Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 21: Stability Margins and Closing the Loop

Overview

In this Lecture, you will learn:

Closing the Loop

- Effect on Bode Plot
- Effect on Stability

Stability Effects

- Gain Margin
- Phase Margin
- Bandwidth

Estimating Closed-Loop Performance using Open-Loop Data

- Damping Ratio
- Settling Time
- Rise Time

Review

Recall: Frequency Response

Input:

$$u(t) = M\sin(\omega t + \phi)$$

Output: Magnitude and Phase Shift

$$y(t) = |G(i\omega)|M\sin(\omega t + \phi + \angle G(i\omega))|$$

3 / 31

Frequency Response to $\sin \omega t$ is given by $G(\imath \omega)$

Review

Recall: Bode Plot

Definition 1.

The Bode Plot is a pair of log-log and semi-log plots:

- 1. Magnitude Plot: $20\log_{10}|G(\imath\omega)|$ vs. $\log_{10}\omega$
- 2. Phase Plot: $\angle G(\imath \omega)$ vs. $\log_{10} \omega$

Bite-Size Chucks:

$$\angle G(\imath \omega)$$

$$= \sum_{i} \angle G_{i}(\imath \omega)$$

Complex Poles and Zeros

We left off with Complex Poles:

$$G(s) = \frac{1}{\left(\left(\frac{s}{\omega_n}\right)^2 + 2\zeta \frac{s}{\omega_n} + 1\right)}$$

Now we examine the effect of closing the loop on the Frequency Response.

Use simple Unity Feedback (K = 1).

Closed-Loop Transfer Function:

$$G_{cl}(\imath\omega) = \frac{G(\imath\omega)}{1 + G(\imath\omega)}$$

u(s) + k

We are most concerned with magnitude:

$$|G_{cl}(\imath\omega)| = \frac{|G(\imath\omega)|}{|1 + G(\imath\omega)|}$$

Figure: Unity Feedback

G(s)

y(s)

On the Bode Plot

$$20\log|G_{cl}(\imath\omega)| = 20\log|G(\imath\omega)| - 20\log|1 + G(\imath\omega)|$$

Which is the combination of

- The original bode plot
- The new factor $\log |1 + G(\imath \omega)|$

We are most concerned with the effect of the new term

$$-20\log|1+G(\imath\omega)|$$

Specifically, as $1 + G(\imath \omega) \to 0$

$$\lim_{1+G(\imath\omega)\to 0} -20\log|1+G(\imath\omega)| = \infty$$

An unstable mode!

Figure: Open Loop: Blue, CL: Green

7 / 31

Stability Margin

Instability occurs when

$$1 + G(\imath \omega) = 0$$

For this to happen, we need:

- $|G(\imath\omega)| = 1$
- $\angle G(\imath \omega) = -180^{\circ}$

Stability Margins measure how far we are from the point

$$(|G| = 1, \angle G = -180^{\circ}).$$

8 / 31

Definition 2.

The Gain Crossover Frequency, ω_{gc} is the frequency at which $|G(\imath\omega_c)|=1$.

This is the danger point:

• If $\angle G(\imath\omega_c)=180^\circ$, we are unstable

Phase Margin

Definition 3.

The **Phase Margin**, Φ_M is the phase relative to 180° when |G| = 1.

- $\Phi_M = |180^\circ \angle G(i\omega_{gc})|$
- ω_{gc} is also known as the phase-margin frequency, ω_{Φ_M}

Gain Margin

Definition 4.

The Phase Crossover Frequency, ω_{pc} is the frequency (frequencies) at which $\angle G(\imath\omega_{pc})=180^{\circ}$.

Definition 5.

The **Gain Margin**, G_M is the gain relative to 0dB when $\angle G = 180^{\circ}$.

•
$$G_M = -20 \log |G(\imath \omega_{pc})|$$

 G_M is the gain (in dB) which will destabilize the system in closed loop.

 ω_{pc} is also known as the gain-margin frequency, ω_{G_M}

Stability Margins

Gain and Phase Margin tell how stable the system would be in Closed Loop.

These quantities can be read from the **Open-Loop Data**.

Stability Margins: Suspension System

Stability Margins

- $\Phi_M = 35^{\circ}$
- $G_M = 10 dB$

M. Peet

Stability Margins

Note that sometimes the margins are undefined

- When there is no crossover at 0dB
- When there is no crossover at 180°

Closing the Loop

Question: What happens when we Close the Loop?

- We want Performance Specs!
- We only have open-loop data.
- ullet Φ_M and G_M can help us.

Unity Feedback:

We want:

- Damping Ratio
- Settling Time
- Peak Time

Quadratic Approximation

Assume the closed loop system is the quadratic

$$G_{cl} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Then the open-loop system must be

$$G_{ol} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s}$$

Assume that our open-loop system is G_{ol}

- Use Φ_M to solve for ζ
- Set $20\log |G_{cl}| = -3dB$ to solve for ω_n

Damping Ratio

The Quadratic Approximation gives the Closed-Loop Damping Ratio as

$$\Phi_M = \tan^{-1} \frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{4\zeta^4 + 1}}}$$

 Φ_M is from the *Open-Loop Data!*

A Handy approximation is

$$=\frac{\Phi_M}{100}$$

- Only valid out to $\zeta \cong .7$.
- Given Φ_M , we find closed-loop ζ .

M. Peet

Bandwidth and Natural Frequency

We find closed-loop ζ from Phase margin.

• We can find closed-loop Natural Frequency ω_n from the closed-loop Bandwidth.

Definition 6.

The **Bandwidth**, ω_{BW} is the frequency at gain $20 \log |G(\imath \omega_{BW})| = |20 \log |G(0)| - 3 dB$.

- Closely related to crossover frequency.
- The Bandwidth measures the range of frequencies in the output.
- For 2nd order, Bandwidth is related to natural frequency by

$$\omega_{BW} = \omega_n \sqrt{(1-2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Finding Closed-Loop Bandwidth from Open-Loop Data

Question: How to find closed-loop bandwidth?

Finding the closed-loop bandwidth from open-loop data is tricky.

Have to find the frequency when the Bode plot intersects this curve.

• **Heuristic:** Check the frequency at -6dB and see if phase is $\cong 180^{\circ}$.

Finding Closed-Loop Bandwidth from Open-Loop Data

Example

At phase 135° , -5 dB, we get closed loop $\omega_{BW} \cong 1$.

Bandwidth and Settling Time

We can use the expression $T_s=\frac{4}{\zeta\omega_n}$ to get

$$\omega_{BW} = \frac{4}{T_s \zeta} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Given closed-loop ζ and ω_{BW} , we can find T_s .

Bandwidth and Peak Time

We can use the expression $T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$ to get

$$\omega_{BW} = \frac{\pi}{T_p \sqrt{1 - \zeta^2}} \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

Given closed-loop ζ and ω_{BW} , we can find T_p .

Bandwidth and Rise Time

Using an expression for T_r , we get a relationship between $\omega_{BW} \cdot T_r$ and ζ .

Given closed-loop ζ and ω_{BW} , we can find T_r .

Example

Question: Using Frequency Response Data, find T_r , T_s , T_p after unity feedback.

First Step: Find the phase Margin.

- Frequency at 0 dB is $\omega_{qc} \cong 2$
- $\angle G(2) \cong -145^{\circ}$
- $\Phi_M = 180^{\circ} 145^{\circ} = 35^{\circ}$

Example

Step 2: Closed-Loop Damping Ratio

$$\zeta \cong \frac{\Phi_M}{100} = .35$$

Step 3: Closed-Loop Bandwidth

- Intersect at $\cong (|G| = -6dB, \angle G = -170^\circ)$
- Frequency at intersection is $\omega_{BW} \cong 3.7$

Example

Step 4: Settling Time and Peak Time

•
$$\omega_{BW} = 3.7$$
, $\zeta = .35$

- $\omega_{BW}T_s=20$ implies $T_s=5.4s$
- $\omega_{BW}T_{p} = 4.9$ implies $T_{p} = 1.32$

M. Peet

Example

Step 5: Rise Time

•
$$\omega_{BW} = 3.7$$
, $\zeta = .35$

• $\omega_{BW}T_r = 1.98$ implies $T_r = .535$

Example

Step 6: Experimental Validation.

Use the plant

$$G(s) = \frac{50}{s(s+3)(s+6)}$$

We find

- $T_p = 1.6s$
 - ▶ predicted 1.32
- $T_r = .7s$
 - ▶ predicted .535
- $T_s = 4s$
 - Predicted 5.4

Figure: Step Response

Steady-State Error

Finally, we want steady-state error.

• Steady-State Step response is

$$\lim_{s \to 0} G(s) = \lim_{\omega \to 0} G(i\omega)$$

Steady-state response is the Low-Frequency Gain, |G(0)|.

Close The Loop to get steady-state error

$$e_{ss} = \frac{1}{1 + |G(0)|}$$

Steady-State Error

Example

A Lag Compensator

$$\lim_{\omega \to 0} 20 \log G(\imath \omega) = 20 dB$$

So
$$\lim_{\omega \to 0} |G(i\omega)| = 10$$
.

Steady-State Error:

$$e_{ss} = \frac{1}{1 + G(0)} = \frac{1}{11} = .091$$

Summary

What have we learned today? Closing the Loop

- Effect on Bode Plot
- Effect on Stability

Stability Effects

- Gain Margin
- Phase Margin
- Bandwidth

Estimating Closed-Loop Performance using Open-Loop Data

- Damping Ratio
- Settling Time
- Rise Time

Next Lecture: Compensation in the Frequency Domain