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Lecture 2: Physical Invariants



Summary

In this Lecture, you will learn:

N-body Problem

• Introduction

• Invariants
▶ Linear Momentum
▶ Angular Momentum
▶ Energy

Two-Body Problem

• How to calculate velocity given position

• How to calculate escape velocity
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Spacecraft Dynamics

Summary

� This Lecture covers roughly Sections 1.2-1.4 of Prussing/Conway 2nd ed

� In this lecture, we will introduce the physical invariants of an orbit -
Energy and angular momentum (also linear momentum, but this is not
important).

� In the next lecture, we will translate these physical invariants to geometric
invariants which describe the ellipse. These geometric invariants are called
the orbital elements.

� Combined, these two lectures allow us to take a single observation of r⃗
and v⃗ and determine Energy and Angular momentum, which then allows
us to calculate our orbital elements.



Universal Gravitation

F⃗1 = G
m1m2

∥r⃗12∥3
r⃗12
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Relative motion (2-Body Motion)

The force on mass 1 due to mass 2 is

m1
¨⃗
R1 = F⃗1 = G

m1m2

∥r⃗12∥3
r⃗12

where we denote r⃗12 = R⃗2 − R⃗1. Clearly
r⃗12 = −r⃗21. The Force on mass 2 due to mass
1 is

m2
¨⃗
R2 = F⃗2 = G

m2m1

∥r⃗21∥3
r⃗21.

The problem is a nonlinear coupled ODE with 6
degrees of freedom (12 with velocities).

Solution: Consider relative motion (only r⃗12)

¨⃗r12 = −G(m1 +m2)

∥r⃗12∥3
r⃗12

Now only 6DOF.
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Relative motion (2-Body Motion)

� Put in first-order linear ODE form, there are 12 differential equations. The

12 states are R⃗1 (3 states), R⃗2 (3 states),
˙⃗
R1 (3 states), and

˙⃗
R2 (3

states). The nonlinearity comes from the 1/∥R⃗1 − R⃗2∥3 term.

� Simplifying the equations to relative motion (¨⃗r12) reduces the number of
states to 6, but this means knowledge of 6 independent states has been
lost. The lost information is the position (3 states) and velocity (3 states)
of the center of mass.

� G is the gravitational constant of the universe and is approximately

6.674 · 10−11 m3

kg·s2 .

� Source for image is P/C.



The N-body problem

In some situations, there are more than two bodies.

• The solar system

• The Earth-Moon system

In this case, the force on mass i due to all other masses is

mi
¨⃗
Ri = F⃗i = G

N∑
j=1
i ̸=j

mimj

∥r⃗ij∥3
r⃗ij

Definition 1.

The center of mass of a collection of point masses mi is

R⃗CM =
1∑
i mi

N∑
i=1

miR⃗i
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The N-body problem

The key thing to note is that since r⃗ij = −r⃗ji,

¨⃗
RCM =

1∑
i mi

N∑
i=1

mi
¨⃗
Ri

=
G∑
i mi

N∑
i=1

N∑
j=1
i̸=j

mimj

∥r⃗ij∥3
r⃗ij = 0

Therefore, The center of mass is not
accelerating.

R⃗CM =
∑
i

miR⃗i = C⃗1t+ C⃗2

R⃗CM makes an excellent choice for the origin of a coordinate system.

First Invariant Quantity: Linear Momentum

L⃗ =
∑
i

mi
˙⃗
Ri = C⃗1

Thus the motion of the center of mass doesn’t change with time.
• Technically, 3 invariants, since L⃗ is a vector.
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The N-body problem

� The “N-body problem” refers to the differential equations defined by N
planets, all of which exert significant gravitational forces.

� The 3-Body problem as described in P/C, chapter 4 is a special case of the
N-body problem when N = 3. However, we also use the term restricted
3-body problem to refer to the case where 2 bodies exert significant
gravitational forces and one does not. This is the framework where we
study stability of Libration points, as discussed in P/C in Chapter 4.2



Invariants in the N-body problem

We now define the two key invariant quantities which will define the motion.
• Angular Momentum
• Energy

These hold for the 2-, 3- and N- body problems. Begin with the angular
momentum.

Definition 2.

The angular momentum of a collection of particles is

H⃗(t) =

N∑
i=1

miR⃗i(t)×
˙⃗
Ri(t)

We will show next that

d

dt
H⃗(t) =

N∑
i=1

mi

(
˙⃗
Ri(t)×

˙⃗
Ri(t) + R⃗i(t)×

¨⃗
Ri(t)

)
=

N∑
i=1

mi

(
R⃗i(t)×

¨⃗
Ri(t)

)
= 0
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Invariants in the N-body problem

� Recall that for vectors, r⃗ × v⃗ = n⃗∥r⃗∥∥v⃗∥ sin θ, where θ is the angle
between the two vectors and n⃗ is a unit vector in the direction
perpendicular to the plane generated by r⃗ and v⃗ and by the right-hand
rule. Clearly r⃗ × v⃗ = −v⃗ × r⃗.

� First Equation follows because the cross-product obeys the chain rule for
differentiation, so

d

dt
(r × v) = ṙ × v + r × v̇.

� The second equation is because R⃗× R⃗ = 0 for any vector, R⃗, since θ = 0.



Conservation of Angular Momentum under Gravity

Begin with the relation

¨⃗
Ri =

F⃗i

mi
= G

N∑
j=1
i ̸=j

mj

∥r⃗ij∥3
r⃗ij .

Then
N∑
i=1

mi

(
R⃗i ×

¨⃗
Ri

)
= G

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥3
R⃗i × r⃗ij .

However, we can use the identities

R⃗i × r⃗ij = R⃗i ×
(
R⃗j − R⃗i

)
= R⃗i × R⃗j

R⃗j × R⃗i = −R⃗i × R⃗j

Thus
N∑
i=1

mi

(
R⃗i ×

¨⃗
Ri

)
= G

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥3
R⃗i × r⃗ij = G

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥3
R⃗i × R⃗j = 0.
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Conservation of Angular Momentum under Gravity

� First equation comes from law of graviation, dividing by mi .

� Second equation comes from the scalar multiplication and distributive properties of cross-products:

m(r × v) = (mr) × v = r × (mv) and r × (
∑
i

vi) =
∑
i

(r × vi)

� First identity follows because R⃗ × R⃗ = 0.

� In the last line, the first equality follows from the first identity. The second equality follows from the second identity.

∑
i

∑
j=1
j ̸=i

Ri × Rj =
N∑

i=1

i−1∑
j=1

Ri × Rj +
N∑

i=1

N∑
j=i+1

Ri × Rj

but
N∑

i=1

N∑
j=i+1

Ri × Rj =
N∑

j=1

j−1∑
i=1

Ri × Rj =
N∑

i=1

i−1∑
j=1

Rj × Ri =
N∑

i=1

i−1∑
j=1

−Ri × Rj

More generally, this is a special case of the summation identity over the set X where X has the property that (i, j) ∈ X
implies (j, i) ∈ X: ∑

(i,j)∈X

uij =
∑

(j,i)∈X

uji =
∑

(i,j)∈X

uji

Then X := {(i, j) : i ̸= j} and hence

∑
(i,j)∈X

Ri × Rj = −

 ∑
(i,j)∈X

Ri × Rj


which implies

∑
(i,j)∈X Ri × Rj = 0



Conservation of Angular Momentum

Figure: The Ecliptic Plane

Figure: Galactic Plane
Thus we conclude that

˙⃗
H = 0

from whence we have that

H⃗ =

N∑
i=1

miR⃗i ×
˙⃗
Ri = C3

The angular momentum defines a plane perpendicular to H⃗.
• For 2-bodies, this is the orbital plane
• For N-bodies, the ecliptic or galactic plane
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Conservation of Angular Momentum

� Galactic Plane is galaxy NGC 4452. Source: ESA/Hubble

� Ecliptic plane is from https://otherletter.com/another-science.html

http://www.spacetelescope.org/images/potw1029a/
https://otherletter.com/another-science.html


Conservation of Angular Momentum when N is very large.
Milky Way + Andromeda
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Conservation of Angular Momentum when N is very
large.

� Video is from Universe Sandbox and is a standard demo from that software

� In the video, each galaxy has a well-defined H⃗a and H⃗m. After the
collision, the new angular momentum of the combined galaxy is
H⃗ = H⃗a + H⃗m.

� Note that the combined galaxy for this purpose includes star systems
which have escaped. Generally speaking, N -body systems are unstable in
that planets or stars or systems may escape (limt→∞ r⃗Nj(t) = ∞). If one
does not account for the escaping mass, then conservation of both
momentum and energy may be violated in this restricted sense.



Conservation of Energy

Definition 3.

The Kinetic Energy of a particle is

Ti =
1

2
mi

˙⃗
RT

i
˙⃗
Ri

Thus the total kinetic energy for a system of particles is

T =

N∑
i=1

1

2
mi

˙⃗
RT

i
˙⃗
Ri

Definition 4.

The Gravitational Potential Energy of a collection of particles is defined to be

V = −G

2

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥
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Conservation of Energy

� Unlike momentum, the Kinetic Energy of the N-body system is NOT
conserved, even though there is no external force. This is because some
kinetic energy has been converted to potential energy.

� I emphasize the defined (for gravitational potential energy) since I propose
and then prove that it is conserved. However, one could derive this
quantity by starting with conservation of energy and working backward. In
a sense, this is the approach taken by P/C in Section 1.2.

� GPE is negative because if it were positive, there would be no way to
define a point of zero gravitational potential energy.



Conservation of Energy

We show that the fourth invariant is

E = T + V = C4

by showing Ṫ + V̇ = 0.

Ṫ =

N∑
i=1

mi
˙⃗
RT

i
¨⃗
Ri

= G

N∑
i=1

N∑
j=1
i ̸=j

mimj

∥r⃗ij∥3
˙⃗
RT

i r⃗ij

Which is complicated.

However, now look at V̇
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Conservation of Energy

� The Illustration is of the potential energy of a third mass in the restricted
earth-moon 3-body problem. It illustrates the libration point, which we
will not discuss in depth in this class.

� Note that potential energy becomes infinitely negative near to the center
of a point mass. This does imply that the kinetic energy would become
infinitely large. However, we are saved from this non-physical
mathematical inconvenience because the point-mass approximation of a
planet fails once one crosses the mean surface of the planet. Moreover,
for black holes, Newtonian physics break down at some point and so we
would need to more rigorously examine the premise of conservation of
energy here.



Conservation of Energy

Recall Ṫ = G

N∑
i=1

N∑
j=1
i ̸=j

mimj

∥r⃗ij∥3
˙⃗
RT

i r⃗ij Now,

V̇ = − d

dt

G

2

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥
= −G

2

N∑
i=1

N∑
j=1
j ̸=i

mimj
d

dt
(r⃗Tij r⃗ij)

− 1
2

=
G

2

N∑
i=1

N∑
j=1
j ̸=i

mimj(r⃗
T
ij r⃗ij)

− 3
2 ˙⃗rTij r⃗ij

=
G

2

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥3
(
˙⃗
Rj −

˙⃗
Ri)

T r⃗ij = −G

N∑
i=1

N∑
j=1
j ̸=i

mimj

∥r⃗ij∥3
˙⃗
RT

i r⃗ij

Which cancels Ṫ . Therefore

Ė = Ṫ + V̇ = 0

and hence gravity is a conservative field with T (t) + V (t) = C4.
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Conservation of Energy

� Recall ∥v∥ = (vT v)
1
2

� In the second equality, d/dt(rT r) = 2(ṙT r)

� Recall R⃗ij = R⃗j − R⃗i (And not the other way around!).

� The last equality follows from∑
(i,j)∈X

˙⃗
Rj · r⃗ij = −

∑
(i,j)∈X

˙⃗
Rj · r⃗ji = −

∑
(j,i)∈X

˙⃗
Ri · r⃗ij = −

∑
(i,j)∈X

˙⃗
Ri · r⃗ij



Potential Energy

Illustration of Potential Wells in the solar system.

Each plane of the horizon corresponds to a velocity (Magnitude of kinetic
energy).
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Back to the Two-Body problem

Going back to the two-body problem.... Recall our equation of motion

¨⃗r12 = −G(m1 +m2)

∥r⃗12∥3
r⃗12

but this considers only relative motion. How to recover absolute position? Use a

coordinate system centered at the center of mass (barycenter) so that

R⃗CM =
R⃗1m1 + R⃗2m2

m1 +m2
= 0

Then we can recover from r⃗12

R⃗1 = − m2

m1 +m2
r⃗12

and
R⃗2 =

m1

m1 +m2
r⃗12

If m1 is a planet and m2 is a satellite, then m2

m1+m2

∼= 0 and m1

m1+m2

∼= 1 and so

R⃗1
∼= 0 and R⃗2

∼= r⃗12.

M. Peet Lecture 2: Spacecraft Dynamics 15 / 24



Back to the Two-Body problem

Going back to the two-body problem.... Recall our equation of motion

¨⃗r12 = −G(m1 +m2)

∥r⃗12∥3
r⃗12

but this considers only relative motion. How to recover absolute position? Use a

coordinate system centered at the center of mass (barycenter) so that

R⃗CM =
R⃗1m1 + R⃗2m2

m1 +m2
= 0

Then we can recover from r⃗12

R⃗1 = − m2

m1 +m2
r⃗12

and
R⃗2 =

m1

m1 +m2
r⃗12

If m1 is a planet and m2 is a satellite, then m2

m1+m2

∼= 0 and m1

m1+m2

∼= 1 and so

R⃗1
∼= 0 and R⃗2

∼= r⃗12.

2
0
2
5
-0
1
-2
8

Lecture 2
Spacecraft Dynamics

Back to the Two-Body problem

The equation of motion of mass 1 w/r to the center of mass is given by

¨⃗
R2 =

m1

m1 + m2

¨⃗r12

= −
m1

m1 + m2

G(m1 + m2)

∥r⃗12∥3
r⃗12 = −

Gm1

∥r⃗12∥3
r⃗12

= −
Gm1

∥r⃗12∥3

m1 + m2

m1

R⃗2 = −
G(m1 + m2)

∥r⃗12∥3
R⃗2

= −
G(m1 + m2)

∥R⃗2∥3

m3
1

(m1 + m2)3
R⃗2

= −
Gm3

1

(m1 + m2)2
R⃗2

∥R⃗2∥3
= −µ

m2
1

(m1 + m2)2
R⃗2

∥R⃗2∥3

If the mass of m1 >> m2, we make the approximation

Gm3
1

(m1 + m2)2
∼= Gm1 = µ

In all future calculations, we can obtains absolute orbits about the CM by using this more accurate

value of ”µ”.



The Orbital Parameter, µ

While we are considering orbits, we can make
some simplifications. Our first simplification is
to write

µ = G(m1 +m2).

If m2 >> m1, then

µ ∼= Gm2

• Each central body has its own µ

• The size of the orbit varies with µ

• Needed to convert orbital elements to r⃗
and v⃗.

• These values are tabulated in P/C,
Appendix 1
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The Orbital Parameter, µ

Note that using the calculations on the previous slide, the magnitude of the
motion of the earth due to the moon is

mm

mm +me
rem = 4652km

The radius of the earth is 6378km, so the earth-moon center of mass lies under
the surface of the earth.





Orbit3.gif
Media File (image/gif)



A note on the Gravitational Constant, G

The calculation of G is non-trivial

• Given G, it is easy to calculate the mass of any planet.

• The search for G was another major scientific quest.

In principle, it is easy to calculate:

• take two objects of known mass (m1, m2) and measure the attraction, F .
Then

G =
Fr2

m1m2

Unfortunately, the force is infinitesimal for all but planet-size objects. So how to
calculate G?
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The Cavendish Balance
The first accurate measurement of G was made by Cavendish in 1798.
1. Suspend two small spheres,

separated by length, l, by a quartz
filament.

2. Move two large spherical masses
within known (small) distance of
test masses.

3. Gravity will produce a moment on
the quartz fiber, causing a
deflection.

4. Deflection is measured by
movement of a mirror on glass
filament.

5. Rotation of mirror causes
movement of reflected light.

The Cavendish Measurement revealed

G = 6.754 ∗ 10−11m3kg−1s−2(6.74(4))

A bit high, but OK for the time. (6.67408± .00031 from CODATA)
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The Cavendish Balance

� Newton guessed the graviational constant as 7 ∗ 10−11m3kg−1s−2 which
assumes the mean density of earth is 4 times as dense as water.

� Cavendish actually deduced density of the earth and not G, as use of the
universal gravitational constant is a relatively modern notational
convenience. There was a miscalculation in the published value, however,

� The force is strongest when r is small, so why use spheres, which are
well-known to maximize distance?

� There is some disagreement over whether the gravitational constant varies
with time. Modern measurements seem to return values which are
inconsistent beyond expected deviation.

� One recent study (2014) measured 6.67191(99)10−11, another (2007)
6.693(34)10−11 (Fixler - unresolved as of 2018)

� Committee on Data for Science and Technology lists the official value at
6.67408± .00031 as of 2014. This is a reduction in uncertainty from 2010.

� illustration is not actually of the Cavendish experiment.
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The Cavendish Balance

From Wikipedia: (torsion-balance measurements in blue; lit survey results in red;
other experiments in green )



A Problem with the Point-Mass Model?
Non-Point Masses

• Our equation of motion assumes that the masses are concentrated at a
point.

• Most masses are actually quite large (planet-sized)

Question: Is this a problem?
Answer: Not if there is symmetry about
the line r⃗12.

The sphere is symmetric about any line passing through the center.

• Most planets are spheres.

• Exception is the orbit perturbation effect due earth oblateness.

• See book for proof that the effect reduces to a point mass.
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Reduction to the Restricted 2-Body Problem
Non-Dimensional Kinetic and Potential Energy Expressions

Now lets return to the question of potential fields and energy

For an orbit, we will now only consider motion of the satellite relative to the
center of mass, which we denote

r⃗(t) ∼= r⃗12(t).

We will ignore motion of the larger body.

To begin, we introduce the non-dimensional versions of energy. This is energy
per unit mass for the satellite.
Kinetic Energy:

T =
1

2
∥v⃗∥2

Gravitational Potential Energy:

V = − µ

∥r⃗∥

Conservation says that T+V is conserved. This can already be used to solve
problems
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Example: Velocity

Question: Suppose a satellite of earth is initially tracked at radius of
r1 = 20, 000km at a velocity of 1000m/s. The satellite is later spotted at a
radius of 10, 000km. Determine the velocity of the satellite.

Solution: Find the Energy at the initial time and use it to find the kinetic energy
at the final time.

E = T1 + V1 =
1

2
∥v⃗1∥2 −

µ

∥r⃗1∥

= .5− 398601

20, 000
= −19.43

V2 = − µ

∥r⃗2∥
= −398601

10, 000
= −39.86.

So T1 + V1 = T2 + V2 implies

T2 = E − V2 = −19.43 + 39.86 = 20.43

∥v2∥ =
√
2T2 =

√
40.86 = 6.392km/s
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Example: Velocity

� Don’t forget the occasional conversion between altitude and radius. The
radius of the earth is 6378 km, so any spacecraft launched on the surface
of the earth begins with the corresponding amount of potential energy.

� Note that this use of the energy equation does not assume the object is in
circular orbit. There is another equation which relates radius to velocity
for objects in circular orbit, but we have not yet introduced it.

� This equation is typically used when we have two observations, but not
enough information to determine all the orbital elements.



Example: Escape Velocity

Escape velocity is the kinetic energy needed to leave the sphere of influence of a
planet. To achieve escape, net energy, E must be positive, so that as r → ∞,

we still have forward motion.

At r → ∞, V∞ = limr→∞
µ

∥r⃗∥ = 0, so

E∞ = T∞ + V∞ = T∞

Question: Find the escape velocity at
r = 20, 000km.

Solution: As we know from the previous
example, at r = 20, 000, V = −µ

r = −19.93.
So in order for E1 = E∞ > 0, we need

E1 = T1 + V1 = T1 − 19.93 > 0

So we need T > 19.93. This yields a velocity of

∥v∥ =
√

2T1 > 6.313
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Example: Escape Velocity

� Don’t forget if calculating the escape velocity at launch, to factor in a
radius of 6378km.

� In contrast to the first example, we are using information on a second,
desired observation to deduce information on a first, required radius and
velocity.

� In this case, we never actually get to the second point, as it occurs at
t = ∞. However, we assume its speed at this fictitious time is zero and its
radius is r = ∞, so we can still use it as a valid observation.

� If E > 0, then we have reached escape velocity and are no longer in orbit.
In this case, motion is hyperbolic, not elliptic. In this case, Kepler’s laws
don’t apply.

� If E < 0, then we are still in elliptic orbit and Kepler’s laws DO apply.



Conclusion

In this Lecture, you learned:

N-body Problem

• Introduction

• Invariants
▶ Linear Momentum
▶ Angular Momentum
▶ Energy

Two-Body Problem

• How to calculate velocity given position

• How to calculate escape velocity
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Next Lecture: The two-body problem continued

Derivation of Kepler’s First Law

• eccentricity vector
▶ How to calculate
▶ circular orbits
▶ elliptic orbits
▶ parabolic orbits
▶ hyperbolic orbits

• Solution to the two-body problem
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