Spacecraft Dynamics and Control

Matthew M. Peet

Lecture 9: Bi-elliptics and Out-of-Plane Maneuvers



Introduction

In this Lecture, you will learn:

Bi-elliptic Maneuvers
® 3-burn Maneuvers
® Comparison with Hohmann

® Numerical Example
> Elliptic
» Circular

Out-of-Plane Maneuvers
® Inclination Change

® Right Ascension Change

Numerical Problem: Suppose we are in a circular parking orbit at altitude
191km. We desire a final altitude of 376,310km. Design the energy optimal
orbital maneuvers necessary to reach our desired orbit.
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I—Introduction

e For low earth orbit, RA has a linear progression due to earth’s equatorial
bulge. This effect is less significant at outer orbits and can be ignored or
corrected.



The Oberth Effect

Generally it is better to make the initial burn at perigee.

Transfer

Uinitial

v .
rans
frans,

For a burn at velocity v, the change in kinetic energy is

1
AT—Q(v+Av) —51) fAv +v-Av

For a fixed Av, v - Av is much greater than %Av when v is large.
® For an elliptic orbit, maximum velocity is at perigee
® Lower orbits move faster

® It is much easier to achieve escape velocity when in low earth orbit
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L The Oberth Effect

e Of course, potential energy (normalized by mass) is the same before and
after the burn!

This is also,why we burn at 0° Flight path angle.
Otherwise, e.g.for ZFPA = 90°

- v
7= [a)

T = Sl = S + &%)

In this case, we have

* 5o 1 1 1
_ 1o 2y 1o 1, o
AT = 2(1} + Av°) ¥ 2Av

You lose out on all of v - Av

Since typically v >> Aw, the energy added is a fraction of the energy
added for /ZFPA = 0°, where AT = %AUQ +v-Av



The Oberth Effect: Energy Explanation

Propulsive force results from expulsion of particles at high velocity.
Kinetic Energy of Propellant

® Suppose craft moving at velocity v,.

® Particles are ejected with relative velocity Av, > v
® Absolute velocity of particles is v, — Av,,.

¢ Kinetic Energy of particles is

T, = (vs — Avp)2

® The closer vy is to Awv, the lower the kinetic energy of particles.
Potential Energy of Propellant

® The potential energy of the propellant is
V= /E
r

® the lower the propellant is ejected, the lower the potential energy of
particles.

Conclusion: Propellant used at perigee has much less energy.
The energy not spent on propellant is retained by the spacecraft.
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l—The Oberth Effect: Energy Explanation

For this reason, all significant Av maneuvers in interplanetary missions are
done as close to the gravity well of a planet as possible.

This is entirely separate from the slingshot effect, but in both cases, a low
periapse radius is desirable.

Note this strategy is only effective when you are trying to increase the
energy of the orbit.

e Doesn’t apply to plane-change maneuvers.

For apogee lowering, we want to dump as much energy as possible.
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The Bi-Elliptic Transfer

Getting more out of the Oberth Effect

The Hohmann transfer is the energy-optimal 2-impulse transfer.
® Addition Energy savings can be bought at the expense of additional time.

e A 3 Av transfer
® 2 transfer orbits

The three Av maneuvers are:
1. initial impulse close to almost escape velocity.

2. perigee-raising maneuver at apogee.
3. apogee-lowering maneuver at perigee.
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L The Bi-Elliptic Transfer

e Perigee raising gets easier the farther out you are.
e less Aw required.

e Less wasted propellant energy




The Bi-Elliptic Transfer

Suppose we want to raise a circular orbit of radius 71 to radius 7.

Trans.

vy

Trans,

First: Given r; and ry, choose outer transfer radius r, >> ry.
Three Av burns are now required.
1. From circular initial orbit to transfer orbit 1.
» elliptic transfer orbit 1 has perigee r, = r1 and apogee rq = 7.
2. At apogee of transfer 1, switch to apogee of transfer 2.
» elliptic transfer orbit 2 has perigee 7, = r2 and apogee 74 = 7.
3. At perigee of transfer 2, circularize the orbit by lowering perigee to r5.
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The Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius r; to final circular orbit
of radius 7.

There are 2 transfer ellipses (both with apogee at r,)(perigees at r; and ry)

Transfer Ellipse 1: Transfer Ellipse 2:
T + Ty Tyt Ty
a1 = —- ay = —
! 2 ? 2
Te — T Ty — Ty
€1 = €y = ———

Ty + 74 T« + Ty
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The Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius r; to final circular orbit
of radius ry.

We can calculate the 3 burns as:
Burn 1:
A’Ul =V1p — UV =

Burn 2:

Avy = — Vg =4/2 — /2
2= Ve T e \/MT*(rf+r* Wit ) +r*

Avg =0+ — Vg, = — . /2u
3 f 2,p 7f Tf-l-?“*
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Notes on the Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius r; to final circular orbit
of radius ry.

Trans,

Note that the third burn is retrograde.
® Awvjg is clearly wasted energy.
e For this reason, bielliptics only work when 7y >> r; (R := 'Tf = 11.94).
> vy << vy
Note that r, is a free parameter.
® As 1, — 00, the bielliptic gets more efficient.
» Escape and reinsertion.
® Asr, = 0o, At — oo.
> A tradeoff between time and efficiency.
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L Notes on the Bi-Elliptic Transfer

e Recall the energy of an orbit is £ = —2-.

e The difference in energy between target and initial orbit is partly a
product of the kinetic energy change.

e The Oberth effect only becomes important when the energy difference
between the orbits is large.



Notes on the Bi-Elliptic Transfer (R = )
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Numerical Example

Problem: Suppose we are in a circular parking orbit at altitude 191km. We
desire a final altitude of 376, 310km. Design the energy optimal orbital
maneuvers necessary to reach our desired orbit.

Solution: First we choose between Hohmann and bi-elliptic. Note
r; = 191km + 1ER = 1.03FER and ry = 376,310km + 1ER = 60ER

Thus our ratio R = :—f =~ 60. In this case, it is clear that the bi-elliptic is better.
We choose a transfer radius of 7, = 80E'R.

Ellipse 1: Our first transfer ellipse will have a; = % = 40.5ER. We have
the following data
v; = .985ER/TU
v1p = 1.385ER/TU
v1,q = .0178ER/TU

Thus our initial velocity change is
Avy = vy, —v; = 1.385 — .985 = AER/TU
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Numerical Example

Ellipse 2: Our second transfer ellipse will have a; = % =T70FER. We have
the following data
vy =.129ER/TU
vep = .138ER/TU
Voo = .103ER/TU

Our change from ellipse 1 to ellipse 2 requires
Avy = vy 4 — V1,4 = .103 — .0178 = .0857ER/TU
Our final circularization requires

Avg = vf — vy, = 129 — 138 = —009ER/TU

Conclusion:
® Our total Av budget is .4938 ER/TU = 3.9km/s.
® Budget for Hohmann is 4.0km/s.
® The total duration of transit is 2650 TU = 593.9hr = 24.75 days.
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Restrictions on Orbital Plane

Launch Geometry

Most satellites are launched from the surface of the earth.
® Launch Geometry restricts the initial orbital plane.

The two geometric features/constraints of launch are:
e latitude of the launch site, ¢4 (fixed).
® launch azimuth (direction), 8 (limited choice).
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Launch Geometry

Site Restrictions
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® The set of launch sites is restricted
® The range of launch azimuth is restricted
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Launch Geometry

Geometric Constraints

Launch geometry restricts the inclination of the orbital plane of the parking
orbit.

Spherical Trigonometry: COS i = COS g sin 3
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- Launch Geometry

Right ascension is also restricted, but can be modified by time-of-launch.
To be discussed shortly.

If 8 = +£90°, then the minimum i is limited by 7 > ¢gc.

e Equation comes from Napier’s rules for spherical right triangles (C' = 90°)
B = A (as defined on the previous figure) or 8 = 180° 4+ A (using the
tables)

Cos c = cosa cos b, tana = cos B tanc,

sinb = sin B sin ¢, tanb = cos A tanc,
)

cos A = sin B cosa,
cot B cot A.

tan b = tan B sina,

COs C

(R1)
(R2)
(R3) sina = sin A sin e,
(R4)
(R5)

tana = tan A sin b,
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- Launch Geometry

e Alternative Napier’s rules for spherical right triangles (B = 90°)
e In this case, § = —A (as defined on the previous figure) or 3 = 180° — A
(using the tables)

cosb = cosa cosc, tana = cos C tanb,

(R1) (R6)

(R2) sinc = sin C' sinb, (R7) tanc = cos A tanb,
(R3) sina = sin A sin b, (R8) ,
(R4) tanc = tanC sina, (R9) cos A =sinC cosa,
( (

R5) tana = tan A sine, R10) cosb = cot C' cot A.



Launch Geometry

Site Restrictions

Site Latitude (°) Lengitude (°)  Azimuth Min (°) Azimuth Max (°)
Vandenberg 34.600 000 ~120.600 000 147 201
Cape Kennedy 28.500 000 ~80.550 000 37 112
Wallops 37.850 000 ~75.466 67 30 125
Kourou 5.200 000 —52.800 000 340 100
San Marco -2.933 333 40.200 000 50 150
Plesetsk 62.800 000 40.600 000 330 90
Kapustin Yar 48.400 000 45.800 000 350 90
Tyuratam 45.600 000 63.400 000 340 90
Sriharikota 13.700 000 80.250 000 100 290
Shuang-Ch’Eng-Tzu 40.416 667 99.833 333 350 120
Xichang 28.250 000 102.200 000 94 105
Tai-yuan 37.766 667 112.500 000 90 190
Kagoshima 31.233 333 131.083 333 20 150
Woomera -30.950 000 136.500 000 350 15
Yavne 31.516 667 34.450 000 350 120

Typically, different sites are used for different purposes.
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Launch Geometry

Site Restrictions

Example: Vandenburg has

Therefore

M. Peet

Site Latitude (°) Longitude (°)  Azimuth Min (°) Azimuth Max (°)
Vandenberg 34.600 000 ~120.600 000 147 201
Cape Kennedy 28.500 000 -80.550 000 37 12
Wallops 37.850 000 ~75.466 67 30 125
Kourou 5.200 000 -52.800 000 340 100
San Marco -2933333 40.200 000 50 150
Plesetsk 62.800 000 40.600 000 330 90
Kapustin Yar 48.400 000 45.800 000 350 90
Tyuratam 45.600 000 63.400 000 340 90
Sriharikota 13.700 000 80.250 000 100 290
Shuang-Ch’Eng-Tzu 40.416 667 99.833 333 350 120
Xichang 28.250 000 102.200 000 94 105
Tai-yuan 37.766 667 112.500 000 90 190
Kagoshima 31.233333 131.083 333 20 150
Woomera -30.950 000 136.500 000 350 15
Yavne 31.516 667 34.450 000 350 120

bge = 34.6° and B+ 180° € [147°,201°]

—.4483 < cost < .295

So the inclination is restricted as
72.84° < 1 < 116.63°
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- Launch Geometry

Azimuth in these tables is measured clockwise from due north (8 + 180°)

e There is a small correction to account for velocity gained from rotation of
the Earth.

e | am unsure whether these tables include this correction.



Launch Window determines RAAN (€2)

Unlike inclination, the Right Ascension of the orbital plane can be chosen by
Launch Window (Time).

Referring to the triangle, our desired launch time (in Local Sidereal Time) is
given by

Orst = Q+ Ay
where A, can be found from 8 and i as

cos f3

COS Ay, = ——
sin ¢

M. Peet Lecture 9: Spacecraft Dynamics 18 /29



2025-02-27

Lecture 9
Spacecraft Dynamics

l—Launch Window determines RAAN (2)

Law of Cosines:
cosa = cos bcos c + sinbsin ccos A

Law of Sines:
sinA sinB _ sinC

sina  sinb  sinc
Here a = Xy, A=, C =90°, B =i.

Formula actually comes from (R9): cos A = sin B cosa




Example: Launching into the Ecliptic Plane

For interplanetary missions, initial parking orbit should align with the ecliptic
plane (e = 23.5°).
® Desired RAAN: Q2 =0
® Desired inclination: 7 = 23.5°
® Launch Site: Kourou/GSC (¢4 = 5.2°, § € [160°,280°])
Challenge: Find 0,57 and ! Is it in the range of launch azimuths?
First, we note that since desired 2 = 0, we have ;57 = \,,. Two constraints:

cos 3

COS 1 = COS Py, sin 3, cosOpsT = ——
Sin 7

Solving the first equation for /3, and second for 0y g7
208 23.5°
B =sin~? (COS‘)> — 67.05°,113°

cos H.2°
e f = cos™! M = 12.0747,167.92°
sin ¢ sin 23.5°

To get a posigrade orblt we correct 3’ = 3+ 180°. Choose 3 = 67.05° to get
B = B+ 180° = 247.05° € [160°, 280°]

Alternatively, if 5 = 113°, then 8’ = 293° & [160°,280°], so NOT VIABLE!
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|—Example: Launching into the Ecliptic Plane
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e We have adjusted the table data from 38 € [—20°,100°] to
3 € [160°, 280°]
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France owns French Guiana, and Kourou/CSG is a major spaceport for the ESA.



Changes in Orbital Plane

Inclination-Only Plane Changes

To change the inclination of an orbit requires Awv

® Suppose we want to change inclination without changing any other orbital
element.

Inclination-only orbit changes mean:

e Cannot change magnitude of v (Since a is constant)
e Cannot change in-plane flight path angle (Since e, f, w are constant)
® Must occur at ascending node (Since Q is constant)
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LChanges in Orbital Plane

e Of course, we usually combine inclination changes with other orbit
changes. We will address this in a later slide.

e Unlike changes in a, it is always better to change inclination when the
velocity is smallest.

— Oberth effect is not relevant because we are not adding energy to
the orbit.



Inclination Only Plane Changes

The Aw required can be calculated as
0
Av = 2vusin -
v vsin 5

If 0 = Aq, the is
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L Inclination Only Plane Changes

° . Initial velocity is along the vector v~. The
direction of thrust is then measured by a 90° + % counterclockwise

rotation from the current velocity vector.

e The formula is derived by bisecting the triangle along the 6 angle and
calculating Av/2.



More General Changes in Orbital Plane

Changes in BOTH 7 and 2

Plane changes can be made anywhere in the orbit. However, this affects both ¢
and Q. *

‘n N ) -‘{ EQUATOR
Given an initial orbit with 4; and 1, a plane change by amount 6 at
u1 = wi + f1 yields the spherical geometry:

COS iy = C0S 47 cos 6 — siniq sin 6 cosu

cos ) — cos iy cosig

cos(y — Q) =

sin 41 sin ¢
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in thecrit. Howeve, this

I—More General Changes in Orbital Plane

e u1 =wi + f1 is the arc measured from the ascending node (in the orbital
plane). w; is the argument of perigee of the initial orbit. fi is the true
anomaly of the initial orbit at the time of the Aw.

e Given initial 21, w1,%1 along with desired €22, 2

e We want to determine fi1 and 6. That is, when in the orbit to burn (f1)
and how big to make the angle change (0).

Law of Cosines: . .
cosa = cosbcosc + sinbsin ccos A

2nd Law of Cosines:

cos A = — cos B cos C + sin Bsin C cos a

sfects b

i



Changes in Orbital Plane

BOTH i and

Changing both Q and i simultaneously is always more efficient than changing
them separately. :

EQUATOR

T

b= @,-q) —
If we are given an initial orbit with 7; and €2, along with desired elements o
and s, then required plane change () and position (f1) are given by:

cos 6 = cos i1 cos iy + sin iy sinig cos(Qe — Q1)

€oS 7108 ) — cos iy

cos(u) = cos(wi + f1) = sin 4;sin 0
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I—Changes in Orbital Plane

e First, we solve for § (amount of plane change), then we solve for
u1 = w1 + fi. Then burn occurs at fi = u1 — wi

e Finding the new argument of periapse (w2) is a little complicated.



Combined Maneuvers: BOTH 7 and (2

Inclination changes are by definition inefficient

0
Av = 2usin —
v vsin o

® Up to 200% of total energy.

® Changes become more efficient as
limv — 0.

» v —0asr— oo.

It is often worth boosting the orbit to improve the efficiency of a plane change
(See Homework.)

A typical strategy is to combine a plane change with a bi-elliptic transfer
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Numerical Example: Combined Change — BOTH ¢ and ()

Problem: Suppose we have an initial orbit with i = 55°, 2 = 0° and
a = 1.8 R. Determine the timing and Aw required to change the inclination to
i = 40° and RAAN to Q) = 45°.

Solution: First find the plane change required
Using our formula,

cos B = cos 55° cos 40°
+ sin 55° sin 40° cos 45°
= '8]‘]‘7 Uinitial =@ +

Thus 8 = 35.74°. The timing for the
Aw can be calculated from u = w+ f as
cos 55° cos 35.74° — cos 40° .
cosu = - - !
sin 35.74° sin 55°
= —.628
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I—Numerical Example: Combined Change — BOTH +
and €2

e In the image, a calligraphic form of 6 is being used.

Numerical Example: Combined Change ~ BOTH




Numerical Example: Combined Change — BOTH ¢ and ()

Now cosu = —.628 implies u = 128.9°.

Since the orbit is circular just take
w = 0. Thus the burn occurs at

Uinitial =

f=u—w=128.9°
To calculate the Av, we must first find

the v at the desired point in the orbit.
Since the orbit is circular:

— H — { “‘\——’/
v = \/: = T45ER/TU \// S

Then the required Av can be calculated as
0
Av=2-v-sin 5= ABTER/TU
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Combined Maneuvers: Change 7, {2 and a
Change in Both Velocity and Orbital Plane

Combine a plane change A#, with a velocity magnitude change
® Velocity change is 2nd burn in Hohmann or bi-elliptic
Three parts to consider:
e Initial velocity v(t, )
» Determined from initial or transfer orbit
® Final velocity v(t;)
» Determined from target or 2nd transfer orbit

® §;, is the direction of burn w/r to the current velocity
vector.

Law of Cosines: To find magnitude of Av
Av? = v(ty)? +o(t)? — 20(t, )u(t)) cos A9
Law of Cosines: To find direction of burn - 0,
v(t;)? + Av? — v(tk"))
20(t, ) Av

0fp = 180° — cos™! (
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I—Combined Maneuvers: Change 7, () and a

e This logic leads to the common scenario where we boost the
apogee/perigee while also performing an inclination change.

e In this case, the Av magnitude and direction geometry is more
complicated.

e Referring to the triangle, v~ is the initial magnitude of velocity. v™ is the
magnitude of the desired new orbit with altered r,, 7,, etc.

e The angle between the two vectors is still § = Aq.

e Now, because the magnitudes of v~ and v™ are different, we have to use
the law of cosines to calculate the size of the Aw.



Combined Maneuvers
Combining Plane Change with Bi-Elliptic

)
Avi=4/(v2—W )2 +4v;v,sin? 3 (Rotation about the common apse line) (6.22)

Common
apoapsis
FIG. 6.23

Impulsive plane change maneuver at apoapsis.

FIG. 6.24

The orbital plane rotates about the common apse line. (a) Speed change accompanied by plane change. (b) Plane
change followed by speed change. (c) Speed change followed by plane change.
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Summary

This Lecture you have learned:

Bi-elliptic Maneuvers
® 3-burn Maneuvers

® Comparison with Hohmann
® Numerical Example

> Elliptic

» Circular

Out-of-Plane Maneuvers
® Inclination Change
® Right Ascension Change

Next Lecture: Lambert’'s Problem.
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