
Spacecraft Dynamics and Control

Matthew M. Peet

Lecture 7: Converting to/from r⃗ and v⃗



Introduction

In this Lecture, you will learn:

How to convert between

• a, e, i, Ω, ω, f

• r⃗ and v⃗

How to translate r⃗ and v⃗ into pointing data for telescope/radio

• Right Ascension

• Declination

• Tracking
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Moving the Orbit Forward in Time (Propagation)

Question: If I observe a satellite at 12:00 at position r⃗ with velocity v⃗, where
will it be at time 15:00?

3 Steps

1. Calculate the orbital elements at 12:00

2. Determine f at 15:00.

3. Convert orbital elements to r⃗ and v⃗ at 15:00.
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Moving the Orbit Forward in Time (Propagation)

� We already know how to do steps 1 and 2.

� Step 3 is more challenging, although the answer is actually simpler.



Finding the Orbital Elements

In the previous lecture, we introduced three new orbital elements.

• Inclination, i

• RAAN, Ω

• Argument of Periapse, ω

We gave a numerical example to illustrate how to find these new elements
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Finding the Orbital Elements
Summary

Step 1: Construct h⃗, n⃗ and e⃗.

h⃗ = r⃗ × v⃗

Assume r⃗ and v⃗ are in ECI coordinates,

n⃗ =

00
1

× h⃗

e⃗ =
1

µ
v⃗ × h⃗− r⃗

r

Alternatively

e⃗ =
1

µ

[(
v2 − µ

r

)
r⃗ − (r⃗ · v⃗) v⃗

]
Calculate the scalars r = ∥r⃗∥, v = ∥v⃗∥, e = ∥e⃗∥, h = ∥h⃗∥.
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Finding the Orbital Elements

Step 2: Calculate the 2D elements.

E =
v2

2
− µ

r
and a = − µ

2E

Step 3: Calculate the 3D elements. We can now calculate our three new orbital
elements as indicated. Start with inclination

i = cos−1

 h⃗
h
·

00
1


No quadrant ambiguity.

Ω = cos−1

10
0

 · n⃗

∥n⃗∥


Correct for quadrant.

Ω =

{
Ω ŷ · n⃗ ≥ 0

360− Ω ŷ · n⃗ < 0
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Finding the Orbital Elements

Argument of perigee is the angle between e⃗ and n⃗.

ω = cos−1

(
n⃗ · e⃗
∥n⃗∥e

)
We resolve the quadrant ambiguity be checking

ω =

{
ω ẑ · e⃗ ≥ 0

360− ω ẑ · e⃗ < 0

True anomaly is the angle between r⃗ and e⃗.

f = cos−1

(
r⃗ · e⃗
re

)
We resolve the quadrant ambiguity by checking

f =

{
f r⃗ · v⃗ ≥ 0

360− f r⃗ · v⃗ < 0
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Finding the Orbital Elements

� We now have finished with step 1



Propagation in Time

All orbital elements can be determined from a single observation at t0.

• Orbital motion is periodic
▶ Orbital elements allow us to predict the

motion for all time.

Given a future time, tf , we can use Kepler’s equation to predict f(tf )
Step 1: Use true anomaly, f(t0) to find mean anomaly, M(t0).

E = 2 tan−1

(√
1− e

1 + e
tan

f

2

)
M = E − e sinE
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Propagation in Time

� Don’t forget the step where you find the initial time. This is not the time
you observed the satellite, but rather the time elapsed from periapse.

� Your final time is the change in time added to the initial time.



Propagation in Time

Step 2: Determine mean anomaly at tf

M(tf ) =M(t0) + n(tf − t0)

Step 3: Use mean anomaly, M(tf ) to find true anomaly, f(tf ) using Kepler’s
equation.

M = E − e sinE

f = 2 tan−1

(√
1 + e

1− e
tan

E

2

)

• The true anomaly, f(tf ), tells us where the satellite is at time tf .

• But how to translate that into r⃗ and v⃗?
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Propagation in Time

� We assume here M is less that 2π. If not, subtract integer multiples of 2π
until it is.



Coordinate Systems

A coordinate system

• defines position variables

• defines positivity

A coordinate system may be

• inertial
▶ F = ma

• translating

• rotating

A cartesian coordinate system has right angles and is right-handed.
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Rotating r⃗ and v⃗
Rotation Matrices

Example: Given a vector v⃗ =

xy
z

 and a rotation θ, about the y-axis,

v⃗′ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

xy
z

 =

 x cos θ + z sin θ
y

−x sin θ + z cos θ


The matrix is called a rotation matrix.
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There is also a right-hand rule for Rotation.

Figure: Positive Rotations

Rotation is counterclockwise when axis is pointing toward your eye.
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Review: Rotating Vectors
Rotation Matrices

Rotation matrices can be used to calculate the effect of ANY rotation.

X-Axis, ϕ :

v⃗′ = R1(ϕ)v⃗

Y-Axis θ :

v⃗′ = R2(θ)v⃗

Z-Axis ψ :

v⃗′ = R3(ψ)v⃗
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Review: Rotating Vectors
Rotation Matrices

Rotation matrices can be used to calculate the effect of ANY rotation.

X-Axis, ϕ :
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Review: Rotating Vectors

� Technically, any unitary matrix is a rotation matrix. That is, given a
unitary matrix, we can identify an axis of rotation and a rotation angle.

� The rotation matrices we list on the next slide correspond to rotations
about the principle axes.



Review: Rotating Vectors
Rotation Matrices

The rotation matrices are (for reference):

Roll (X-Axis) (ϕ) :

R1(ϕ)

=

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



Pitch (Y-Axis) (θ):

R2(θ)

=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Yaw (Z-Axis) (ψ):

R3(ψ)

=

cosψ − sinψ 0
sinψ cosψ 0
0 0 1


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Review: Rotating Vectors
Rotation Matrices

The rotation matrices are (for reference):

Roll (X-Axis) (ϕ) :
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0 cosϕ − sinϕ
0 sinϕ cosϕ
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Review: Rotating Vectors

� Note that these rotation matrices are also used for converting between
reference frames. However, conversion is a bit trickier as conversion to a
positively rotated reference frame actually involves a negative rotation of
the vector.

� In this lecture, we are actually primarily interested in converting between
coordinate systems (ECI→perifocal→satellite normal), so our angles will
tend to be negative.

� That is, we will express r⃗ and v⃗ in the satellite normal (SN) coordinates
and then convert to ECI.

� Our approach is a bit backward, however, because it is easier to visualize
the rotations from ECI→SN than the rotations from SN→ECI.



Rotating Vectors
Rotation Matrices: Multiple Rotations

Rotation matrices, can be used to calculate a sequence of rotations:

Roll-Pitch-Yaw:
v⃗RPY = R3(ψ)R2(θ)R1(ϕ)v⃗

Note the order of multiplication is critical.

v⃗RPY =

(
R3(ψ)

(
R2(θ)

(
R1(ϕ)v⃗

)
1

)
2

)
3
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Review: Coordinate Rotations
Coordinate rotations are different than vector rotations

Case 1: Rotation of a vector in a fixed coordinate
system.

Consider rotation of r⃗ around the x̂ axis by θ and
around the ẑ axis by ω

r⃗′ = R3(ω)R1(θ)r⃗

Case 2: Expression of a fixed vector in a new
coordinate system.

Consider what happens if we rotate the coordinates
(F1) about the x̂ axis by θ (F2) and then rotate the
coordinates about the ẑ axis by ω (F3)

r⃗F3 = R3(−ω)r⃗F2 = R3(−ω)R1(−θ)r⃗F1
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Review: Coordinate Rotations

� To be absolutely clear: If we obtain the principle axes of F2 by rotating
the principle axes of F1 through rotation matrix R(θ), then if r⃗F1 is a
vector expressed in F1, then r⃗F2 = R(−θ)r⃗F1 is the same vector
expressed in coordinates F2.

� A common transformation is position in ECI to position in ECEF. These
coordinates differ only by a rotation about ẑ equal to the Greenwich
sidereal time.

� Local sidereal time is given by the hour angle of the FPOA at that time
and place.

� A sidereal day is 23 h, 56 min, 4s

� Rotation of a position vector from ECI to ECEF uses R3(−θGST )



Finding r⃗ and v⃗
The Perifocal Frame

Note: Our method is slightly different than the book. You are free to take
either approach.

Perifocal Coordinates (PQ):

• x̂ = e⃗/e.

• ẑ = h⃗/h

• ŷ by RHR

Position in perifocal (PQ) frame is simple.

r⃗PQW =

r cos fr sin f
0

 where r =
p

1 + e cos f
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Finding r⃗ and v⃗

� Actually, this is a rotation. The position vector in the SN frame is

r⃗SN =

r0
0


� We obtain the SN frame from the PQ frame using a positive rotation

about ẑ by angle f . Hence

r⃗SN = R3(−f)r⃗PQW

� Or, conversely,
r⃗PQW = R3(f)r⃗SN



Velocity in the Perifocal Frame

Recall our original expression for 2D
velocity in satellite normal frame.

v⃗SN = ṙî+ rḟ ĵ =

 ṙrḟ
0



• To get to the perifocal frame we rotate backwards by angle f .

• Can use rotation matrix R3(f).

v⃗PQW = R3(f)

 ṙrḟ
0

 =

ṙ cos f − rḟ sin f

ṙ sin f + rḟ cos f
0


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 ṙrḟ
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ṙ cos f − rḟ sin f
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Velocity in the Perifocal Frame

� As before, we obtain the SN frame from the PQ frame using a positive
rotation about ẑ by angle f . Hence

v⃗PQW = R3(f)v⃗SN

� PQW are the unit vectors traditionally associated with perifocal.



Velocity in the Perifocal Frame

Now recall h = r2ḟ . Hence we can
simplify

rḟ =

√
µ

p
(1 + e cos f) .

by differentiating the polar equation
and using the above expression, we get

ṙ =

√
µ

p
(e sin f)

Plugging these expressions in, we get the following

v⃗PQW = R3(f)

 ṙrḟ
0

 =

ṙ cos f − rḟ sin f

ṙ sin f + rḟ cos f
0

 =


−
√

µ
p sin f√

µ
p (e+ cos f)

0


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Velocity in the Perifocal Frame

Derivation: We use
r =

p

1 + e cos f
h = r2ḟ

For the first term,

rḟ =
h

r
= h

1 + e cos f

p
=

h

p
(1 + e cos f) =

√
µp

p
(1 + e cos f) =

√
µ

p
(1 + e cos f).

For the second term (recall r2ḟ = h):

ṙ = − p

(1 + e cos f)2
e sin fḟ

=
p2

(1 + e cos f)2
e

p
sin fḟ

= r2
e

p
sin fḟ

=
h

p
e sin f =

√
µ

p
e sin f
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ṙ =

√
µ

p
(e sin f)

Plugging these expressions in, we get the following

v⃗PQW = R3(f)

 ṙrḟ
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Velocity in the Perifocal Frame

Derivation of the velocity term,

rḟ =

√
µ

p
(1 + e cos f) ṙ =

√
µ

p
e sin f

v⃗PQW =

ṙ cos f − rḟ sin f

ṙ sin f + rḟ cos f
0



=


√

µ
p
e sin f cos f −

√
µ
p
(sin f + e cos f sin f)√

µ
p
e sin2 f +

√
µ
p
(cos f + e cos2 f)

0



=


−
√

µ
p
sin f√

µ
p
e+

√
µ
p
cos f

0

 =


−
√

µ
p
sin f√

µ
p
(e+ cos f)

0





Coordinate Rotations
Perifocal to ECI Transformation

r⃗PQW =

r cos fr sin f
0

 v⃗PQW =


−
√

µ
p sin f√

µ
p (e+ cos f)

0


The Perifocal coordinates can be
reached from ECI via 3 rotations.

1. Rotate Ω about ẑ

2. Rotate i about x̂

3. Rotate ω about ẑ

As mentioned, rotating coordinates has the opposite effect of rotating the
vector. Thus a vector r⃗ECI in ECI coordinates can be expressed as

r⃗PQW = R3(−ω)R1(−i)R3(−Ω)r⃗ECI
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Coordinate Rotations

� To rotate the x-y-z ECI coordinate system into the perifocal: Rotate
z-axis by Ω. This aligns the x-axis with the line of nodes. Rotate by angle
i about the line of nodes (x-axis). The plane is now correct, but the
eccentricity vector is aligned with the line of nodes. Rotate about the
z-axis by angle ω to correctly place the eccentricity vector.

� The sequence of rotations from ECI to PQW is Ω, i, ω.



Perifocal to ECI Transformation

Thus to convert a PQW vector to ECI, we can

r⃗ECI = R3(Ω)R1(i)R3(ω)r⃗PQW = RPQW→ECI r⃗PQW

RPQW→ECI =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0
0 0 1


=

cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i
sinΩ cosω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i


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Perifocal to ECI Transformation

Thus to convert a PQW vector to ECI, we can

r⃗ECI = R3(Ω)R1(i)R3(ω)r⃗PQW = RPQW→ECI r⃗PQW

RPQW→ECI =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0
0 0 1


=

cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i
sinΩ cosω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i


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Perifocal to ECI Transformation

� Recall for rotation matrices,

R(θ)−1 = R(θ)T = R(−θ)



r⃗ and v⃗ in ECI

Finally, we can express our r⃗ and v⃗ in ECI.

r⃗ECI = RPQW→ECI

r cos fr sin f
0

 v⃗ECI = RPQW→ECI


−
√

µ
p sin f√

µ
p (e+ cos f)

0


Matrix multiplication is not hard:

r⃗ =

r(cosΩ cos(ω + f)− sinΩ sin(ω + f) cos i)
r(sinΩ cos(ω + f) + cosΩ sin(ω + f) cos i)

r sin(ω + f) sin i


v⃗ =

−µ
h (cosΩ (sin(ω + f) + e sinω) + sinΩ (cos(ω + f) + e cosω) cos i)

−µ
h (sinΩ (sin(ω + f) + e sinω)− cosΩ (cos(ω + f) + e cosω) cos i)

µ
h (cos(ω + f) + e cosω) sin i


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Numerical Example: r⃗ and v⃗ in ECI

Problem: Given the following orbital elements, find r⃗ and v⃗.

a = 35, 960km = 5.64ER e = .832 f = 92.335 deg

i = 87.87 deg Ω = 227.9 deg ω = 53.39 deg

Solution: First solve for r and h.

p = a(1− e2) = 1.735ER

r =
p

1 + e cos f
= 1.7947

p = h2/µ, so
h =

√
p = 1.3172.

Now in perifocal coordinates

r⃗PQW =

−.073191.7947
0

 v⃗PQW =

−.7585.6013
0


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Numerical Example: r⃗ and v⃗ in ECI

� Note that µ = 1 in this case because we are in universal coordinates.



Numerical Example: r⃗ and v⃗ in ECI

We can find the rotation matrices in Matlab using the following commands:
R3w = [cosd(w) -sind(w) 0; sind(w) cosd(w) 0; 0 0 1 ];

R1 = [1 0 0; 0 cosd(i) -sind(i) ; 0 sind(i) cosd(i)];

R3Om = [cosd(Om) -sind(Om) 0; sind(Om) cosd(Om) 0; 0 0 1 ];

Then compute the position and velocity vectors:
rECI = R3O*R1*R3w*rPQW

vECI = R3O*R1*R3w*vPQW

which yields

r⃗ECI =

1.0231.076
1.011

ER v⃗ECI =

 .62
.7

−.25

ER/TU
Of course we could have simply used the formulae.
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Pointing Coordinates
Right Ascension and Declination

Question: Now that we have r⃗ and v⃗ in ECI, what do we do with them?

Answer:

• Tracking

• Communication

• Interception

• Astronomy

For all of these applications, we need to know
where to look.

1. The sky is big.

2. Satellites are small.

To track a satellite or star, the position vector must be translated into a
direction.

These directions are declination and right ascension.
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Right Ascension

Definition 1.

Right Ascension, α is the angle the position vector makes with the FPOA
when projected onto the reference plane.

Initially suppose we are at the center of the earth. If r⃗ =
[
r1 r2 r3

]
, the

projection is simply
[
r1 r2

]
. Thus

tan(α) =
r2
r1
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Right Ascension

� If we are not at the center of the earth, then the vector r⃗ is relative to our
current position, r⃗site, so

r⃗ = r⃗rel = r⃗sat − r⃗site

� all of these vectors are in the ECI frame

To calculate r⃗site:

r⃗site = R3(θLST )R2(ϕ)

Re

0
0


where

� Re is the radius of the Earth.

� θLST is Local Sidereal Time. θLST = θ + θGMT (θ is East longitude)

� ϕ is your latitude.

FYI: your position vector in ECI is

r⃗site = R3(θLST )R2(ϕ)

Re

0
0

 = Re

cosϕ cos θLST

cosϕ sin θLST

sinϕ





Declination

Definition 2.

Declination, δ is the angle the position vector makes with the reference plane.

Again, simple geometry yields

sin δ =
r3
r

or
tan δ =

r3√
r21 + r22

For a point on the surface of the earth, the observer must use

r⃗rel = r⃗sat − r⃗site

to calculate the right ascension and declination.
Question: How to find Jupiter?
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Observation using α and δ

Step 1: Locate the Equatorial plane.

• When facing due south, the equatorial plane will be at 90◦ − ϕ, where ϕ is
your latitude.
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Observation using α and δ

� Phoenix latitude is ϕ = 33.45◦ N

� At the equator, equatorial plane is directly overhead.

� At the north pole, equatorial plane is at the horizon.

� Note that here we are orienting here using the ECI coordinates by locating
the principal axes of the ECI coordinates (north and FPOA), as opposed to
rotating the position vector into ECEF, then local horizontal coordinates.



Observation using α and δ

Step 2: From the Equatorial plane, measure up/down to declination line.
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Observation using α and δ

Step 3: Determine right ascension, αS of due south.

• This is given by Local Sidereal Time.

• Consult a table or do the conversion (not covered here).

• There is an app for that.
▶ Local Sidereal Time, LSTclock, and Skyfari for iphone
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Observation using α and δ

� Local sidereal time is the angle between the FPOA and the local meridian.

� Take GMT and add the difference in longitude (positive for east)

θLST = θGST + λ

� The longitude for Phoenix is 112◦ W

λ = 360◦ − 112◦

� But, of course, you need to know θGST



Observation using α and δ

Step 4: Find desired αRA relative to αS .

• Measure αRA − θLST degrees to the left of due south.
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Observation using α and δ
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RA/Dec Coordinates
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RA/Dec Coordinates
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Numerical Example
Targeting

Problem: Suppose we are in a spacecraft in the following orbit

a = 60, 000km = 9.41ER e = .9 f = 130◦

i = 80◦ Ω = 220◦ ω = 70◦

We would like to use our laser cannon to destroy a defense satellite/Ballistic
Missile in the following orbit.

a = 35, 960km = 5.64ER e = .832 f = 92.335◦

i = 87.87◦ Ω = 227.9◦ ω = 53.39◦

What range, Right Ascension and declination should we give to the targeting
computer?
Step 1: Find our position vector. We use the same Matlab script as before.

r⃗1 =

 4.71
5.97
−8.74

ER
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Numerical Example

Step 2: The position vector

r⃗2 =

1.0231.076
1.011

ER
Step 3: The relative position vector

r⃗2 − r⃗1 =

 −3.7
−4.89
9.75


Step 4: Translate into RA and declination. Use Matlab commands

dec=atan2(rrel(3),sqrt(rrel(1)2 + rrel(2)2))

RA=atan2(rrel(2),rrel(1))

Yields δ = 1.0097rad, α = −2.2173rad.
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Numerical Example

� Dont forget to adjust your declination for latitude and RA for θLST

� It may be hard to locate the equatorial or ecliptic planes in space (use star
tracker, sun tracker, earth tracker).



Summary

This Lecture you have learned:

How to convert between

• a, e, i, Ω, ω, f

• r⃗ and v⃗

How to translate r⃗ and v⃗ into pointing data for telescope/radio

• Right Ascension

• Declination

• Tracking

Next Lecture: Transfer Orbits
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