
Spacecraft Dynamics and Control

Matthew M. Peet
Arizona State University

Lecture 12: Orbital Perturbations



Introduction

In this Lecture, you will learn:

Perturbation Basics

• The Satellite-Normal Coordinate System

• Equations for
▶ ȧ, i̇, Ω̇, ω̇, ė

Drag Perturbations

• Models of the atmosphere.

• Orbit Decay

• ∆v budgeting.

• Effect on eccentricity.
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Introduction to Perturbations

So far, we have only discussed
idealized orbits.

• Solutions to the 2-body
problem.

• All orbital elements are
fixed (except f).

In reality, there are many other
forces at work:

• Drag

• Non-spherical Earth

• Lunar Gravity

• Solar Radiation

• Tidal Effects
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Introduction to Perturbations

� Perturbations can be good or bad.

� Perturbations allow us to break free of the ∆v budget.

� There is not much flexibility in the restricted two-body problem. All
maneuvering is accomplished using ∆v budget (Gravity assist being an
exception)

� Perturbations allow us to identify new forces which, if used correctly, can
reduce our dependency on ∆v budget.



Generalized Perturbation Analysis
Satellite-Normal Coordinate System

How to characterize the perturbing forces?

F⃗total = − µ

∥R∥2
êR + F⃗p

• Where do they point?
• Need a new coordinate system.

F⃗p = RêR +NêN + T êT

Satellite-Normal CS (R-T-N):

• êR points along the earth →
satellite vector.

• êN points in the direction of h⃗

• êT is defined by the RHR
▶ êT · v > 0.
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Generalized Perturbation Analysis

In Frenet coordinates, êN is the same, êT is tangential to motion, and êR =

êT × êN .



Generalized Perturbation Analysis

Now suppose we have an expression for the disturbing force:

F⃗ = RêR +NêN + T êT

How does this affect ȧ, i̇, Ω̇, ω̇, ė?

Most elements depend on h⃗ and E:

a = − µ

2E

e =

√
1 +

2Eh2

µ2

cos i =
hz

h

tanΩ =
hx

−hy
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Generalized Perturbation Analysis

� Here we see the direct relationship between physical parameters h,E and
orbital parameters a, e.

� In the presence of perturbations, angular momentum and energy of the
satellite are not conserved.

� Hence, in the presence of perturbations, the orbit is no longer truly
elliptic. Hence the orbital elements are not perfect parameters of motion.
However, deviations from the ellipse occur over long time-horizons and so
we assume a quasi-stationary elliptic motion and include adjustments to
the ellipse in the form of orbit-averaged versions of ȧ, i̇, Ω̇, ω̇, ė. Also, we
don’t have anything better.



Energy and Momentum Perturbation

We have the orbital elements in terms of h⃗ and E.

1. Find expressions for
˙⃗
h and Ė.

2. Translate into expressions for ȧ, ė, etc.

Example 1: Semimajor axis.

a = − µ

2E

Chain Rule:

ȧ =
da

dE

dE

dt

=
µ

2E2
Ė

Example 2: Eccentricity.

e =

√
1 +

2Eh2

µ2

Chain Rule:

ė =
de

dh

dh

dt
+

de

dE

dE

dt

=
1

2e
(e2 − 1)

[
2
ḣ

h
− Ė

E

]

M. Peet Lecture 12: Spacecraft Dynamics 6 / 31



Energy and Momentum Perturbation

We have the orbital elements in terms of h⃗ and E.

1. Find expressions for
˙⃗
h and Ė.
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Energy and Momentum Perturbation

p =
h2

µ
= a(1− e2) = − µ

2E
(1− e2), So (1− e2) = −2Eh2

µ2

So

e =

√
1 +

2Eh2

µ2
=

(
1 +

2Eh2

µ2

) 1
2

So

de

dh
=

1

2

(
1 +

2Eh2

µ2

)− 1
2 4Eh

µ2
=

2Eh

µ2e
= − h2

µahe
= − p

ahe
=

(e2 − 1)

he

and likewise

de

dE
=

1

2

(
1 +

2Eh2

µ2

)− 1
2 2h2

µ2
=

h2

µ2e
=

p

µe
=

2a(1− e2)

2µe
=

e2 − 1

2Ee
.



Energy and Momentum Perturbation

So now the key is to find expressions for ḣ and Ė. Let F⃗ be the disturbing force
per unit mass (watch those units!) in RTN coordinates:

F⃗ =

RT
N


Energy: Energy is Force times distance.

dE = F⃗ · dr⃗

So in RTN coordinates,

Ė = F⃗ · v⃗

= F⃗ ·
(
ṙêR + rθ̇êT

)
= ṙR+ rθ̇T

Momentum: Newton’s Second Law:

˙⃗
h = r⃗ × F⃗

= rT êN − rNêT

With magnitude ḣ = d/dt
√
h⃗ · h⃗

ḣ =
h⃗ · ˙⃗h
h

=
(he⃗N ) · (rT êN − rNêT )

h
= rT
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Energy and Momentum Perturbation

� Energy is NOT conserved. Some disturbances can sap energy (e.g. drag).
Some can increase energy (e. g. solar wind)

� We have assumed quasi-elliptic motion, so...

� Recall v⃗ = ṙêR + rθ̇êT is the velocity in RTN - recall Lecture 2!

� Recall r⃗ is always in the orbital plane! So êN · r⃗ = 0.

� Also recall h⃗ = he⃗N .



Semi-Major Axis Perturbation

Using r =
h2/µ

1 + e cos f
and the approximation θ̇ = d

dt (ω + f) ∼= ḟ = h/r2, we

combine
ȧ =

µ

2E2
Ė

with
Ė = ṙR+ rθ̇T

where E = − µ
2a to get:

Semi-major Axis

ȧ = 2
a2

µ

[
R
µe sin f

h
+ T

h

r

]
or, in terms of a, e, and f ,

ȧ = 2

√
a3

µ(1− e2)
[eR sin f + T (1 + e cos f)]
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Semi-Major Axis Perturbation

Recall by definition h = r · v⊥ = r · (rḟ) = r2ḟ .

Since r =
h2/µ

1 + e cos f
, we have used the chain rule to get

ṙ =
h2/µ

(1 + e cos f)2
e sin fḟ =

r2

h2/µ
e sin fḟ =

e sin f

h2/µ
r2ḟ =

µe sin f

h



Eccentricity Perturbation

Using r =
h2/µ

1 + e cos f
and the approximation θ̇ = d

dt (ω + f) ∼= ḟ = h
r2 , we

combine

ė =
1

2e
(e2 − 1)

[
2
ḣ

h
− Ė

E

]
with

Ė = ṙR+ rθ̇T and ḣ = rT

where E = − µ
2a to get

Eccentricity:

ė =

√
a(1− e2)

µ
[R sin f + T (cos f + cosEecc)]

where Eecc is eccentric anomaly,

tan
Eecc

2
=

√
1− e

1 + e
tan

f

2
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Eccentricity Perturbation

In the last equation, we used the expression for r

r = a(1− e cosEecc)



Energy and Momentum Perturbation
Inclination and RAAN

Inclination: From

cos i =
hz

h

we have from the chain rule

d

dt
i =

1

− sin i

hḣz − ḣhz

h2

from which we can get

d

dt
i =

√
a(1− e2)

µ

N cos(ω + f)

1 + e cos f

RAAN: From

tanΩ =
hx

−hy

we have from the chain rule

Ω̇ = cos2 Ω
hxḣy − ḣxhy

h2
y

from which we can get

Ω̇ =

√
a(1− e2)

µ

N sin(ω + f)

sin i(1 + e cos f)

Although complicated, we can also find ω̇.

ω̇ = −Ω̇ cos i+

√
a(1− e2)

e2µ

(
−R cos f + T

(2 + e cos f) sin f

1 + e cos f

)
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hḣz − ḣhz
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h2
y

from which we can get

Ω̇ =

√
a(1− e2)

µ

N sin(ω + f)

sin i(1 + e cos f)

Although complicated, we can also find ω̇.

ω̇ = −Ω̇ cos i+

√
a(1− e2)

e2µ

(
−R cos f + T

(2 + e cos f) sin f

1 + e cos f

)2
0
2
5
-0
5
-0
7

Lecture 12
Spacecraft Dynamics

Energy and Momentum Perturbation

Use Rotation matrices to convert:

˙⃗
h = r⃗ × F⃗

= rT êN − rNêT =

 0
−rN
rT


RNT

=

 ḣx

ḣy

rT cos i− rN cos θ sin i


ECI

Where in the last step, we used the rotation matrix RRTN→ECI =

R3(Ω)R1(i)R3(θ) from Lecture 7. However, the expression for ḣx, ḣy is too

complicated for these slides.



Levitated Orbit Example

Problem: Suppose a satellite of 100kg in circular polar orbit of 42,164km
experiences a continuous solar pressure of .1 Newton in êN direction. How do
the orbital elements vary with time?

Solution: The Force per unit mass is
N = F/m = .001m/s2 = 1E − 6km/s2.
Since T = R = e = 0, and f ∼= Eecc

∼= M = nt

ȧ = 2

√
a3

µ(1− e2)
[eR sin f + T (1 + e cos f)] = 0

ė =

√
a(1− e2)

µ
[R sin f + T (cos f + cosEecc)] = 0

For inclination, we have

d

dt
i = N

√
a(1− e2)

µ

cos(ω + f)

1 + e cos f
= N

√
a

µ
cosnt
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Levitated Orbit Example

The formula for inclination integrates out to

∆i(t) = N

√
a

µ

1

n
sinnt = .00446 sinnt radians

Similarly, since i ∼= 90◦

Ω̇ = N

√
a(1− e2)

µ

sin(ω + f)

sin i(1 + e cos f)
= N

√
a

µ
sinnt

We have

∆Ω(t) = −N

√
a

µ

1

n
cosnt = −.00446 cosnt radians

The effect is a “Displaced” orbit. The size of the displacement is .0045rad *
42164 km = 188km. See “Light Levitated Geostationary Cylindrical Orbits are
Feasible” by S. Baig and C. R. McInnes.
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Levitated Orbit Example

� At ascending node, pulled forward (+êN ) by 188km due to +∆Ω, no ∆i

� At descending node, pulled forward (+êN ) by 188km due to −∆Ω, no ∆i

� At north pole, pulled forward (+êN ) by 188km due to −∆i, no ∆Ω

� At south pole, pulled forward (+êN ) by 188km due to +∆i, no ∆Ω



Periodic and Secular Variation

The preceding example illustrated the effect of periodic variation.

There are three types of disturbances

• Short Periodic - Cycles every orbital period.
• Long Periodic - Cycles last longer than one orbital period.
• Secular - Does not cycle. Disturbances mount over time.

Secular Disturbances must be corrected.
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Atmospheric Drag

Earth’s atmosphere extends into space.

The ionosphere extends well past 350km.

• ISS orbit lies between 330 and 400km.
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Atmospheric Drag

� Its called the ionosphere because all the atmospheric gasses have lost their
electrons.



The Ionosphere

Figure: The Aurora Borealis Shows the Ionosphere Extending Well into Orbital Range
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The Drag Perturbation

Drag force for satellites is the same as for aircraft

FD = CDQA =
1

2
ρv2CDA

By definition, drag is opposite to the velocity
vector.

• Since by definition, v⃗ ⊥ h⃗, N = 0

• For now, ignore the rotation of the earth
(adds ∆v = ωer ∼= .5km/s).

• For now, assume circular orbit, so v⃗ = vêT .

Ballistic Coefficient:

B =
m

CDA

Then as first approximation,

N = R = 0 , T = −1

2

ρ

m
CDAv2 = −1

2

ρv2

B
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The Drag Perturbation

� Q is dynamic pressure.

� v⃗ is in the orbital plane and h⃗ is perpendicular to the orbital plane.

� A is the area of the spacecraft projected onto the êN − êR plane.

� CD measures how aerodynamic the spacecraft is.

� Drag can also generate lift (CL)! A component in the êR direction (or
even the êN direction)



The Drag Effect on Orbital Elements
Circular Orbits, Constant Density

First note that since N = 0, the orbital plane does not change
• Ω̇ = 0.
• d

dt i = 0.

Semi-Major Axis: Since e = 0, only a is
affected.

ȧ = 2

√
a3

µ(1− e2)
[eR sin f + T (1 + e cos f)]

= −

√
a3

µ

ρ

m
CDAv2 = −

√
a3

µ

µ2

a2
ρ

B

= −√
aµ

ρ

B

Integrating with respect to time (assuming constant ρ) yields

a(t) =

(√
a(0)−

√
µ

2

ρ

B
t

)2
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The Drag Effect on Orbital Elements

� v =
√

µ/r for circular orbits.

� Unfortunately, ρ(t) is NOT constant.



Example: International Space Station

Figure: Orbit Decay of the International Space Station
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Density Variation

The atmospheric density is not even remotely constant

Exponential Growth in Density:

• Extends to 1.225 ∗ 10−3g/cm3 at
sea level.

• Orbits below Kármán Line (100km)
will not survive a single orbit.
▶ Suborbital flight.

Solar Activity: We have different
models of the atmosphere depending on
solar activity level.

• Unlike aircraft applications

• Variation mainly occurs in
ionosphere

• Sunspots increase solar wind which
changes earth’s EM field
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Density Variation

� Most density models of the atmosphere start to fail at the ionosphere.

� Kármán Line is named after Theodore van Kármán (1881–1963)

� A nominal aircraft at the Kármán Line would have to travel at orbital
velocity to generate more lift than weight.

� Usually differentiates the fields of aeronautics and astronautics



Stationkeeping

All Satellites must budget ∆v (m/s/yr) to compensate for atmospheric drag.

The problem with budgeting is predicting solar activity.
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Stationkeeping

This data is scaled to Ballistic Coefficient.

� So if your ballistic coefficient is 10 times lower, you need 10 times the ∆v!



Spacecraft Lifetime

Without stationkeeping, orbits will
decay quickly.

Definition 1.

The Lifetime of a spacecraft is the
time it takes to reach the 100km
Kármán Line.

• The Figure shows mean value of
lifetime.

• Actual values will depend on solar
activity.
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Spacecraft Lifetime
Solar Activity Effect
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Spacecraft Lifetime
Solar Activity Effect
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Spacecraft Lifetime

Plot is normalized for a ballistic coefficient and US customary units.

� To get actual lifetime, multiply number from plot by .2044 W
CDA

in metric
units.



Spacecraft Lifetime
Solar Activity Effect
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Solar Activity

Solar Activity varies substantially with time. F10.7 measures normalized solar
power flux at EM wavelength 10.7cm.

Figure: Density vs. AltitudeM. Peet Lecture 12: Spacecraft Dynamics 24 / 31



Solar Activity is Hard to Predict

Figure: Shatten Prediction Model with Actual Data

Prediction models offer some guidance but CAN NOT BE TRUSTED.
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Solar Activity is Hard to Predict

Figure: More recent data is not looking good



Drag Effects on Eccentric Orbits

Eccentric orbits are particularly prone to drag.

• Even if a is large, drag at perigee is high.
• Very difficult to integrate, due to changing density
• Using Exponential Density model,

∆erev = −2π
CDA

m
aρperigeee

−ae/H [I1 + e(I0 + I2)/2]

▶ ρp is density at perigee. H is a height constant. Ii are Bessel functions
• ∆a is also complicated.
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Decay of Eccentricity

Although drag occurs at perigee, apogee is lowered.
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Drag Effects on Eccentric Orbits
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Hayabusa Re-entry
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reentry_hayabusa.mp4
Media File (video/mp4)



Summary

This Lecture you have learned:

Perturbation Basics

• The Satellite-Normal Coordinate System

• Equations for
▶ ȧ, i̇, Ω̇, ω̇, ė

Drag Perturbations

• Models of the atmosphere.

• Orbit Decay

• ∆v budgeting.

• Effect on eccentricity.

Next Lecture: Earth’s Shape and Sun-synchronous Orbits.
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Equations

ȧ = 2

√
a3

µ(1− e2)
[eR sin f + T (1 + e cos f)]

ė =

√
a(1− e2)

µ
[R sin f + T (cos f + cosEecc)]

d

dt
i =

√
a(1− e2)

µ

N cos(ω + f)

1 + e cos f

Ω̇ =

√
a(1− e2)

µ

N sin(ω + f)

sin i(1 + e cos f)

ω̇ = −Ω̇ cos i+

√
a(1− e2)

e2µ

(
−R cos f + T

(2 + e cos f) sin f

1 + e cos f

)
Drag (circular orbit):

N = R = 0, T = −1

2
Bρv2 = −1

2
Bρ

µ

a
.
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