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Lecture 22: The Nyquist Criterion



Overview

In this Lecture, you will learn:

Complex Analysis

• The Argument Principle

• The Contour Mapping Principle

The Nyquist Diagram

• The Nyquist Contour

• Mapping the Nyquist Contour

• The closed Loop

• Interpreting the Nyquist Diagram
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Review

Recall: Frequency Response

Input:

u(t) =M sin(ωt+ φ)

Output: Magnitude and Phase Shift

y(t) = |G(ıω)|M sin(ωt+ φ+ ∠G(ıω))
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Frequency Response to sinωt is given by G(ıω)
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Review

Recall: Bode Plot
The Bode Plot is a way to visualize G(ıω):

1. Magnitude Plot: 20 log10 |G(ıω)| vs. log10 ω

2. Phase Plot: ∠G(ıω) vs. log10 ω
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Bode Plots

If we only want a single plot we can use ω as a parameter.
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A plot of Re(G(ıω)) vs. Im(G(ıω)) as a function of ω.

• Advantage: All Information in a single plot.

• AKA: Nyquist Plot

Question: How is this useful?
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The Nyquist Plot

To Understand Nyquist:

• Go back to Root Locus

• Consider a single zero: G(s) = s.

Draw a curve around the pole
What is the phase at a point on the
curve?

∠G(s) = ∠s

< s
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The Nyquist Plot

Consider the phase at four points, going
Clockwise (CW)

1. ∠G(a) = ∠1 = 0◦

2. ∠G(b) = ∠− ı = −90◦

3. ∠G(c) = ∠− 1 = −180◦

4. ∠G(d) = ∠ı = −270◦

The phase decreases along the curve
until we arrive back at a.

• The phase resets at a by +360◦

a

b

c

d

The reset is Important!

• There would be a reset for any closed curve containing z or any starting
point.

• We went around the curve Clockwise (CW).
I If we had gone Counter-Clockwise (CCW), the reset would have been

−360◦.
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The Nyquist Plot

Now consider the Same Curve with

G(s) = s+ 2

Phase at the same four points.

1. ∠G(a) = ∠3 = 0◦

2. ∠G(b) = ∠2− ı ∼= −30◦

3. ∠G(c) = ∠1 = 0◦

4. ∠G(d) = ∠2 + ı ∼= 30◦
a

b

c

d

30o

In this case the transition back to 0◦ is smooth.

• No reset is required!
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The Nyquist Plot

Question What if we had encircled 2 zeros?

Phase at the same four points, going
clockwise.

1. ∠G(a) = 0◦

2. ∠G(b) = −180◦

3. ∠G(c) = −360◦

4. ∠G(d) = −540◦

• The phase resets at a by +720◦

a

b

c

d

60o
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Rule: The CW reset is +360 ·#zeros.
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The Nyquist Plot

Question What about encircling a pole?

Consider the phase at four points, going
CW.

1. ∠G(a) = ∠1 = 0◦

2. ∠G(b) = ∠ 1
−ı = ∠ı = 90◦

3. ∠G(c) = ∠− 1 = 180◦

4. ∠G(d) = ∠ 1
ı = ∠− ı = 270◦

• The phase resets at a by −360◦

a

b

c

d

<s-1 = 90o

Rule: The CW reset is −360 ·#poles.
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The Nyquist Plot

Question: What if we combine a pole and a zero?

Consider the phase at four points

1. ∠G(a) = 0◦

2. ∠G(b) = −60◦

3. ∠G(c) = 0◦

4. ∠G(d) = 60◦

• There is no reset at a.

a

b

c

d

120o

<s-1 = -60o

Rule: Going CW, the reset is +360 · (#zeros −#poles).

A consequence of the Argument Principle from Complex Analysis.
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The Nyquist Plot

How can this observation be used?
Consider Stability.

• G(s) is stable if it has no poles in the right half-plane

Question: How to tell if any poles are in the RHP?
Solution: Draw a curve around the RHP and count the resets.

Define the Nyquist Contour:

• Starts at the origin.

• Travels along imaginary axis till r =∞.

• At r =∞, loops around clockwise.

• Returns to the origin along imaginary axis.

A Clockwise Curve

The reset is +360 · (#zeros −#poles).

If there is a negative reset, there is a pole in the
RHP

r = ∞
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The Nyquist Plot

If we encircle the right half-plane,

The reset is +360 · (#zeros −#poles).

Question 1:

• How to determine the number of
resets along this curve?

Question 2:

• Zeros can hide the poles!

• What to do?

r = ∞

resets = 0
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Contour Mapping

Lets answer the more basic question first:

• How to determine the number of resets along this curve?

Definition 1.

Given a contour, C ⊂ X, and a function G : X → X, the contour mapping
G(C) is the curve {G(s) : s ∈ C}.

In the complex plane, we plot

Im(G(s)) vs. Re(G(s))

along the curve C
• Yields a new curve, CG.

s

G(s)

Im( G(s) )

Re( G(s) )
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Contour Mapping

Key Point: For a point on the mapped contour (contour is CW), s∗ = G(s),

∠s∗ = ∠G(s)
• We measure θ, not phase.

The number of +360◦ resets becomes the number of CW encirclements of the
origin.

• We count Clockwise encirclements of 0.

• Number of CW encirclements is number of zeros minus poles inside
contour.

• Makes the resets much easier to
count!

Assumes the contour doesn’t hit any
poles or zeros, otherwise

• G(s)→∞ and we lose count.

• G(s)→ 0 and we lose count.

s

s*= G(s)

θ = < G(s)
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Contour Mapping

Assume the original Contour was clockwise

The reset is +360 · (#zeros −#poles).

There are 5 counter-clockwise
encirclements of the origin.

• A Negative Reset of −360◦ · 5.

Thus

+360 · (#zeros −#poles) = −360 · 5

(#zeros −#poles) = −5

At least 5 poles in the region.
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Recall: The Nyquist Contour

Conclusion: If we can plot the contour mapping, we can find the relative # of
poles and zeros.

Definition 2.

The Nyquist Contour, CN is a contour which contains the imaginary axis and
encloses the right half-place. The Nyquist contour is clockwise.

A Clockwise Curve

• Starts at the origin.

• Travels along imaginary axis till r =∞.

• At r =∞, loops around clockwise.

• Returns to the origin along imaginary axis.

r = ∞
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The Nyquist Contour

To map the Nyquist Contour, we deal with two
parts

• The imaginary Axis.

• The loop at ∞.

The Imaginary Axis

• Contour Map is G(ıω)

• Plot Re(G(ıω)) vs. Im(G(ıω))

Data Comes from Bode plot

• Plot Re(G(ıω)) vs. Im(G(ıω))

Map each point on Bode to a point on Nyquist

• We’ll come back to this shortly.

s*= G(iω)

θ = < G(iω)
{ r = |G(iω)|
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The Nyquist Contour

The Loop at ∞: 2 Cases

G(s) =
n(s)

d(s)
=
a0s

m + · · · am
b0sn + · · · bn

Case 1: G(s) is Proper, but not
strictly

• Degree of d(s) same as n(s)

• As ω →∞, G(s) becomes
constant

I Magnitude becomes fixed

lim
s→∞

n(s)

d(s)
=

n(s)

d(s)
=

a0

b0

We can use the Nyquist Plot
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The Nyquist Contour

The Loop at ∞:

G(s) =
n(s)

d(s)
=
a0s

m + · · · am
b0sn + · · · bn

Case 2: G(s) is Strictly Proper

• Degree of d(s) greater than n(s)

• As ω →∞, |G(ıω)| → 0

lim
s→∞

G(s) = lim
ω→∞

n(s)

d(s)
= 0
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Can’t tell what goes on at ∞!

This can be a problem
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The Nyquist Contour

Because the Nyquist Contour is clockwise,

The number of clockwise encirclements of 0 is

• The #zeros −#poles in the RHP

Conclusion: Although we can map the RHP onto the Nyquist Plot, we have
two problems.

• Can only determine #zeros −#poles

• Strictly proper systems are problematic.
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The Nyquist Contour

Our solution to all problems is to consider Systems in Feedback

• Assume we can plot the Nyquist plot for the open loop.

• What happens when we close the loop?

The closed loop is
kG(s)

1 + kG(s)

We want to know when
1 + kG(s) = 0

Question: Does 1
k +G(s) have any zeros in the RHP?

G(s)k
+

-

y(s)u(s)
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The Nyquist Contour
Closed Loop

This is a better question.
1
k +G(s) is Proper, but not Strictly

1

k
+G(s) =

d(s) + kn(s)

kd(s)

• Degree of d(s) greater than or equals n(s)

• degree(d(s) + kn(s)) = degree(d(s))

Numerator and denominator have same degree!

We know about the poles of 1
k +G(s)

• poles are the poles of the open loop

• We know if the open loop is stable!

• we know if any poles are in RHP.
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The Nyquist Contour
Closed Loop

Mapping the Nyquist contour of 1
k +G(s) is easy!

1. Map the Contour for G(s)

2. Add 1
k to every point

1/k

Shifts the plot by factor 1
k
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The Nyquist Contour
Closed Loop

Conclusion: If we map the Nyquist Contour for 1
k +G(s)

• The # of clockwise encirclements of 0 is #zeros −#poles of 1
k +G(s) in

the RHP.

• The # of zeros of 1
k +G(s) in RHP is # of clockwise encirclements plus #

of open-loop poles of G(s) in RHP.

Instead of shifting the plot, we can shift the
origin to point − 1

k

The number of unstable closed-loop poles is
N + P , where

• N is the number of clockwise
encirclements of −1k .

• P is the number of unstable open-loop
poles.

If we get our data from Bode, typically P = 0
-1/k
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The Nyquist Contour
Example

-1/k

Two CCW encirclements of − 1
k

• Assume 1 unstable Open Loop pole P = 1
• Encirclements are CCW: N = −2
• N + P = −1: No unstable Closed-Loop Poles
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The Nyquist Contour
Example

Nyquist lets us quickly determine the regions of stability

The Suspension Problem

• Open Loop is Stable: P = 0

• No encirclement of −1/k
I Holds for any k > 0

Closed Loop is stable for any k > 0.
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The Nyquist Contour
Example

The Inverted Pendulum with Derivative Feedback

• Open Loop is Unstable: P = 1

• CCW encirclement of −1/k
I Holds for any −2 < −1

k
< 0

I Holds for any k > 1
2

• When k ≥ 1
2 , N = −1

Closed Loop is stable for k > 1
2 .
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Summary

What have we learned today?

Complex Analysis

• The Argument Principle

• The Contour Mapping Principle

The Nyquist Diagram

• The Nyquist Contour

• Mapping the Nyquist Contour

• The closed Loop

• Interpreting the Nyquist Diagram

Next Lecture: Drawing the Nyquist Plot
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