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Lecture 6: Orientation in Space and The Orbital Plane



Introduction

In this Lecture, you will learn:

The Orbital Plane

• Inclination

• Right Ascension

• Argument of Periapse

New Concept: Celestial Coordinate Systems

• The Earth-Centered Inertial reference frame

• The line of nodes

Orientation of the 2D Orbit in 3D space

• How to construct all orbital elements from r⃗ and v⃗

• A Numerical Illustration
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The Orbital Elements
2D orbits

So far, all orbits are parameterized by 3 parameters

• semimajor axis, a

• eccentricity, e

• true anomaly, f

• a and e define the geometry of the orbit.

• f describes the position within the orbit (a proxy for time).
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The Orbital Elements

But orbits are not 2-dimensional!
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The Orbital Elements

Note: We have shown how to use a, e and f to find the scalars r and v.

Question: How do we find the vectors r⃗ and v⃗?

Answer: We have to determine how the orbit is oriented in space.

• Orientation is determined by vectors e⃗ and h⃗.

• We need 3 new orbital elements
▶ Orientation can be determined by 3 rotations.
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The Orbital Elements

� Although e⃗ and h⃗ represent 6 components, we only actually need three.
The h⃗ represents orientation of the orbital plane, and so we don’t care
about the roll axis in the classic 1-2-3 rotation matrices. That is, this
orientation has symmetry about the angular momentum vector. The
eccentricity vector is always perpendicular to the angular momentum
vector, which gives one constraint. The second is that its length equals
the eccentricity of the orbit. This leaves a single degree of freedom.



The Coordinate System
Earth-Centered Inertial (ECI)

Question: How do we find the vectors r⃗ and v⃗?
Response: In which coordinate system??

• The origin is the center of the earth

• We need to define the x̂, ŷ, and ẑ vectors.
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ECI: The Equatorial Plane
Defining the ẑ vector

• The ẑ vector is defined to be the vector parallel to the axis of rotation of
the earth.

• Can apply to other planets

• Does not apply to Heliocentric Coordinates (axis hard to measure)

Definition 1.

The Equatorial Plane is the set of vectors normal to the axis of rotation.
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ECI: The Equatorial Plane

� In fact, the Heliocentric Earth Equatorial (HEEQ/HS) coordinate system
uses the mean rotation vector of the sun as the ẑ vector and the plane
perpendicular as the equatorial plane. The solar central meridian
(Sun-Earth line) is the x̂ direction. Note that different solar latitudes
rotate at different speeds.



The Ecliptic Plane
Heliocentric Coordinates

The rotation vector of the sun is unreliable.

• In heliocentric coordinates, the ẑ vector is normal to the ecliptic plane.

Definition 2.

The Ecliptic Plane is the orbital plane of the earth in motion about the sun.

• From the earth, the ecliptic plane
is defined by the apparent motion
of the sun about the earth.
▶ Determined by the location of

eclipses (hence the name).

• In heliocentric coordinates, x̂ is
either FPOA or the sun-earth
vector.
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The Ecliptic Plane

� All planets move approximately in the ecliptic plane. If you locate the
planets in the night sky, they all form a line (±6◦) - the zodiac.

� However, an alternative fundamental plane is ”Laplace’s invariable plane”,
which is defined by the angular momentum vector of the 9-body solar
system. The difference between the invariable plane and ecliptic plane is
around 5◦

� All transits and eclipses occur in the ecliptic plane.



The Ecliptic Plane

Definition 3.

The Inclination to the Ecliptic is the angle between the equatorial and ecliptic
planes.

Currently, the inclination to the ecliptic is 23.5 deg.
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ECI: The First Point of Aries

• To complete the ECI coordinate system, we will define an x̂ axis in the
equatorial plane.

• The ŷ axis is then given by the right-hand rule.

A fixed location for x̂ is the intersection of the equatorial and ecliptic planes.
But there are two such points, at the two equinoxes (vernal and autumnal)

The First Point of Aries is the earth-sun vector at the vernal equinox.

Question Does the FPOA lie at the ascending or descending node?
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Celestial Sphere
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Celestial Sphere
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Celestial Sphere

Notice the tilt of the earth is perpendicular to the earth-sun vector at equinox.



ECI: The First Point in Aries

• The First Point of Aries is so named because this direction used to point
towards the Constellation Aries.

• Precession of the earth’s rotation vector means the FPOA now actually
points toward Pisces.

• Since Motion of the FPOA is caused by precession, its motion is Periodic,
not Secular.
▶ The Period is about 26,000 years.

• The Coordinate System is not truly inertial.
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ECI: The First Point in Aries

� 1 degree every 72 years



Summary: The ECI frame

• ẑ - North Pole

• x̂ - FPOA

• ŷ - Right Hand Rule

Because the FPOA migrates with time, positions given in ECI must be
referenced to a year

• J2000 - frame as defined at 12:00 TT on Jan 1, 2000.

• TOD - True of Date: date is listed explicitly.
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• ẑ - North Pole

• x̂ - FPOA
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Summary: The ECI frame

The motion of the FPOA is due to both movement of the ecliptic plane and the
celestial equator.

� The celestial equator moves much more because it is directly defined by
the rotation of the Earth, which precesses.

� The motion of the ecliptic

Variations on ECI:

� TOD: ECI Coordinate system as defined by FPOA on given date

� J2000: ECI Coordinate system as defined by FPOA at 12:00 Terrestrial
time (similar to GMT or UTC) on Jan 1, 2000

� MOD: (Mean of Date) Same as TOD, but averages out the nutation (not
precession) as computed on a specific date.

� M50: (Mean of Date) Same as J2000, but uses 1950 and averages out
the nutation (not precession).

� GCRF: (Geocentric Celestial) Similar to ECI, but ẑ is the north ecliptic
pole.



Other Reference Frames

Note there are many other reference frames of interest

• Earth Centered Earth Fixed (ECEF)
• Perifocal
• Frenet System (Satellite Normal, Drag)
• Gaussian (Satellite Radial)
• Topocentric Horizon
• Topocentric Equatorial

We will return to some of these frames when necessary.
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Other Reference Frames

� ECEF - Fundamental plane is equatorial. Reference direction is Prime meridian.

� Perifocal - fundamental plane is orbital plane. reference direction is eccentricity
vector.

� Frenet - fundamental plane is orbital plane. Reference direction is velocity vector.

� Satellite radial - fundamental plane is orbital plane. Reference direction is
earth-satellite vector.

� The Horizontal coordinate system is similar to the topocentric horizon. It uses
altitude and azimuth (usually measured from north to east).

� Heliocentric Earth Ecliptic (HEE) - Earth orbital plane and Sun-earth Vector

� Heliocentric Ares Ecliptic (HAE) - Earth orbital plane and vernal equinox
(Equatorial/Ecliptic intersection)

� Heliocentric Earth Equatorial (HEEQ/HS) - Solar Equator and solar central
meridian.

� Barycentric Celestial Reference Frame (or now ICRS) - Origin is Barycenter of
solar system. ẑ is the celestial north pole. x̂ is approximately FPOA in J2000,
but fixed relative to quasars.

� Galactic - Galactic Plane and Sun-Galactic center vector (sun-centered)



Orbital Elements

Now that we have our coordinate system,

Question:, Suppose we are given r⃗ and v⃗ in the ECI frame. How to describe
the orientation of the orbit?

Answer: 3 new orbital elements.
• Inclination
• Right Ascension
• Argument of Periapse
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Inclination, i

Angle the orbital plane makes with the reference plane.
• As measured at the Ascending Node
• Note the orbit is counterclockwise about the angular momentum vector.
• Obeys the RHR.
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Inclination, i

� Think of the 2D orbit in space. Z-axis is out of the ecliptic plane. X-axis
is line of nodes.

� first rotation is about the line of nodes.



The Orbital Plane
Inclination, i

Angle the orbital plane makes with the reference plane at ascending node.
The orbit is

• Prograde if 0◦ < i < 90◦.

• Retrograde if 90◦ < i < 180◦.
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The Orbital Plane

Retrograde orbits move counter to earth’s rotation, so seem faster when viewed
from the earth.

� Its a polar orbit if i = 90◦

� Its a equatorial orbit if i = 0◦



The Orbital Plane
Inclination, i

Inclination can be found from h⃗ as

h⃗ · ẑ = h cos i.

• If h⃗ is defined in ECI, then i = cos−1 h3

h .
• No quadrant ambiguity because by definition, i ≤ 180◦

▶ If i > 180◦, the ascending node becomes the descending node.
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The Line Of Nodes

An important vector in defining the orbit is the line of nodes.

Definition 4.

The Line of Nodes is the vector pointing to where the satellite crosses the
equatorial plane from the southern to northern hemisphere.

n⃗ = ẑ × h⃗

• Lies at the intersection of the equatorial and orbital planes.
• Points toward the Ascending Node.
• Undefined for equatorial orbits (i = 0◦).

M. Peet Lecture 6: Spacecraft Dynamics 19 / 32



The Line Of Nodes

An important vector in defining the orbit is the line of nodes.

Definition 4.

The Line of Nodes is the vector pointing to where the satellite crosses the
equatorial plane from the southern to northern hemisphere.

n⃗ = ẑ × h⃗
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The Line Of Nodes

n⃗ = ẑ × h⃗ forces n⃗ to lie in both the orbital plane and equatorial plane.

Question: What would be the formula if we wanted n⃗ to point to the Descending
Node
Answer: Either h⃗× ẑ or −ẑ × h⃗



The Orbital Plane
Right Ascension of Ascending Node, Ω

The Angle measured from reference direction, x̂ in the reference plane to
ascending node.

• Defined to be 0◦ ≤ Ω ≤ 360◦

• Undefined for equatorial orbits (i = 0◦).
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The Orbital Plane

Angle measured from reference direction in the reference plane to intersection
with orbital plane.

� Second rotation is about the Z-axis.



The Orbital Plane
Right Ascension of Ascending Node, Ω

RAAN can be found from the
line of nodes as

cos(Ω) =
x̂ · n⃗
∥n⃗∥

Must resolve quadrant
ambiguity.

Quadrant Ambiguity: Calculators assume Ω is in quadrant 1 or 2. Correct as

Ω =

{
Ω ŷ · n⃗ ≥ 0

360◦ − Ω ŷ · n⃗ < 0
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Argument of Periapse, ω

• Undefined for Circular Orbits (e = 0).

• define so 0◦ ≤ ω < 360◦

Definition 5.

The Argument of Periapse is the angle from line of nodes (n⃗) to the point of
periapse (e⃗).
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Argument of Periapse, ω
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Argument of Periapse, ω

Angle measured from reference plane to point of periapse (e⃗).

� Third rotation is about angular momentum vector.



Argument of Periapse, ω

Can be calculated from

cos(ω) =
n⃗ · e⃗
∥n⃗∥e

Must resolve quadrant
ambiguity

Quadrant Ambiguity: Calculators assume ω is in quadrant 1 or 2. Correct as

ω =

{
ω ẑ · e⃗ ≥ 0

360◦ − ω ẑ · e⃗ < 0
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Argument of Periapse, ω

Quadrant check determines if e⃗ is in southern or northern hemisphere.



True Anomaly, f (sometimes ν)

Can be calculated directly from
the polar equation

r =
p

1 + e cos f

f = cos−1

(
p− r

re

)
Or can be calculated from

cos(f) =
r⃗ · e⃗
∥r⃗∥e

In BOTH CASES, we have
quadrant ambiguity

Quadrant Ambiguity: Is ∥r⃗∥ getting longer or shorter?

f =

{
f r⃗ · v⃗ ≥ 0

360◦ − f r⃗ · v⃗ < 0
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True Anomaly, f (sometimes ν)

ṙ < 0 when f > 180◦



Summary: Visualization

M. Peet Lecture 6: Spacecraft Dynamics 25 / 32


orbitalelements.mp4
Media File (video/mp4)



Summary: Visualization
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Summary: Visualization

� Equinoctial elements avoid singularities caused by circular and equitorial
orbits and are also valid for hyperbolic orbits. In this system, i and ω are
replaced by new elements. Useful in perturbation analysis.

Modified Equinoctial elements:

� p = a(1− e2)

� d = e sin(ω +Ω)

� g = e cos(ω +Ω)

� h = tan(i/2) cosΩ

� k = tan(i/2) sinΩ

� L = Ω+ ω + f

For circular orbits, d = g = 0

For equatorial orbits, h = k = 0



Example: Finding Orbital Elements

Problem: Suppose we observe an object in the ECI frame at position

r⃗ =

6524.86862.8
6448.3

 km moving with velocity v⃗ =

 4.901
5.534
−1.976

 km/s

Determine the orbital elements.

Solution: Although not necessary, as per your homework, lets first convert to
canonical units (1ER = 6378.14km, 1TU = 806.3s).

r⃗′ =
r⃗

6378.14km
=

1.0231.076
1.011


v⃗′ = v⃗

806.8s

6378.14km
=

 .62
.7

−.25


First, lets construct angular momentum, h⃗, the line of nodes, n⃗ and the
eccentricity vector, e⃗.
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Example: Finding Orbital Elements

Question: What if you were given r⃗ and v⃗ in the ECEF coordinate system?



Example: Finding Orbital Elements
Continued

We construct h⃗, n⃗ and e⃗.

h⃗ = r⃗ × v⃗ =

−.9767
.882
.049

 ER2

TU

Since r⃗ and v⃗ are in ECI coordinates,

n⃗ =

00
1

× h⃗ =

 −.882
−.9767

0

 ER2

TU
.

e⃗ =
1

µ
v⃗ × h⃗− r⃗

r
=

−.315
−.385
.668


where recall µ = 1 in canonical units.
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Example: Finding Orbital Elements
Continued

Now we begin solving for orbital elements.

e = ∥e⃗∥ = .8328

Use energy to calculate a.

E =
v2

2
− µ

r
= −.088

a = − µ

2E
= 5.664ER

p =
h2

µ
= 1.735ER

We can now calculate our three new orbital elements as indicated. Start with
inclination

i = cos−1

 h⃗

h
·

00
1

 = 87.9◦

No quadrant ambiguity by definition.
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Example: Finding Orbital Elements
Continued

Continue with RAAN, we want the angle between x̂ and n⃗.

Ω = cos−1

10
0

 · n⃗

∥n⃗∥

 = ±132.10◦

Because cos has quadrant ambiguity, we must check the quadrant. Specifically,
we need the sign of 01

0

 · n⃗ = −.9767 < 0

Therefore, n⃗ is in the third quadrant, and we need to correct

Ω = 360◦ − 132.10◦ = 227.9◦
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Example: Finding Orbital Elements
Continued

Next, the argument of perigee is the angle between e⃗ and n⃗.

ω = cos−1

(
n⃗ · e⃗
∥n⃗∥e

)
= ±53.4◦

We resolve the quadrant ambiguity be checking00
1

 · e⃗ = .668 > 0

so we are in the right quadrant

ω = 53.4◦
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Example: Finding Orbital Elements
Continued

Finally, we solve for true anomaly. But this is simply the angle between r⃗ and e⃗,
so we can use

f = cos−1

(
r⃗ · e⃗
re

)
= ±92.3◦

We resolve the quadrant ambiguity by checking

r⃗ · v⃗ > 0

So we are in the right quadrant

f = 92.3◦
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Example: Finding Orbital Elements

� The quadrant ambiguity here is a bit tricky to visualize.

� From perigee to apogee, the spacecraft is getting farther from the planet,
meaning the velocity vector has a positive outward component. From
apogee to perigee, the spacecraft is getting uniformly closer to the planet,
meaning that velocity vector is pointing slightly inwards.



Summary

This Lecture you have learned:

The Orbital Plane

• Inclination

• Right Ascension

• Argument of Periapse

New Concepts

• The Earth-Centered Inertial reference frame

• The line of nodes

Practice

• How to construct all orbital elements from r⃗ and v⃗

• A Numerical Illustration
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