Systems Analysis and Control

Matthew M. Peet Arizona State University

Lecture 24: Compensation in the Frequency Domain

Overview

In this Lecture, you will learn:

Lead Compensators

- Performance Specs
- Altering Phase Margin

Lag Compensators

• Change in steady-state error

Recall: 3 indicators

- Gain Margin
- Phase Margin
- Bandwidth

From Phase Margin and Closed-Loop Bandwidth:

- Percent Overshoot
- Peak Time
- Rise Time
- Settling Time

Percent Overshoot: ζ is from Φ_M only

$$\%OS = e^{-(\frac{\pi\zeta}{\sqrt{1-\zeta^2}})}$$

Given ζ , we need ω_{BW} to find T_r , T_s and T_p

M. Peet

 ω_{BW}

This is all analysis.

Design Problem: Achieve

- 10% Overshoot
- $T_r = 2s$
- $T_s = 10s$

Step 1: Translate into Φ_M and ω_{BW} constraints.

Get desired ζ from 10% Overshoot

$$\zeta = \frac{-\ln\left(\frac{\%OS}{100}\right)}{\sqrt{\pi^2 + \ln^2\left(\frac{\%OS}{100}\right)}}$$
$$= .57$$

The desired ζ yields a desired phase margin.

$$\Phi_{M,desired} \cong \zeta_{des} \cdot 100$$
$$= 57^{\circ}$$

The toughest constraint will be Rise Time: $T_r < 2s$

$$\omega_{BW} = \frac{f_3(\zeta)}{T_r}$$

$$> \frac{2.12}{2} = 1.06$$

We can also look at settling time: $T_s < 10s$

$$\omega_{BW} = \frac{f_1(\zeta)}{T_s}$$
$$> \frac{8}{10} = .8$$

Therefore: We want

- Phase margin of $\Phi_M = 57^{\circ}$
- Bandwidth of $\omega_{BW} > 1$

So far we only know how to find Φ_M and ω_{BW} , but not influence them.

- $\Phi_M=35^\circ$ at $\omega_c=2.13$
- $\omega_{BW} \cong 3.7$

Question: How can we increase Φ_M and decrease ω_{BW} ?

Answer:

- Increase gain at $\omega > \omega_{BW,desired}$
 - So that $|G(\imath \omega_{BW,desired})| = -7dB$.
- Increase phase by 30° at crossover frequency.

Lead Compensation

Question: How do we design our lead compensator?

• In root locus, we had pole placement.

Look at the Two Lead Compensators:

$$D(s) = k \frac{s+1}{\frac{s}{10}+1}$$
 and $D_2(s) = k \frac{s+1}{\frac{s}{100}+1}$

What are the differences?

Consider the generalized form of lead compensation

$$D(s) = k \frac{Ts + 1}{\alpha Ts + 1}$$

 α determines how much phase is added

- $\alpha < 1$ for lead compensation
- $\alpha > 1$ for lag compensation

T determines where the phase is added.

We want extra phase at the crossover frequency

Note that magnitude is also added at high frequency.

- Could increase the crossover frequency.
- Changes the phase margin.

Question: Where is the phase added?

Find the point of Maximum Phase.

The Phase contribution of the lead compensator is

$$\Phi(\omega) = \angle D(\imath \omega)$$

$$= \angle T(\imath \omega + 1) - \angle (\alpha T \imath \omega + 1)$$

$$= \tan^{-1}(T\omega) - \tan^{-1}(\alpha T\omega)$$

To find peak phase contribution, set $\frac{\partial \angle D(\imath \omega)}{\partial \omega} = 0.$

$$\frac{\partial \Phi}{\partial \omega} = \frac{1}{1+(T\omega)^2}T - \frac{1}{1+(\alpha T\omega)^2}\alpha T = 0$$

Which means

$$1 + (\alpha T\omega)^{2} - (1 + (T\omega)^{2})\alpha$$
$$= 1 - \alpha + (\alpha - 1)(\alpha T^{2}\omega^{2}) = 0$$

Dividing by $1 - \alpha$, we get

$$1 - \alpha T^2 \omega^2 = 0$$
 or $\omega_{max} = \frac{1}{T\sqrt{\alpha}}$

M. Peet

So we get that the maximum phase contribution is at $\omega_{max}=\frac{1}{\sqrt{T}}\frac{1}{\sqrt{T}\alpha}$.

Convert to a $\log \omega$ Bode plot:

$$\log \omega_{max} = \frac{1}{2} \left[\log \frac{1}{T} + \log \frac{1}{\alpha T} \right]$$

The maximum occurs at the average of $\log \frac{1}{T}$ and $\log \frac{1}{\alpha T}$.

Reconsider our example:

$$D(s) = k \frac{s+1}{\frac{s}{10} + 1}$$

- T = 1
- $\alpha = \frac{1}{10}$

Maximum Phase occurs at $\omega = \frac{1}{T\sqrt{\alpha}} = 3.162$

M. Peet

Reconsider our example:

$$D(s) = k \frac{s+1}{\frac{s}{100} + 1}$$

- T = 1• $\alpha = \frac{1}{100}$

Maximum Phase occurs at $\omega = \frac{1}{T\sqrt{\alpha}} = 10$

M. Peet

So if we want to add phase at ω_c , then we need

$$T\sqrt{\alpha} = \frac{1}{\omega_c}$$

This is not definitive

• Depends on how much phase we want to add.

Now consider the case where we want to add 30° of phase margin.

Question: How much phase does a lead compensator add?

- We already know the frequency of peak phase.
- Make this the crossover frequency

$$\Phi_{\text{max}} = \tan^{-1} \frac{1}{\sqrt{\alpha}} - \tan^{-1}(\sqrt{\alpha}\omega)$$
$$= \sin^{-1} \left(\frac{1-\alpha}{1+\alpha}\right)$$

Independent of T!

We can plot Φ_{\max} vs. $\frac{1}{\alpha}$.

For 30° phase, we want $\frac{1}{\alpha} = 3$.

• Lets add 30° of phase at $\omega_c=2.13$

$$T = \frac{1}{\omega_c \sqrt{\alpha}} = \frac{\sqrt{3}}{2.13} = .814$$

This gives us a lead compensator:

$$D(s) = \frac{Ts+1}{\alpha Ts+1} = \frac{.814s+1}{.2709s+1}$$

Add this to the original plot to get

New Phase margin is 38.6° . New $\omega_c = 4.79$, new $\omega_{BW} = 9$.

• Crossover frequency is increased, which reduces the phase margin!

To avoid changing the crossover frequency, we control the gain.

$$D(s) = k \frac{Ts + 1}{\alpha Ts + 1}$$

We want $|D(\omega_c)|=1$. Since we have $T=\frac{1}{\omega_c\sqrt{\alpha}}$, this yields

$$D(i\omega_c) = k \frac{\frac{1}{\sqrt{\alpha}}i + 1}{\sqrt{\alpha}i + 1}$$

Thus to preserve the crossover frequency, we set

$$k = \frac{\sqrt{\alpha + 1}}{\sqrt{\frac{1}{\alpha} + 1}}$$
$$= \frac{\sqrt{\frac{1}{3} + 1}}{\sqrt{3 + 1}} = .577$$

Apply the final controller to get

New Phase margin is 65° . New $\omega_c=2.13$, new $\omega_{BW}=4$.

• New phase margin is on target - bandwidth increased slightly.

What about steady-state error?

- Want to increase |G(0)|
- No effect on Φ_M or ω_{BW}

$$e_{ss} = \frac{1}{1 + |G(0)|}$$

- Ignore the lead compensator.
- Increase |G(0)| by 15dB.
- No change at ω_c or ω_{BW}

M Peet

Question: How do we increase |G(0)| without changing ω_{BW} ?

• We want to reduce gain at $\omega = 0$.

$$20\log|D(0)| \cong 15$$

• Want no effect on Φ_M or |G(0)|

$$20\log|D(\imath\omega_{BW})| \cong 0$$

Look at the Two Lag Compensators:

$$D(s) = \frac{\frac{s}{100} + 1}{10\frac{s}{100} + 1} \qquad \text{and} \qquad D_2(s) = \frac{\frac{s}{1000} + 1}{10\frac{s}{1000} + 1}$$

M. Peet

Lets use the form:

$$D(s) = \frac{Ts+1}{\alpha Ts+1}$$

 α determines how much phase is added

- $\alpha > 1$ for lag compensation
- As before, min phase is given by $\omega = \frac{1}{T\sqrt{\alpha}}$
 - Center this point at low frequency

Change in magnitude at high frequency is

$$20\log\alpha(Ts+1) - 20\log(\alpha Ts + 1)$$

If T is large, this is just 0. At low frequency, gain is

$$20 \log \alpha$$

For our problem, set T=.01 and then we want

$$20\log\alpha = 15$$

so
$$\alpha=10^{.75}=5.62$$

$$D(s) = 5.62 \frac{.01s + 1}{.0562s + 1}$$

The system with lag compensation:

Bandwidth: $\omega_{BW} = 3.7$ Phase Margin: $\Phi_M = 35^{\circ}$

M. Peet Lecture 24: Control Systems 25 / 27

Combine the lead and lag compensators:

- $\Phi_M = 51^{\circ}$
- $\omega_{BW} = 4.78$

Summary

You Have Learned: Classical Control Systems

Exam Material:

Root Locus

- Drawing
 - Asymptotes, Break Points, etc.
- Compensation
 - ► Gain, Lead-Lag, Notch Filters

Bode and Frequency Response

- What is frequency response?
- Drawing Bode Plot
- Closed Loop Dynamics
- Compensation

Nyquist Plot

- Drawing and Concepts
- Stability Margins