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Matthew M. Peet

Lecture 9: Bi-elliptics and Out-of-Plane Maneuvers



Introduction

In this Lecture, you will learn:

Bi-elliptic Maneuvers

• 3-burn Maneuvers

• Comparison with Hohmann

• Numerical Example
▶ Elliptic
▶ Circular

Out-of-Plane Maneuvers

• Inclination Change

• Right Ascension Change

Numerical Problem: Suppose we are in a circular parking orbit at altitude
191km. We desire a final altitude of 376, 310km. Design the energy optimal
orbital maneuvers necessary to reach our desired orbit.
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Introduction

� For low earth orbit, RA has a linear progression due to earth’s equatorial
bulge. This effect is less significant at outer orbits and can be ignored or
corrected.



The Oberth Effect

Generally it is better to make the initial burn at perigee.

For a burn at velocity v, the change in kinetic energy is

∆T =
1

2
(v +∆v)

2 − 1

2
v2 =

1

2
∆v2 + v ·∆v

For a fixed ∆v, v ·∆v is much greater than 1
2∆v2 when v is large.

• For an elliptic orbit, maximum velocity is at perigee
• Lower orbits move faster
• It is much easier to achieve escape velocity when in low earth orbit
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The Oberth Effect

� Of course, potential energy (normalized by mass) is the same before and
after the burn!

This is also,why we burn at 0◦ Flight path angle.

� Otherwise, e.g.for ∠FPA = 90◦

v⃗f =

[
v
∆v

]
� In this case, we have

T =
1

2
∥v⃗∥2 =

1

2
(v2 +∆v2)

� So

∆T =
1

2
(v2 +∆v2)− 1

2
v2 =

1

2
∆v2

� You lose out on all of v ·∆v

� Since typically v >> ∆v, the energy added is a fraction of the energy
added for ∠FPA = 0◦, where ∆T = 1

2
∆v2 + v ·∆v



The Oberth Effect: Energy Explanation

Propulsive force results from expulsion of particles at high velocity.
Kinetic Energy of Propellant

• Suppose craft moving at velocity vs.
• Particles are ejected with relative velocity ∆vp > vs
• Absolute velocity of particles is vs −∆vp.
• Kinetic Energy of particles is

Tp
∼= (vs −∆vp)

2

• The closer vs is to ∆v, the lower the kinetic energy of particles.

Potential Energy of Propellant
• The potential energy of the propellant is

V = −
√

µ

r

• the lower the propellant is ejected, the lower the potential energy of
particles.

Conclusion: Propellant used at perigee has much less energy.

The energy not spent on propellant is retained by the spacecraft.
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The Oberth Effect: Energy Explanation

� For this reason, all significant ∆v maneuvers in interplanetary missions are
done as close to the gravity well of a planet as possible.

� This is entirely separate from the slingshot effect, but in both cases, a low
periapse radius is desirable.

� Note this strategy is only effective when you are trying to increase the
energy of the orbit.

� Doesn’t apply to plane-change maneuvers.

� For apogee lowering, we want to dump as much energy as possible.



The Bi-Elliptic Transfer
Getting more out of the Oberth Effect

The Hohmann transfer is the energy-optimal 2-impulse transfer.

• Addition Energy savings can be bought at the expense of additional time.
• A 3 ∆v transfer
• 2 transfer orbits

The three ∆v maneuvers are:

1. initial impulse close to almost escape velocity.

2. perigee-raising maneuver at apogee.

3. apogee-lowering maneuver at perigee.
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The Bi-Elliptic Transfer

� Perigee raising gets easier the farther out you are.

� less ∆v required.

� Less wasted propellant energy



The Bi-Elliptic Transfer

Suppose we want to raise a circular orbit of radius r1 to radius r2.

First: Given r1 and r2, choose outer transfer radius r∗ >> rf .
Three ∆v burns are now required.

1. From circular initial orbit to transfer orbit 1.
▶ elliptic transfer orbit 1 has perigee rp = r1 and apogee ra = r∗.

2. At apogee of transfer 1, switch to apogee of transfer 2.
▶ elliptic transfer orbit 2 has perigee rp = r2 and apogee ra = r∗.

3. At perigee of transfer 2, circularize the orbit by lowering perigee to r2.
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The Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius ri to final circular orbit
of radius rf .

There are 2 transfer ellipses (both with apogee at r∗)(perigees at ri and rf )

Transfer Ellipse 1:

a1 =
ri + r∗

2

e1 =
r∗ − ri
r∗ + ri

Transfer Ellipse 2:

a2 =
rf + r∗

2

e2 =
r∗ − rf
r∗ + rf

M. Peet Lecture 9: Spacecraft Dynamics 7 / 29



The Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius ri to final circular orbit
of radius rf .

We can calculate the 3 burns as:
Burn 1:

∆v1 = v1,p − vi =

√
2µ

r∗
ri(ri + r∗)

−
√

µ

ri

Burn 2:

∆v2 = v2,a − v1,a =

√
2µ

rf
r∗(rf + r∗)

−
√
2µ

ri
r∗(ri + r∗)

Burn 3:
∆v3 = vf − v2,p =

√
µ

rf
−
√
2µ

r∗
rf (rf + r∗)
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Notes on the Bi-Elliptic Transfer

Suppose we want to raise a circular initial orbit of radius ri to final circular orbit
of radius rf .

Note that the third burn is retrograde.
• ∆v3 is clearly wasted energy.
• For this reason, bielliptics only work when rf >> ri (R :=

rf
ri

∼= 11.94).
▶ vf << vi

Note that r∗ is a free parameter.
• As r∗ → ∞, the bielliptic gets more efficient.

▶ Escape and reinsertion.
• As r∗ → ∞, ∆t → ∞.

▶ A tradeoff between time and efficiency.
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Notes on the Bi-Elliptic Transfer

� Recall the energy of an orbit is E = − µ
2a
.

� The difference in energy between target and initial orbit is partly a
product of the kinetic energy change.

� The Oberth effect only becomes important when the energy difference
between the orbits is large.



Notes on the Bi-Elliptic Transfer (R =
rf
ri
)
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Numerical Example

Problem: Suppose we are in a circular parking orbit at altitude 191km. We
desire a final altitude of 376, 310km. Design the energy optimal orbital
maneuvers necessary to reach our desired orbit.

Solution: First we choose between Hohmann and bi-elliptic. Note

ri = 191km+ 1ER = 1.03ER and rf = 376, 310km+ 1ER = 60ER

Thus our ratio R =
rf
ri

∼= 60. In this case, it is clear that the bi-elliptic is better.

We choose a transfer radius of r∗ = 80ER.

Ellipse 1: Our first transfer ellipse will have a1 = ri+R∗
2 = 40.5ER. We have

the following data

vi = .985ER/TU

v1,p = 1.385ER/TU

v1,a = .0178ER/TU

Thus our initial velocity change is

∆v1 = v1,p − vi = 1.385− .985 = .4ER/TU
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Numerical Example

Ellipse 2: Our second transfer ellipse will have a2 =
rf+R∗

2 = 70ER. We have
the following data

vf = .129ER/TU

v2,p = .138ER/TU

v2,a = .103ER/TU

Our change from ellipse 1 to ellipse 2 requires

∆v2 = v2,a − v1,a = .103− .0178 = .0857ER/TU

Our final circularization requires

∆v3 = vf − v2,p = .129− .138 = −.009ER/TU

Conclusion:
• Our total ∆v budget is .4938ER/TU = 3.9km/s.
• Budget for Hohmann is 4.0km/s.
• The total duration of transit is 2650 TU = 593.9hr = 24.75 days.
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Restrictions on Orbital Plane
Launch Geometry

Most satellites are launched from the surface of the earth.

• Launch Geometry restricts the initial orbital plane.

The two geometric features/constraints of launch are:

• latitude of the launch site, ϕgc (fixed).

• launch azimuth (direction), β (limited choice).

M. Peet Lecture 9: Spacecraft Dynamics 13 / 29



Launch Geometry
Site Restrictions

• The set of launch sites is restricted
• The range of launch azimuth is restricted
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Launch Geometry
Geometric Constraints

Launch geometry restricts the inclination of the orbital plane of the parking
orbit.

Spherical Trigonometry: cos i = cosϕgc sinβ
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Launch Geometry

� Right ascension is also restricted, but can be modified by time-of-launch.
To be discussed shortly.

� If β = ±90◦, then the minimum i is limited by i ≥ ϕgc.

� Equation comes from Napier’s rules for spherical right triangles (C = 90◦)

� β = A (as defined on the previous figure) or β = 180◦ +A (using the
tables)

(R1) cos c = cos a cos b, (R6) tan a = cosB tan c,

(R2) sin b = sinB sin c, (R7) tan b = cosA tan c,

(R3) sin a = sinA sin c, (R8) cosB= sinA cos b,

(R4) tan b = tanB sin a, (R9) cosA = sinB cos a,

(R5) tan a = tanA sin b, (R10) cos c = cotB cotA.



Launch Geometry
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Launch Geometry

� Alternative Napier’s rules for spherical right triangles (B = 90◦)

� In this case, β = −A (as defined on the previous figure) or β = 180◦ −A
(using the tables)

(R1) cos b = cos a cos c, (R6) tan a = cosC tan b,

(R2) sin c = sinC sin b, (R7) tan c = cosA tan b,

(R3) sin a = sinA sin b, (R8) cosC= sinA cos c,

(R4) tan c = tanC sin a, (R9) cosA = sinC cos a,

(R5) tan a = tanA sin c, (R10) cos b = cotC cotA.



Launch Geometry
Site Restrictions

Typically, different sites are used for different purposes.
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Launch Geometry
Site Restrictions

Example: Vandenburg has

ϕgc = 34.6◦ and β + 180◦ ∈ [147◦, 201◦]

Therefore −.4483 < cos i < .295

So the inclination is restricted as

72.84◦ < i < 116.63◦
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Launch Geometry

Azimuth in these tables is measured clockwise from due north (β + 180◦)

� There is a small correction to account for velocity gained from rotation of
the Earth.

� I am unsure whether these tables include this correction.



Launch Window determines RAAN (Ω)

Unlike inclination, the Right Ascension of the orbital plane can be chosen by
Launch Window (Time).

Referring to the triangle, our desired launch time (in Local Sidereal Time) is
given by

θLST = Ω+ λu

where λu can be found from β and i as

cosλu =
cosβ

sin i
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Launch Window determines RAAN (Ω)

Law of Cosines:
cos a = cos b cos c+ sin b sin c cosA

Law of Sines:
sinA

sin a
=

sinB

sin b
=

sinC

sin c

Here a = λu, A = β, C = 90◦, B = i.

Formula actually comes from (R9): cosA = sinB cos a



Example: Launching into the Ecliptic Plane

For interplanetary missions, initial parking orbit should align with the ecliptic
plane (ϵ = 23.5◦).

• Desired RAAN: Ω = 0
• Desired inclination: i = 23.5◦

• Launch Site: Kourou/GSC (ϕgc = 5.2◦, β ∈ [160◦, 280◦])

Challenge: Find θLST and β! Is it in the range of launch azimuths?
First, we note that since desired Ω = 0, we have θLST = λu. Two constraints:

cos i = cosϕgc sinβ, cos θLST =
cosβ

sin i

Solving the first equation for β, and second for θLST

β = sin−1

(
cos 23.5◦

cos 5.2◦

)
= 67.05◦, 113◦

θLST = cos−1

(
cosβ

sin i

)
= cos−1

(
cos 67.05◦

sin 23.5◦

)
= 12.074◦, 167.92◦

To get a posigrade orbit, we correct β′ = β + 180◦. Choose β = 67.05◦ to get
β′ = β + 180◦ = 247.05◦ ∈ [160◦, 280◦]

Alternatively, if β = 113◦, then β′ = 293◦ ̸∈ [160◦, 280◦], so NOT VIABLE!
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Example: Launching into the Ecliptic Plane

� We have adjusted the table data from β′ ∈ [−20◦, 100◦] to
β ∈ [160◦, 280◦]

France owns French Guiana, and Kourou/CSG is a major spaceport for the ESA.



Changes in Orbital Plane
Inclination-Only Plane Changes

To change the inclination of an orbit requires ∆v

• Suppose we want to change inclination without changing any other orbital
element.

Inclination-only orbit changes mean:

• Cannot change magnitude of v (Since a is constant)

• Cannot change in-plane flight path angle (Since e, f , ω are constant)

• Must occur at ascending node (Since Ω is constant)
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Changes in Orbital Plane

� Of course, we usually combine inclination changes with other orbit
changes. We will address this in a later slide.

� Unlike changes in a, it is always better to change inclination when the
velocity is smallest.

– Oberth effect is not relevant because we are not adding energy to
the orbit.



Inclination Only Plane Changes

The ∆v required can be calculated as

∆v = 2v sin
θ

2

If θ = ∆i, the direction of thrust is

90◦ +
θ

2
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Inclination Only Plane Changes

� For direction of thrust: Initial velocity is along the vector v−. The
direction of thrust is then measured by a 90◦ + ∆i

2
counterclockwise

rotation from the current velocity vector.

� The formula is derived by bisecting the triangle along the θ angle and
calculating ∆v/2.



More General Changes in Orbital Plane
Changes in BOTH i and Ω

Plane changes can be made anywhere in the orbit. However, this affects both i
and Ω.

Given an initial orbit with i1 and Ω1, a plane change by amount θ at
u1 = ω1 + f1 yields the spherical geometry:

cos i2 = cos i1 cos θ − sin i1 sin θ cosu

cos(Ω2 − Ω1) =
cos θ − cos i1 cos i2

sin i1 sin i2
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More General Changes in Orbital Plane

� u1 = ω1 + f1 is the arc measured from the ascending node (in the orbital
plane). ω1 is the argument of perigee of the initial orbit. f1 is the true
anomaly of the initial orbit at the time of the ∆v.

� Given initial Ω1, ω1, i1 along with desired Ω2, i2

� We want to determine f1 and θ. That is, when in the orbit to burn (f1)
and how big to make the angle change (θ).

Law of Cosines:
cos a = cos b cos c+ sin b sin c cosA

2nd Law of Cosines:

cosA = − cosB cosC + sinB sinC cos a



Changes in Orbital Plane
BOTH i and Ω

Changing both Ω and i simultaneously is always more efficient than changing
them separately.

If we are given an initial orbit with i1 and Ω1, along with desired elements i2
and Ω2, then required plane change (θ) and position (f1) are given by:

cos θ = cos i1 cos i2 + sin i1 sin i2 cos(Ω2 − Ω1)

cos(u1) = cos(ω1 + f1) =
cos i1cos θ − cos i2

sin i1sin θ
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Changes in Orbital Plane

� First, we solve for θ (amount of plane change), then we solve for
u1 = ω1 + f1. Then burn occurs at f1 = u1 − ω1

� Finding the new argument of periapse (ω2) is a little complicated.



Combined Maneuvers: BOTH i and Ω

Inclination changes are by definition inefficient

∆v = 2v sin
θ

2

• Up to 200% of total energy.

• Changes become more efficient as
lim v → 0.
▶ v → 0 as r → ∞.

It is often worth boosting the orbit to improve the efficiency of a plane change
(See Homework.)

A typical strategy is to combine a plane change with a bi-elliptic transfer
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Numerical Example: Combined Change – BOTH i and Ω

Problem: Suppose we have an initial orbit with i = 55◦, Ω = 0◦ and
a = 1.8ER. Determine the timing and ∆v required to change the inclination to
i = 40◦ and RAAN to Ω = 45◦.

Solution: First find the plane change required

Using our formula,

cos θ = cos 55◦ cos 40◦

+ sin 55◦ sin 40◦ cos 45◦

= .8117

Thus θ = 35.74◦. The timing for the

∆v can be calculated from u = ω+ f as

cosu =
cos 55◦ cos 35.74◦ − cos 40◦

sin 35.74◦ sin 55◦

= −.628
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Numerical Example: Combined Change – BOTH i
and Ω

� In the image, a calligraphic form of θ is being used.



Numerical Example: Combined Change – BOTH i and Ω

Now cosu = −.628 implies u = 128.9◦.

Since the orbit is circular just take
ω = 0. Thus the burn occurs at

f = u− ω = 128.9◦.

To calculate the ∆v, we must first find
the v at the desired point in the orbit.
Since the orbit is circular:

v =

√
µ

r
= .745ER/TU

Then the required ∆v can be calculated as

∆v = 2 · v · sin θ

2
= .457ER/TU
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Combined Maneuvers: Change i, Ω and a
Change in Both Velocity and Orbital Plane

Combine a plane change ∆θ, with a velocity magnitude change
• Velocity change is 2nd burn in Hohmann or bi-elliptic

Three parts to consider:

• Initial velocity v(t−k )
▶ Determined from initial or transfer orbit

• Final velocity v(t+k )
▶ Determined from target or 2nd transfer orbit

• θfp is the direction of burn w/r to the current velocity
vector.

Dq

q
fp

Law of Cosines: To find magnitude of ∆v

∆v2 = v(t−k )
2 + v(t+k )

2 − 2v(t−k )v(t
+
k ) cos∆θ

Law of Cosines: To find direction of burn - θfp

θfp = 180◦ − cos−1

(
v(t−k )

2 +∆v2 − v(t+k )

2v(t−k )∆v

)
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Combined Maneuvers: Change i, Ω and a
Change in Both Velocity and Orbital Plane

Combine a plane change ∆θ, with a velocity magnitude change
• Velocity change is 2nd burn in Hohmann or bi-elliptic

Three parts to consider:

• Initial velocity v(t−k )
▶ Determined from initial or transfer orbit

• Final velocity v(t+k )
▶ Determined from target or 2nd transfer orbit

• θfp is the direction of burn w/r to the current velocity
vector.

Dq

q
fp

Law of Cosines: To find magnitude of ∆v

∆v2 = v(t−k )
2 + v(t+k )

2 − 2v(t−k )v(t
+
k ) cos∆θ

Law of Cosines: To find direction of burn - θfp

θfp = 180◦ − cos−1

(
v(t−k )

2 +∆v2 − v(t+k )

2v(t−k )∆v

)2
0
2
5
-0
2
-2
7
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Combined Maneuvers: Change i, Ω and a

� This logic leads to the common scenario where we boost the
apogee/perigee while also performing an inclination change.

� In this case, the ∆v magnitude and direction geometry is more
complicated.

� Referring to the triangle, v− is the initial magnitude of velocity. v+ is the
magnitude of the desired new orbit with altered ra, rp, etc.

� The angle between the two vectors is still θ = ∆i.

� Now, because the magnitudes of v− and v+ are different, we have to use
the law of cosines to calculate the size of the ∆v.



Combined Maneuvers
Combining Plane Change with Bi-Elliptic
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Summary

This Lecture you have learned:

Bi-elliptic Maneuvers

• 3-burn Maneuvers

• Comparison with Hohmann

• Numerical Example
▶ Elliptic
▶ Circular

Out-of-Plane Maneuvers

• Inclination Change

• Right Ascension Change

Next Lecture: Lambert’s Problem.
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