^2 + 4) + c(2s^3 + 3s + s)}$$

Use rlocfind to pick off the best value of $\emph{c}.$

Choose the point s = -.71 + 1.215i.

• Yields
$$c = \frac{|d(s)|}{|n(s)|} = 1.414$$



Suspension Example: Damping Ratio

Using c=1.414 and k=3, the closed-loop transfer function is

$$\frac{kG_c(s)}{1 + kG_c(s)} = \frac{3s^2 + 4.24s + 3}{s^4 + 2.8s^3 + 6s^2 + 5.7s + 4}$$

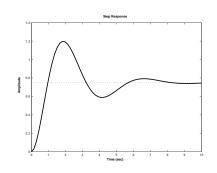
Which has repeated poles at

$$s_{1,2,3,4} = -.71 \pm 1.2i$$

Corresponds to an overshoot of

$$M_p = e^{\frac{\pi\sigma}{\omega}} = e^{-\frac{.71*\pi}{1.2}} = .18$$

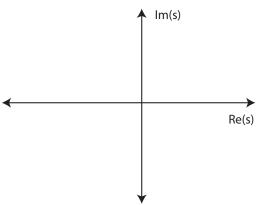
The real overshoot is much bigger!



DIY Example

$$G(s) = \frac{s^2 + b^2 s + b}{s^3 + (7 + b)s^2 + (12 + b)s + b}$$

Find the optimal value of b.



M. Peet

Limitations of Root Locus

Root Locus isn't perfect

- Can only study one parameter at a time.
- What to do if root locus doesn't go where we want?

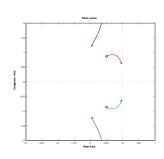
The Suspension Problem:

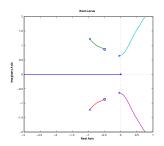
$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

Adding a pole at the origin has a negative effect.

Question:

Would adding a zero have a positive effect?





Limitations of Root Locus

The Inverted Pendulum:

$$G(s) = \frac{1}{s^2 + .5}$$

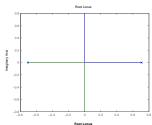
We used PD feedback $K(s) = k(1 + T_D s)$

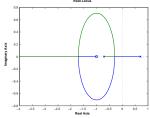
• Puts a zero at $s = \frac{1}{T_D}$

Conclusion:

• Adding a zero at z=-1 improves performance.

Can we generalize this?





Adding Poles and Zeroes

PID control

PID feedback:

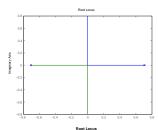
$$K(s) = k \left(1 + T_i \frac{1}{s} + T_D s \right)$$
$$= k \frac{T_D s^2 + s + T_I}{s}$$

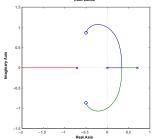
Adds poles and zeros:

 Two zeros: $z_{1,2} = -\frac{1 \pm \sqrt{1 - 4T_DT_I}}{2T_D}$

• One pole: p=0

Question: Is there a systematic way to add poles and zeros?



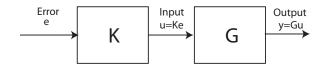


Adding Poles and Zeroes

How?

How To Add a Pole/Zero?

What does it mean?



Constraint: The plant is fixed.

• G(s) doesn't change.

The pole/zero must come from the controller. e.g.

What is a Controller?

- A system
 - ▶ Maps e(t) to u(t)

Adding Poles and Zeroes

Zeros

Goal: Add a Zero

Like PD control.

Controller:

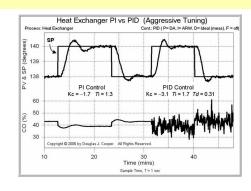
$$K(s) = k(s+z)$$

- Input to Controller: $\hat{e}(s)$
- Output from Controller:

$$\hat{u}(s) = k(s+z)$$
$$= ks\hat{e}(s) + kz\hat{e}(s)$$

Time-Domain:

$$u(t) = k e'(t) + kz e(t)$$



Problem: Requires differentiation.

$$e'(t) \cong \frac{e(t) - e(t - \tau)}{\tau}$$

Adding a Pole

Goal: Add a pole

Controller:

$$K(s) = k \frac{1}{s+p}$$

Input to Controller: $\hat{e}(s)$

Output from Controller: $\hat{u}(s) = \frac{k}{s+p}\hat{e}(s)$

Internal Variable: x.

• Frequency Domain

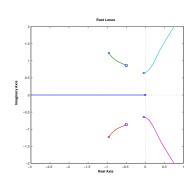
$$(s+p)x(s) = ke(s)$$
$$u(s) = x(s)$$

Time-Domain

$$\dot{x}(t) = -px(t) + ke(t)$$
$$u(t) = x(t)$$

Adding a Pole:

- Easier than adding a zero, but less useful
 - Zeros are better for attracting poles away from RHP.



M. Peet

Pole-Zero Compensation

The best way to modify the root locus is a using a pole-zero compensator.

• Adds a zero without differentiation

$$K(s) = k \frac{s - z}{s - p}$$

Input to Controller: $\hat{e}(s)$

Output from Controller:
$$\hat{u}(s) = k \frac{s-z}{s-p} \hat{e}(s)$$

Doing long division:

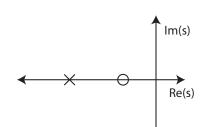
$$\frac{s-z}{s-p} = 1 + \frac{z-p}{s-p}$$

Hence

$$\hat{u}(s) = k\hat{e}(s) + k\frac{z-p}{s-p}\hat{e}(s)$$

Internal Variable:

$$\hat{x}(s) = \frac{k(z-p)}{s-p}\hat{e}(s)$$



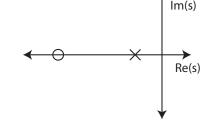
Pole-Zero Compensation

Internal Variable:

$$\hat{x}(s) = \frac{k(z-p)}{s-p}\hat{e}(s)$$

Frequency Domain:

$$(s+p)x(s) = k(z-p)e(s)$$
$$u(s) = x(s) + k\hat{e}(s)$$



Time-Domain:

$$\dot{x}(t) = -px(t) + k(z - p)e(t)$$

$$u(t) = x(t) + ke(t)$$

Artificial Dynamics:

- Controller State: x(t)
- No differentiation of e(t)!
- A zero should always be combined with a pole.

Lead Compensation

Definition 1.

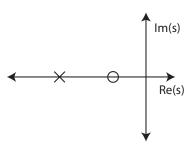
A Lead Compensator is a pole-zero compensator

$$K(s) = \frac{s+z}{s+p}$$

where p < z.

Used when we really want a zero

• The pole has less effect than the zero.



Lead Compensation

Inverted Pendulum

$$G(s) = \frac{1}{s^2 - .5}$$

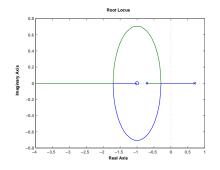


Figure : K(s) = k(s+1)

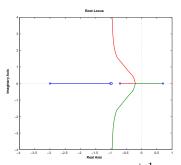


Figure : $K(s) = k \frac{s+1}{s+3}$

Lag Compensation

Definition 2.

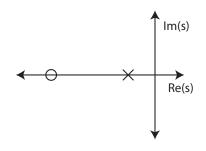
A Lag Compensator is a pole-zero compensator

$$K(s) = \frac{s+z}{s+p}$$

where z < p.

Used when we really want a pole

- The zero has less effect than the pole.
- Doesn't increase the number of asymptotes.



Lag Compensation

Suspension Problem

$$G(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

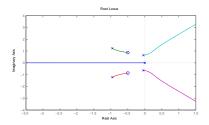


Figure : $K(s) = \frac{k}{s}$

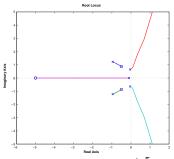


Figure : $K(s) = k \frac{s+5}{s+.1}$

M. Peet

Summary

What have we learned today?

Generalized Root Locus?

- What about changing OTHER parameters
- T_D , T_I , et c.
- mass, damping, et c.

Compensation via Root-Locus

- Introduction
- Pole-Zero Compensation
- Lead-Lag

Next Lecture: Pole-Zero Compensation and Notch Filters