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Matthew M. Peet

Lecture 8: Impulsive Orbital Maneuvers



Introduction

In this Lecture, you will learn:

Coplanar Orbital Maneuvers

• Impulsive Maneuvers
▶ ∆v

• Single Burn Maneuvers

• Hohmann transfers
▶ Elliptic
▶ Circular

Numerical Problem: Suppose we are in a circular parking orbit at an altitude
of 191.34km and we want to raise our altitude to 35,781km. Describe the
required orbital maneuvers (time and ∆v).
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Changing Orbits

Suppose we have designed our ideal orbit.

• We have chosen ad, ed, id, Ωd, ωd

• We are currently in orbit a0, e0, i0, Ω0, ω0

▶ Determined from current position r⃗ and
velocity v⃗.

Question:

• How to get from current orbit to desired
orbit?

• What tools can we use?

• What are the constraints?

Unchanged, the object will remain in initial orbit indefinitely.
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Changing Orbits

� For now, we don’t care about f (time)

– Lambert’s Problem
– Can correct using phasing

� Don’t care about efficiency

� true anomaly (f) determines phasing within the orbit and is easily altered
post-insertion.



How to create a ∆v
∆v is our tool for changing orbits

Velocity change is caused by thrust.

• For constant thrust, F ,

v(t) = v(0) +
F

m
∆t

• for a desired ∆v, the time needed is

∆t =
m∆v

F

We assume ∆t and ∆r⃗ are negligible for a ∆v.

• No continuous thrust transfers

• Although these are increasingly
important.

The change in position is

∆r⃗(t) =
m∆v2

2F
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How to create a ∆v

� For fixed ∆v, if m
F

is small, the ∆r⃗ is small

� We will assume ∆r⃗ = 0

v(t) = v(0) +
F

m
t

so
t = ∆v

m

F
Now,

r(t) = r(0) + v(0)t+
F

2m
t2

∆r = v(0)t+
F

2m
∆v2

m2

F 2

= v(0)∆v
m

F
+

∆v2

2

m

F
=

(
v(0)∆v +

∆v2

2

)
m

F

However, we can ignore the v(0) if we are considering deviation from a nominal

path.



∆V moves the vacant focus of the orbit

Orbit maneuvers are made through changes in velocity.

• r⃗ and v⃗ determine orbital elements.
• Our first constraint is continuity.

▶ New orbit must also pass through r⃗.
▶ Cannot jump from one orbit to another instantly
▶ If the initial orbit and target orbit don’t intersect, a transfer orbit is required.

• Can changes in v⃗ alone be used to achieve a desired a, e, i, Ω, ω ?
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∆V moves the vacant focus of the orbit

Equations involving velocity

vc =

√
µ

rc
circular orbit

v =

√
µ

(
2

r
− 1

a

)
vis-viva

vp =

√
µ

a

(
1 + e

1− e

)
periapse velocity

va =

√
µ

a

(
1− e

1 + e

)
apoapse velocity

vesc =

√
2µ

r
escape velocity

v⃗ =

−µ
h
(cosΩ (sin(ω + f) + e sinω) + sinΩ (cos(ω + f) + e cosω) cos i)

−µ
h
(sinΩ (sin(ω + f) + e sinω)− cosΩ (cos(ω + f) + e cosω) cos i)

µ
h
(cos(ω + f) + e cosω) sin i





What can we do with a ∆v Maneuver?

∆v refers to the difference between the initial and final velocity vectors.

A ∆v maneuver can:

• Raise/lower the apogee/perigee

• A change in inclination

• Escape

• Reduction/Increase in period

• Change in RAAN

• Begin a 2+ maneuver sequence of
burns.
▶ Creates a Transfer Orbit.

We’ll start by talking about coplanar maneuvers.
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What can we do with a ∆v Maneuver?

� Raise/lower the apogee/perigee is performed at perigee/apogee

� A change in inclination is usually performed at the equatorial plane (any
inclination achievable from this point).

� Small changes in period help with phase changes f(t).

� Change in RAAN should be done as far from equatorial plane as possible.



Single Burn Coplanar Maneuvers
Apogee or Perigee raising or lowering.

Definition 1.

Coplanar Maneuvers are those which do not alter i or Ω.

• Only a and e change
• for fixed r: v allows us to control a

v =

√
µ

(
2

r
− 1

a

)
vis-viva
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Single Burn Coplanar Maneuvers

Concept: Tangential Burns

� For maximum efficiency, a burn must occur at 0◦ flight path angle

� Tangential burns can occur at perigee and apogee

We will explain why we want ∠FPA = 0◦ in Lecture 9, when we discuss the

Oberth effect.



The First Burn: Insertion into a Parking Orbit
A perigee raising maneuver

Suppose we launch from the surface of the earth.
• This creates an initial elliptic orbit which will re-enter.
• To circularize the orbit, we plan on using a burn at apogee.

Problem: We are given a and e of the initial elliptic orbit. Calculate the ∆v
required at apogee to circularize the orbit.
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Example: Insertion into a Parking Orbit
The First ∆v burn: A perigee raising maneuver

Calculating the ∆v: To raise the perigee, we burn tangentially at apogee. At
apogee, we have that

ra0 = a0(1 + e0)

From the vis-viva equation, we can calculate the velocity at apogee.

va0
=

√
µ

(
2

ra0

− 1

a0

)
=

√
µ

a0

(
1− e0
1 + e0

)
Our target orbit is circular with radius rd = ad = ra0

. The velocity of the target
orbit is constant at

vc =

√
µ

ra
=

√
µ

a(1 + e)

Therefore, the ∆v required to circularize the orbit is

∆v = vc − va0
=

√
µ

a0(1 + e0)
−

√
µ

a0

(
1− e0
1 + e0

)
• It is unusual to launch directly into the desired orbit. Instead we use the

parking orbit while waiting for more complicated orbital maneuvers.
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Concept: Transfer Orbits
How to calculate the ∆v’s?

To obtain both desired a and e, we need two maneuvers.

Definition 2.

• The Initial Orbit is the orbit we want to leave.

• The Target Orbit is the orbit we want to achieve.

• The Transfer Orbit is an orbit which intersects both the initial orbit and
target orbit.

Step 1: Design a transfer orbit - a, e, i, ω,Ω, f

Step 2: Calculate v⃗tr,1 at the point of
intersection with initial orbit.

Step 3: Calculate initial burn to maneuver into
transfer orbit.

∆v1 = v⃗tr,1 − v⃗init

M. Peet Lecture 8: Spacecraft Dynamics 10 / 25



Concept: Transfer Orbits
How to calculate the ∆v’s?

To obtain both desired a and e, we need two maneuvers.

Definition 2.

• The Initial Orbit is the orbit we want to leave.

• The Target Orbit is the orbit we want to achieve.

• The Transfer Orbit is an orbit which intersects both the initial orbit and
target orbit.

Step 1: Design a transfer orbit - a, e, i, ω,Ω, f

Step 2: Calculate v⃗tr,1 at the point of
intersection with initial orbit.

Step 3: Calculate initial burn to maneuver into
transfer orbit.

∆v1 = v⃗tr,1 − v⃗init

2
0
2
5
-0
2
-2
5

Lecture 8
Spacecraft Dynamics

Concept: Transfer Orbits

� Note that in the illustration, the transfer orbit is not a Hohmann transfer,
which is the most common type of transfer orbit.

� Step 1 may be VERY HARD because you may not know what ftr will be
in your transfer orbit!



Coplanar Two-Impulse Orbit Transfers

Step 4: Calculate v⃗tr,2 at the point of intersection with target orbit.

Step 5: Calculate velocity of the target orbit, v⃗fin, at the point of intersection
with transfer orbit.

Step 6: Calculate the final burn to maneuver into target orbit.

∆v2 = v⃗fin − v⃗tr,2
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Coplanar Two-Impulse Orbit Transfers

Step 4 may be easy if you can find the point of intersection, r⃗tr,2, since you

can then use the polar equation to find ftr,2. However, finding the point of

intersection may be hard.



The Choice of Transfer Orbit

Constraints:

• The transfer orbit must intersect both initial orbit and target orbit
• The ∆v’s for entering transfer and orbital insertion are limited by ∆v
budget
▶ Typically limits us to elliptic transfers.

• There may be constraints on elapsed time.
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The Choice of Transfer Orbit

The image is of an unproven conjecture that the most efficient 2-burn transfer
between 2 coplanar orbits always uses a tangential burn.

� Feel free to find a counterexample!

� Use a brute force search approach using Lambert’s problem to calculate
∆v′s



The Choice of Transfer Orbit
Continuity Constraints affect range of a and e

There are many orbits which intersect both the initial and target orbits.

However, there are some constraints.

Consider

• Circular initial orbit of radius r1
• Circular target orbit of radius r2 > r1

Obviously, the perigee and apogee of the
transfer orbit must satisfy

rp =
p

1 + e
≤ r1

and
ra =

p

1− e
≥ r2
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The Choice of Transfer Orbit

� The rp constraint says the transfer orbit must intersect the initial orbit.

� The ra constraint says the transfer orbit must intersect the target orbit.

� The plot illustrates the range of realizable p and e for given initial and
target radii

� The lines represent

p ≥ r2(1− e) ↔ e > 1− p

r2

and
p < r1(1 + e) ↔ e >

p

r1
− 1

� Again, we assume no constraint on timing or phasing.

� We use p because it is well-defined for both elliptic and hyperbolic orbits



Transfer Orbits in Fixed Time
Constraints on Transfer Time

Occasionally, we want to arrive at

• A certain point in the target orbit, r⃗2
• at a certain time, tf

Finding the necessary transfer orbit is Lambert’s Problem.

Primary Applications are:

• Targeting

• Rendez-vous

We will come back to the section on
Lambert’s problem.
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Transfer Orbits in Fixed Time

The plot shows 2 possible transfer orbits between point P1 and P2.



Constraints on ∆v budget
What is a minimum energy transfer orbit?

The critical resource in space travel is
∆v.

• The ∆v budget is fixed at takeoff.

• Refueling is not usually possible.

• If you run out of ∆v, bad things
happen.

∆v can increase or decrease the energy of an orbit.
• The energy difference between 2 orbits must come from somewhere.

∆Emin = − µ

2a2
+

µ

2a1

• The closer Ecost is to Emin, the more efficient the transfer
• ∆v does not translate directly to Energy changes, however.
• More on this effect later
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Constraints on ∆v budget

� The energy GAIN for each ∆v is actually larger - depending on the initial
velocity. We will discuss this more carefully next lecture.

� Note energy is NOT conserved here, so ∆v2

2
̸= ∆Emin.



The Hohmann Transfer
A Minimum Energy Orbit?

The Hohmann transfer is the energy-optimal two burn maneuver between any
two coaxial elliptic orbits.

• Proposed by Hohmann (1925)
▶ Why?

• Proven for circular target orbits by Lawden (1952)
• Proven for coaxial elliptical initial and target orbits by Thompson (1986)
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The Hohmann Transfer

� Also first proposed use of separable lunar landers

� Did not participate in Nazi rocket program.

� Died of hunger/stress after allied bombardment of
Essen

� Optimality was originally a conjecture.

� Published in “Die Erreichbarkeit der Himmelskörper (The Attainability of
Celestial Bodies)” (1925) [PDF Available Here]

http://large.stanford.edu/courses/2014/ph240/nagaraj1/docs/hohmann.pdf


The Hohmann Transfer

We will first consider the circular case.

Theorem 3 (The Hohmann Conjecture).

The ∆v-optimal transfer orbit between two circular orbits of radii r1 and r2 is
an elliptic orbit with rp = r1 and ra = r2

This yields the orbital elements of the Hohmann transfer orbit (a, e) as

a =
ra + rp

2
=

r1 + r2
2

and e = 1− rp
a

=
r2 − r1
r2 + r1
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The Hohmann Transfer

To calculate the required ∆v1 and ∆v2, the initial velocity is the velocity of a
circular orbit of radius r1

vinit =

√
µ

r1

The required initial velocity is that of the transfer orbit at perigee. From the
vis-viva equation,

vtrans,p =

√
2µ

r1
− µ

a
=
√
2µ

√
1

r1
− 1

r1 + r2
=

√
2µ

r2
r1(r1 + r2)

So the initial ∆v1 is

∆v1 = vtrans,p − vinit =

√
2µ

r2
r1(r1 + r2)

−
√

µ

r1
=

√
µ

r1

(√
2r2

(r1 + r2)
− 1

)
The velocity of the transfer orbit at apogee is

vtrans,a =

√
2µ

r2
− µ

a
=

√
2µ

r1
r2(r1 + r2)
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The Hohmann Transfer

The required velocity for a circular orbit at apogee is

vfin =

√
µ

r2

So the final ∆v2 is

∆v2 = vfin − vtrans,a =

√
µ

r2
−
√
2µ

r1
r2(r1 + r2)

=

√
µ

r2

(
1−

√
2r1

(r1 + r2)

)

Thus we conclude to raise a circular orbit from radius r1 to radius r2, we use

∆v1 =

√
µ

r1

(√
2r2

(r1 + r2)
− 1

)

∆v2 =

√
µ

r2

(
1−

√
2r1

(r1 + r2)

)
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Hohmann Transfer Illustration

M. Peet Lecture 8: Spacecraft Dynamics 20 / 25


HohmannTransfer.mp4
Media File (video/mp4)



The Hohmann Transfer
Transfer Time

The Hohmann transfer is optimal

• Only for impulsive transfers
▶ Continuous Thrust is not considered

• Only for two impulse transfers
▶ A three impulse transfer can be better
▶ Bi-elliptics are better

The transfer time is simply half the period of
the orbit. Hence

∆t =
τ

2
= π

√
a3

µ

= π

√
(r1 + r2)3

8µ

The Hohmann transfer is also the Maximum Time 2-impulse Transfer.

• Always a tradeoff between time and efficiency

• Bielliptic Transfers extend this tradeoff.
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The Hohmann Transfer

� The slowest part of the orbit is at apogee.

� Due to Oberth effect, you want to use as much ∆v budget as possible at
low altitude. Bi-elliptics use this to further reduce ∆v at apogee (Next
Lecture)

� Hohmann transfer to GEO is extremely wasteful!



Numerical Example (Parking Orbit to GEO)

Problem: Suppose we are in a circular parking orbit at an altitude of 191.34km
and we want to raise our altitude to 35,781km. Describe the required orbital
maneuvers (time and ∆v).

Solution: We will use a Hohmann transfer between circular orbits of

r1 = 191.35km+1ER = 1.03ER and r2 = 35781km+1ER = 6.61ER

The initial velocity is

vi =

√
µ

r1
= .985

ER

TU

The transfer ellipse has a = r1+r2
2 = 3.82ER. The velocity at perigee is

vtrans,1 =

√
2µ

r1
− µ

a
= 1.296

ER

TU

Thus the initial ∆v is ∆v1 = 1.296− .985 = .315ER
TU .
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Numerical Example

The velocity at apogee is

vtrans,1 =

√
2µ

r2
− µ

a
= .202

ER

TU

However, the required velocity for a circular
orbit at radius r2 is

vf =

√
µ

r2
= .389

ER

TU

Thus the final ∆v is ∆v2 = .389− .202 = .182ER
TU . The second ∆v maneuver

should be made at time

tfin = π

√
a3

µ
= 23.45TU = 5.256hr

The total ∆v budget is .497ER/TU .
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The Elliptic Hohmann Transfer

The Hohmann transfer is also energy optimal for coaxial elliptic orbits.

The only ambiguity is whether to make the initial burn at perigee or apogee.
• Need to check both cases
• Often better to make initial burn at perigee

▶ Due to Oberth Effect
M. Peet Lecture 8: Spacecraft Dynamics 24 / 25



Summary

This Lecture you have learned:

Coplanar Orbital Maneuvers

• Impulsive Maneuvers
▶ ∆v

• Single Burn Maneuvers

• Hohmann transfers
▶ Elliptic
▶ Circular

Next Lecture: Oberth Effect, Bi-elliptics, Out-of-plane maneuvers.
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