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Overview

In this Lecture, you will learn:

Introduction to the Frequency Domain

• Life without Newton
I “Who needs a model, anyway?”

• Black Boxes.

Frequency Response

• Predicting Frequency Response

• Using Frequency Response Data

• Bode Plots
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The Frequency Response

Definition 1.

The Frequency Response is the steady-state output of a system with
sinusoidal input.

Figure : Response of Concrete Slabs to Soil Excitation (FEM)
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The Frequency Response

A Sinusoidal Input:

u(t) = A sin(ωt) +B cos(ωt)

=
√
A2 +B2 sin

(
ωt− tan−1

(
B

A

))
=M sin(ωt+ φ)

Laplace Transform:

û(s) =
Bs+Aω

s2 + ω2

• M =
√
A2 +B2

• φ = − tan−1
(
B
A

)
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The Frequency Response

For now, set B = 0, then u(t) = A sinωt.

û(s) =
Aω

s2 + ω2

For a given stable transfer function,

G(s) =
n(s)

(s+ p1) · · · (s+ pn)
,

then by partial-fraction expansion

ŷ(s) = G(s)û(s)

= G(s)
Aω

(s+ ıω)(s− ıω)

=
r1

s+ p1
+ · · ·+ rn

s+ pn
+

α

s+ ıω
+

β

s− ıω
.
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The Frequency Response

Partial Fraction Expansion:

ŷ(s) =
r1

s+ p1
+ · · ·+ rn

s+ pn
+

α

s+ ıω
+

β

s− ıω

Inverse Laplace Transform:

y(t) = r1e
−p1t + · · ·+ rne

−pnt + αe−ıωt + βeıωt

But we want the Steady-State Response.

• Poles pi are all stable.
I limt→∞ e

−pit = 0

• These are called Transient Responses
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The Frequency Response

Since ±ıω are isolated poles, by the remainder theorem:

α = G(s)
Aω

(s+ ıω)(s− ıω)
(s+ ıω)|s=−ıω

= G(−ıω) Aω
−2ıω

= G(−ıω) A
−2ı

Likewise,

β = G(ıω)
A

2ı
Then

yss(t) = αe−ıωt + βeıωt

= A
G(ıω)eıωt −G(−ıω)e−ıωt

2ı
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Complex Numbers
Complex Conjugates

Issue: G(−ıω) is the complex conjugate of G(ıω).

Definition 2.

For a complex number s = a+ bı, the Complex
Conjugate of s is

s∗ = a− bı

• Just replace ı→ −ı.
• reıθ → re−ıθ

Magnitude is unchanged. Phase is reversed

Im(s)

Re(s)

s = r cos(θ) + r sin(θ) ¡

θ

r

r

-θ

s* = r cos(θ) - r sin(θ) ¡

For s = reıθ,

Phase: ∠s = θ

• ∠s∗ = −θ = −∠s
Magnitude: |s| = r

• |s∗| = r = |s|
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The Frequency Response

Complex Conjugate: G(−ıω) = G(ıω)∗

yss(t) = A
G(ıω)eıωt −G(−ıω)e−ıωt

2ı

Recall that we can express G(ıω) as

G(ıω) = |G(ıω)|e∠G(ıω)ı

and |G(ıω)| = |G(ıω)∗| = |G(−ıω)|, ∠G(−ıω) = ∠G(−ıω)∗ = −∠G(ıω)

yss(t) = A
G(ıω)eıωt −G(−ıω)e−ıωt

2ı

= |G(ıω)|Ae
∠G(ıω)eıωt − e−∠G(ıω)e−ıωt

2ı

= |G(ıω)|Ae
(ωt+∠G(ıω))ı − e−(ωt+∠G(ıω))ı

2ı
= |G(ıω)|A sin(ωt+ ∠G(ıω))

M. Peet Lecture 18: Control Systems 9 / 27



The Frequency Response

If the input is shifted:
Input:

u(t) =M sin(ωt+ φ)

Output:
y(t) =M |G(ıω)| sin(ωt+ φ+ ∠G(ıω))
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The Frequency Response

Conclusion: The response to a sinusoidal input
sinωt:

• A sinusoid with the same frequency.

• Phase is shifted by ∠G(ıω).

• Magnitude is changed |G(ıω)|.
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We refer to

• |G(ıω)| is the Magnitude of Frequency Response

• ∠G(ıω) is the Phase of Frequency Response

These depend only on ω and G(ıω).
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Complex Poles and Zeros

The amplification at the natural frequency, ωn, is called resonance.

Figure : Frequency Sweeping with Resonance
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Resonance_Vibration_Test.mp4
Media File (video/mp4)



Frequency Response Planning
Applications

Application: Crane Oscillation

• Sinusoidal Input from Hanging
load.

• Avoid Spillage.

• Avoid Tipping.

A Form of Motion Control.
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Frequency Response Planning
Applications

Figure : Simple Crane Sway Control Figure : Industrial Crane Sway Control

Figure : Failure of Crane Control
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Crane_Sway_PID.mp4
Media File (video/mp4)


Crane_Sway_KONE.mp4
Media File (video/mp4)


Crane_collapse_Miller_Park.mp4
Media File (video/mp4)



Frequency Response Planning
Modeling Structural Dynamics

Application: Building Response to
Earthquakes

• Sinusoidal input from ground.

• Reduce peak output.
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Obtaining Frequency Response Data
Controlling Structural Dynamics

Figure : Earthquake Damping
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Building_Damper.mp4
Media File (video/mp4)



The Frequency Response

This can work the other way too:

• Input u(t) sinωt

• Output: y(t) =M sin(ωt+ φ)

• Measure M and φ
I Relative Phase φ = ∠G(ıω)
I Magnitude: M = |G(ıω)|

Frequency Sweeping: Measure M and
φ at every frequency

• Get functions M(ω) and φ(ω)

Reconstruct

G(s) ∼=M(s)eφ(s)ı

Figure : Valve Control Setup
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The Frequency Response

Input: A Sinusoid of Increasing Frequency.

u(t) = sin ((ω0 + kt)t)
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Complex Poles and Zeros

Figure : Frequency Sweeping with Resonance
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MDOF_resonance_Vibration.mp4
Media File (video/mp4)



The Frequency Response

Figure : A Frequency Sweep in Circuit Analysis
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Frequency_sweep.mp4
Media File (video/mp4)



Frequency Sweeping
Magnitude and Phase Data
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Frequency Sweeping
Magnitude and Phase Data

Magnitude and Phase Data for a Notch Filter

This type of Magnitude-Phase graph is called a Bode Plot
M. Peet Lecture 18: Control Systems 22 / 27



Frequency Sweeping
Magnitude and Phase Data

Figure : Data From a Graphic Equalizer

No Model is Required to understand the system.
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Obtaining Frequency Response Data
Finite-Element Modeling

For structures and rigid bodies.

• Dynamics are Partial-Differential Equations
I Elasticity

• We can derive the model, but it would be too complicated.

We must rely on Simulation.

• Simulate a sinusoidal input
I Record output displacement

• Resulting model is only an approximation.

M. Peet Lecture 18: Control Systems 24 / 27



Obtaining Frequency Response Data
Finite-Element Modeling

Figure : Satellite Frequency Response Analysis using NASTRAN
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FEM_NASTRAN_satellite_FRA.mp4
Media File (video/mp4)



Summary

What have we learned today?

Introduction to the Frequency Domain

• Life without Newton
I “Who needs a model, anyway?”

• Black Boxes.

Frequency Response

• Predicting Frequency Response

• Using Frequency Response Data

• Bode Plots

Next Lecture: The Bode Plot
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Obtaining Frequency Response Data
Experimental Methods: Circuit Sweeping

Figure : Frequency Response Analysis in the Power Industry (Ad)
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FRA_Power_Application.mp4
Media File (video/mp4)


	Control Systems

