Spacecraft Dynamics and Control

Matthew M. Peet Arizona State University

Lecture 12: Orbital Perturbations

Introduction

In this Lecture, you will learn:

Perturbation Basics

- The Satellite-Normal Coordinate System
- Equations for
 - \rightarrow \dot{a} , \dot{i} , $\dot{\Omega}$, $\dot{\omega}$, \dot{e}

Drag Perturbations

- Models of the atmosphere.
- Orbit Decay
- Δv budgeting.
- Effect on eccentricity.

Introduction to Perturbations

So far, we have only discussed idealized orbits.

- Solutions to the 2-body problem.
- All orbital elements are fixed (except f).

In reality, there are many other forces at work:

- Drag
- Non-spherical Earth
- Lunar Gravity
- Solar Radiation
- Tidal Effects

So far, we have only discussed · Solutions to the 2-body problem · All orbital elements are In reality there are many other forces at work • Drag · Non-spherical Earth . Lunar Gravity Solar Radiation • Tidal Effects

Introduction to Perturbations

- Perturbations can be good or bad.
 - Perturbations allow us to break free of the Δv budget.
- There is not much flexibility in the restricted two-body problem. All maneuvering is accomplished using Δv budget (Gravity assist being an exception)
- Perturbations allow us to identify new forces which, if used correctly, can reduce our dependency on Δv budget.

Generalized Perturbation Analysis

Satellite-Normal Coordinate System

How to characterize the perturbing forces?

$$\vec{F}_{total} = -\frac{\mu}{\|R\|^2} \hat{e}_R + \vec{F}_p$$

- Where do they point?
- Need a new coordinate system.

$$\vec{F_p} = R\hat{e}_R + N\hat{e}_N + T\hat{e}_T$$

Satellite-Normal CS (R-T-N):

- \hat{e}_R points along the earth \rightarrow satellite vector.
- ullet \hat{e}_N points in the direction of $ec{h}$
- \hat{e}_T is defined by the RHR
 - $\hat{e}_T \cdot v > 0.$

Generalized Perturbation Analysis tools were construct town. Here to characterize the procluding formal?

How to characterize the procluding formal $P_{total} = -\frac{p_{total}}{p_{total}} + \frac{p_{total}}{p_{total}}$ Where do they print?

* Host is now continuously $(\overline{p_t} - \overline{p_t}) + \overline{p_{total}} + \overline{p_{total}}$ * Signification Normal $(\overline{p_t} - \overline{p_t}) + \overline{p_{total}} + \overline{p_{total}}$ * δ_{total} is because $(\overline{p_t} - \overline{p_t}) + \overline{p_{total}}$ * δ_{total} is print which denotes of δ

In Frenet coordinates, \hat{e}_N is the same, \hat{e}_T is tangential to motion, and $\hat{e}_R=\hat{e}_T\times\hat{e}_N.$

Generalized Perturbation Analysis

Now suppose we have an expression for the disturbing force:

$$\vec{F} = R\hat{e}_R + N\hat{e}_N + T\hat{e}_T$$

How does this affect \dot{a} , \dot{i} , $\dot{\Omega}$, $\dot{\omega}$, \dot{e} ?

Most elements depend on \vec{h} and E:

$$a = -\frac{\mu}{2E}$$

$$e = \sqrt{1 + \frac{2Eh^2}{\mu^2}}$$

$$\cos i = \frac{h_z}{h}$$

$$\tan \Omega = \frac{h_x}{-h_y}$$

- Here we see the direct relationship between physical parameters h,E and orbital parameters a,e.
- In the presence of perturbations, angular momentum and energy of the satellite are not conserved.
- Hence, in the presence of perturbations, the orbit is no longer truly elliptic. Hence the orbital elements are not perfect parameters of motion. However, deviations from the ellipse occur over long time-horizons and so we assume a quasi-stationary elliptic motion and include adjustments to the ellipse in the form of orbit-averaged versions of $\dot{a}, \dot{i}, \dot{\Omega}, \dot{\omega}, \dot{e}$. Also, we don't have anything better.

Energy and Momentum Perturbation

We have the orbital elements in terms of \vec{h} and E.

- 1. Find expressions for \vec{h} and \dot{E} .
- 2. Translate into expressions for \dot{a} , \dot{e} , etc.

Example 1: Semimajor axis.

$$a=-\frac{\mu}{2E}$$

Chain Rule:

$$\dot{a} = \frac{da}{dE} \frac{dE}{dt}$$
$$= \frac{\mu}{2E^2} \dot{E}$$

Example 2: Eccentricity.

$$e = \sqrt{1 + \frac{2Eh^2}{\mu^2}}$$

Chain Rule:

$$\dot{e} = \frac{de}{dh}\frac{dh}{dt} + \frac{de}{dE}\frac{dE}{dt}$$
$$= \frac{1}{2e}(e^2 - 1)\left[2\frac{\dot{h}}{h} - \frac{\dot{E}}{E}\right]$$

We have the orbital elements in terms of \vec{h} and E. 1. Find expressions for $\vec{\hat{h}}$ and \dot{E} .

Example 1: Semimajor axis. Example 2: Eccentricity. $a=-\frac{\mu}{2E}$ $e=\sqrt{1+\frac{2Eh^2}{\mu^2}}$

 $\dot{a} = \frac{da}{dE} \frac{dE}{dt}$ $= \frac{\mu}{2E^2} \dot{E}$ Chain Role: $\dot{a} = \frac{da}{dt}$ $\dot{a} = \frac{da}{dt}$ $= \frac{1}{2}$

$$p = \frac{h^2}{\mu} = a(1 - e^2) = -\frac{\mu}{2E}(1 - e^2),$$
 So $(1 - e^2) = -\frac{2Eh^2}{\mu^2}$

So

$$e = \sqrt{1 + \frac{2Eh^2}{\mu^2}} = \left(1 + \frac{2Eh^2}{\mu^2}\right)^{\frac{1}{2}}$$

So

$$\frac{de}{dh} = \frac{1}{2} \left(1 + \frac{2Eh^2}{\mu^2} \right)^{-\frac{1}{2}} \frac{4Eh}{\mu^2} = \frac{2Eh}{\mu^2 e} = -\frac{h^2}{\mu a h e} = -\frac{p}{a h e} = \frac{(e^2 - 1)}{h e}$$

and likewise

$$\frac{de}{dE} = \frac{1}{2} \left(1 + \frac{2Eh^2}{\mu^2} \right)^{-\frac{1}{2}} \frac{2h^2}{\mu^2} = \frac{h^2}{\mu^2 e} = \frac{p}{\mu e} = \frac{2a(1 - e^2)}{2\mu e} = \frac{e^2 - 1}{2Ee}.$$

Energy and Momentum Perturbation

So now the key is to find expressions for \dot{h} and \dot{E} . Let \vec{F} be the disturbing force per unit mass (watch those units!) in RTN coordinates:

$$\vec{F} = \begin{bmatrix} R \\ T \\ N \end{bmatrix}$$

Energy: Energy is Force times distance.

$$dE = \vec{F} \cdot d\vec{r}$$

So in RTN coordinates,

$$\begin{split} \dot{\underline{E}} &= \vec{F} \cdot \vec{v} \\ &= \vec{F} \cdot \left(\dot{r} \hat{e}_R + r \dot{\theta} \hat{e}_T \right) \\ &= \dot{r} R + r \dot{\theta} T \end{split}$$

Momentum: Newton's Second Law:

$$\begin{split} \dot{\vec{h}} &= \vec{r} \times \vec{F} \\ &= rT\hat{e}_N - rN\hat{e}_T \end{split}$$

With magnitude $\dot{h} = d/dt \sqrt{\vec{h} \cdot \vec{h}}$

$$\dot{h} = \frac{\vec{h} \cdot \dot{\vec{h}}}{h} = \frac{(h\vec{e}_N) \cdot (rT\hat{e}_N - rN\hat{e}_T)}{h}$$
$$= rT$$

gy and Momentum Pert	urbation
the key is to find expressions for \hat{h} and \hat{E} . Let \vec{F} be the disturbing force it mass (watch those units!) in RTN coordinates:	
$\vec{F} = \begin{bmatrix} R \\ T \\ N \end{bmatrix}$	
Energy is Force times distance.	Momentum: Newton's Second Law:
$dE = \vec{F} \cdot d\vec{r}$	$\vec{k} = \vec{r} \times \vec{F}$
TN coordinates,	$= rT\dot{e}_N - rN\dot{e}_T$
$\dot{\vec{E}} = \vec{F} \cdot \vec{v}$	With magnitude $\dot{h}=d/dt\sqrt{\ddot{h}\cdot\ddot{h}}$
$= F \cdot (\dot{r}\dot{e}_R + r\dot{\theta}\dot{e}_T)$ = $\dot{r}R + r\dot{\theta}T$	$\begin{split} \dot{h} &= \frac{\vec{h} \cdot \vec{h}}{h} = \frac{(h\vec{e}_N) \cdot (rT\hat{e}_N - rN\hat{e}_T)}{h} \\ &= rT \end{split}$

Energy.

So in RT

- Energy is NOT conserved. Some disturbances can sap energy (e.g. drag). Some can increase energy (e. g. solar wind)
- We have assumed quasi-elliptic motion, so...
- Recall $\vec{v} = \dot{r}\hat{e}_R + r\dot{\theta}\hat{e}_T$ is the velocity in RTN recall Lecture 2!
- Recall \vec{r} is always in the orbital plane! So $\hat{e}_N \cdot \vec{r} = 0$.
- Also recall $\vec{h} = h\vec{e}_N$.

Semi-Major Axis Perturbation

Using
$$r=\frac{h^2/\mu}{1+e\cos f}$$
 and the approximation $\dot{\theta}=\frac{d}{dt}(\omega+f)\cong\dot{f}=h/r^2$, we combine
$$\dot{a}=\frac{\mu}{2E^2}\dot{E}$$
 with
$$\dot{E}=\dot{r}B+r\dot{\theta}T$$

where $E=-\frac{\mu}{2a}$ to get:

Semi-major Axis

$$\dot{a} = 2\frac{a^2}{\mu} \left[R \frac{\mu e \sin f}{h} + T \frac{h}{r} \right]$$

or, in terms of a, e, and f,

$$\dot{a} = 2\sqrt{\frac{a^3}{\mu(1-e^2)}} \left[eR\sin f + T(1+e\cos f) \right]$$

Recall by definition $h = r \cdot v_{\perp} = r \cdot (r\dot{f}) = r^2 \dot{f}$.

Since $r = \frac{h^2/\mu}{1 + e\cos f}$, we have used the chain rule to get

$$\dot{r} = \frac{h^2/\mu}{(1 + e\cos f)^2} e\sin f\dot{f} = \frac{r^2}{h^2/\mu} e\sin f\dot{f} = \frac{e\sin f}{h^2/\mu} r^2\dot{f} = \frac{\mu e\sin f}{h}$$

Eccentricity Perturbation

Using $r=rac{h^2/\mu}{1+e\cos f}$ and the approximation $\dot{\theta}=rac{d}{dt}(\omega+f)\cong\dot{f}=rac{h}{r^2}$, we combine

$$\dot{e} = \frac{1}{2e}(e^2 - 1) \left[2\frac{\dot{h}}{h} - \frac{\dot{E}}{E} \right]$$

with

$$\dot{E} = \dot{r}R + r\dot{\theta}T \qquad \text{and} \qquad \dot{h} = rT$$

where $E=-\frac{\mu}{2a}$ to get

Eccentricity:

$$\dot{e} = \sqrt{\frac{a(1 - e^2)}{\mu}} \left[R \sin f + T(\cos f + \cos E_{ecc}) \right]$$

where E_{ecc} is eccentric anomaly,

$$\tan\frac{E_{ecc}}{2} = \sqrt{\frac{1-e}{1+e}} \tan\frac{f}{2}$$

Lecture 12
—Spacecraft Dynamics
—Eccentricity Perturbation

2025-05-07

In the last equation, we used the expression for \boldsymbol{r}

$$r = a(1 - e\cos E_{ecc})$$

Energy and Momentum Perturbation

Inclination and RAAN

Inclination: From

$$\cos i = \frac{h_z}{h}$$

we have from the chain rule

$$\frac{d}{dt}i = \frac{1}{-\sin i} \frac{h\dot{h}_z - \dot{h}h_z}{h^2}$$

from which we can get

$$\frac{d}{dt}i = \sqrt{\frac{a(1-e^2)}{\mu}} \frac{N\cos(\omega+f)}{1+e\cos f}$$

RAAN: From

$$\tan \Omega = \frac{h_x}{-h_y}$$

we have from the chain rule

$$\dot{\Omega} = \cos^2 \Omega \frac{h_x \dot{h}_y - \dot{h}_x h_y}{h_y^2}$$

from which we can get

$$\dot{\Omega} = \sqrt{\frac{a(1-e^2)}{\mu}} \frac{N\sin(\omega+f)}{\sin i(1+e\cos f)}$$

Although complicated, we can also find $\dot{\omega}$.

$$\dot{\omega} = -\dot{\Omega}\cos i + \sqrt{\frac{a(1-e^2)}{e^2\mu}} \left(-R\cos f + T\frac{(2+e\cos f)\sin f}{1+e\cos f} \right)$$

Energy and Momentum Perturbation

Use Rotation matrices to convert:

$$\begin{split} \dot{\vec{h}} &= \vec{r} \times \vec{F} \\ &= rT\hat{e}_N - rN\hat{e}_T = \begin{bmatrix} 0 \\ -rN \\ rT \end{bmatrix}_{RNT} \\ &= \begin{bmatrix} \dot{h}_x \\ \dot{h}_y \\ rT\cos i - rN\cos\theta\sin i \end{bmatrix}_{ECI} \end{split}$$

Where in the last step, we used the rotation matrix $R_{RTN \to ECI} = R_3(\Omega)R_1(i)R_3(\theta)$ from Lecture 7. However, the expression for \dot{h}_x , \dot{h}_y is too complicated for these slides.

Levitated Orbit Example

Problem: Suppose a satellite of 100kg in circular polar orbit of 42,164km experiences a continuous solar pressure of .1 Newton in \hat{e}_N direction. How do the orbital elements vary with time?

Solution: The Force per unit mass is

$$N = F/m = .001m/s^2 = 1E - 6km/s^2.$$

Since
$$T=R=e=0$$
, and $f\cong E_{ecc}\cong M=nt$

$$\dot{a} = 2\sqrt{\frac{a^3}{\mu(1-e^2)}} \left[eR\sin f + T(1+e\cos f) \right] = 0$$

$$\dot{e} = \sqrt{\frac{a(1 - e^2)}{\mu}} [R \sin f + T(\cos f + \cos E_{ecc})] = 0$$

For inclination, we have

$$\frac{d}{dt}i = N\sqrt{\frac{a(1-e^2)}{\mu}}\frac{\cos(\omega+f)}{1+e\cos f} = N\sqrt{\frac{a}{\mu}}\cos nt$$

Levitated Orbit Example

The formula for inclination integrates out to

$$\Delta i(t) = N \sqrt{\frac{a}{\mu}} \frac{1}{n} \sin nt = \boxed{.00446 \sin nt \ radians}$$

Similarly, since $i \cong 90^{\circ}$

$$\dot{\Omega} = N \sqrt{\frac{a(1 - e^2)}{\mu}} \frac{\sin(\omega + f)}{\sin i(1 + e\cos f)} = N \sqrt{\frac{a}{\mu}} \sin nt$$

We have

$$\Delta\Omega(t) = -N\sqrt{\frac{a}{\mu}} \frac{1}{n} \cos nt = \boxed{-.00446 \cos nt \ radians}$$

The effect is a "Displaced" orbit. The size of the displacement is .0045rad * 42164 km = 188 km. See "Light Levitated Geostationary Cylindrical Orbits are Feasible" by S. Baig and C. R. McInnes.

M. Peet

Levitated Orbit Example

- At ascending node, pulled forward $(+\hat{e}_N)$ by 188km due to $+\Delta\Omega$, no Δi
- At descending node, pulled forward $(+\hat{e}_N)$ by 188km due to $-\Delta\Omega$, no Δi
- At north pole, pulled forward $(+\hat{e}_N)$ by 188km due to $-\Delta i$, no $\Delta\Omega$
- At south pole, pulled forward $(+\hat{e}_N)$ by 188km due to $+\Delta i$, no $\Delta\Omega$

Periodic and Secular Variation

The preceding example illustrated the effect of periodic variation.

There are three types of disturbances

- **Short Periodic** Cycles every orbital period.
- Long Periodic Cycles last longer than one orbital period.
- **Secular** Does not cycle. Disturbances mount over time.

Secular Disturbances must be corrected.

Atmospheric Drag

Earth's atmosphere extends into space.

The ionosphere extends well past 350km.

ISS orbit lies between 330 and 400km.

__Atmospheric Drag

Atmospheric Drag

Eath a prosphere studies into space

***The importance of the impo

 Its called the ionosphere because all the atmospheric gasses have lost their electrons.

The lonosphere

Figure: The Aurora Borealis Shows the Ionosphere Extending Well into Orbital Range

The Drag Perturbation

Drag force for satellites is the same as for aircraft

$$F_D = C_D Q A = \frac{1}{2} \rho v^2 C_D A$$

By definition, drag is opposite to the velocity vector.

- Since by definition, $\vec{v} \perp \vec{h}$, N=0
- For now, ignore the rotation of the earth (adds $\Delta v = \omega_e r \cong .5 km/s$).
- For now, assume circular orbit, so $\vec{v} = v\hat{e}_T$.

Ballistic Coefficient:

$$B = \frac{m}{C_D A}$$

Then as first approximation,

$$N = R = 0$$

$$T = -\frac{1}{2} \frac{\rho}{m} C_D A v^2 = -\frac{1}{2} \frac{\rho v^2}{B}$$

- Q is dynamic pressure.
- \vec{v} is in the orbital plane and \vec{h} is perpendicular to the orbital plane.
- A is the area of the spacecraft projected onto the $\hat{e}_N \hat{e}_R$ plane.
- ullet C_D measures how aerodynamic the spacecraft is.
- Drag can also generate lift $(C_L)!$ A component in the \hat{e}_R direction (or even the \hat{e}_N direction)

The Drag Effect on Orbital Elements

Circular Orbits, Constant Density

First note that since N=0, the orbital plane does not change

- $\bullet \ \dot{\Omega} = 0.$
- $\frac{d}{dt}i = 0$.

Semi-Major Axis: Since e = 0, only a is affected.

$$\dot{a} = 2\sqrt{\frac{a^3}{\mu(1-e^2)}} \left[eR\sin f + T(1+e\cos f) \right]$$
$$= -\sqrt{\frac{a^3}{\mu}} \frac{\rho}{m} C_D A v^2 = -\sqrt{\frac{a^3}{\mu}} \frac{\mu^2}{a^2} \frac{\rho}{B}$$
$$= -\sqrt{a\mu} \frac{\rho}{B}$$

Integrating with respect to time (assuming constant ρ) yields

$$a(t) = \left(\sqrt{a(0)} - \frac{\sqrt{\mu}}{2} \frac{\rho}{B} t\right)^2$$

M. Peet

The Drag Effect on Orbital Elements

- The Blug Litect on Orbital Litements
- Unfortunately, $\rho(t)$ is NOT constant.

• $v = \sqrt{\mu/r}$ for circular orbits.

- The Drag Effect on Orbital Elements
- First note that since N=0, the orbital plane does not change \bullet $\Omega=0$. \bullet $\frac{1}{\Delta}t=0$. Sermi-Major Azisc Since a=0, only a is effected.

 $\sqrt{\frac{a^3}{\mu(1 - a^2)}} [eR \sin f + T(1 + e \cos f)]$ $\sqrt{\frac{a^2}{\mu}} \frac{\rho}{\mu} C_D A e^2 = -\sqrt{\frac{a^2}{\mu} \frac{\mu^2}{a^2}} \frac{\rho}{B}$

Integrating with respect to time (assuming constant ρ) yield $a(t) = \left(\sqrt{a(0)} - \frac{\sqrt{\mu}}{2} \frac{\rho}{R} t\right)^2$

Example: International Space Station

Figure: Orbit Decay of the International Space Station

Density Variation

The atmospheric density is not even remotely constant

Exponential Growth in Density:

- Extends to $1.225*10^{-3}g/cm^3$ at sea level.
- Orbits below Kármán Line (100km) will not survive a single orbit.
 - Suborbital flight.

Solar Activity: We have different models of the atmosphere depending on solar activity level.

- Unlike aircraft applications
- Variation mainly occurs in ionosphere
- Sunspots increase solar wind which changes earth's EM field

- Most density models of the atmosphere start to fail at the ionosphere.
- Kármán Line is named after Theodore van Kármán (1881–1963)
- A nominal aircraft at the Kármán Line would have to travel at orbital velocity to generate more lift than weight.
- Usually differentiates the fields of aeronautics and astronautics

Stationkeeping

All Satellites must budget Δv (m/s/yr) to compensate for atmospheric drag.

The problem with budgeting is predicting solar activity.

This data is scaled to Ballistic Coefficient.

• So if your ballistic coefficient is 10 times lower, you need 10 times the $\Delta v!$

Spacecraft Lifetime

Without stationkeeping, orbits will decay quickly.

Definition 1.

The **Lifetime** of a spacecraft is the time it takes to reach the 100km Kármán Line.

- The Figure shows mean value of lifetime.
- Actual values will depend on solar activity.

Spacecraft Lifetime

Solar Activity Effect

cecraft Lifetime	
	LIPETIMES FOR GROULAR CHBITS (Normalized to W.Co.A. = 1 Indiano)
10000	Quiet atmosphere, P10,7476
§ 1000	P977-100
20 100 100 100 100 100 100 100 100 100 1	F10.7=190
8 10	S10.7=200
NO.	Adve. P10.T=200
112	Lifetime = Normalized lifetime x (0.2044/C ₁ A/ ₆)
0.1 200	276 250 300 350 600 450 500 650 600 AUTITLIDE IN HOM

Plot is normalized for a ballistic coefficient and US customary units.

 \bullet To get actual lifetime, multiply number from plot by $.2044\frac{W}{CDA}$ in metric units.

Spacecraft Lifetime

Solar Activity Effect

Solar Activity

Solar Activity varies substantially with time. $F_{10.7}$ measures normalized solar power flux at EM wavelength 10.7cm.

Solar Activity is Hard to Predict

Figure: Shatten Prediction Model with Actual Data

Figure: More recent data is not looking good

Drag Effects on Eccentric Orbits

Eccentric orbits are particularly prone to drag.

- Even if a is large, drag at perigee is high.
- Very difficult to integrate, due to changing density
- Using Exponential Density model,

$$\Delta e_{rev} = -2\pi \frac{C_D A}{m} a \rho_{perigee} e^{-ae/H} [I_1 + e(I_0 + I_2)/2]$$

- ρ_p is density at perigee. H is a height constant. I_i are Bessel functions
- Δa is also complicated.

Decay of Eccentricity

Although drag occurs at perigee, apogee is lowered.

Drag Effects on Eccentric Orbits

Hayabusa Re-entry

Summary

This Lecture you have learned:

Perturbation Basics

- The Satellite-Normal Coordinate System
- Equations for
 - \rightarrow \dot{a} , \dot{i} , $\dot{\Omega}$, $\dot{\omega}$, \dot{e}

Drag Perturbations

- Models of the atmosphere.
- Orbit Decay
- Δv budgeting.
- Effect on eccentricity.

Next Lecture: Earth's Shape and Sun-synchronous Orbits.

Equations

$$\begin{split} \dot{a} &= 2\sqrt{\frac{a^3}{\mu(1-e^2)}} \left[eR\sin f + T(1+e\cos f) \right] \\ \dot{e} &= \sqrt{\frac{a(1-e^2)}{\mu}} \left[R\sin f + T(\cos f + \cos E_{ecc}) \right] \\ \frac{d}{dt} \dot{i} &= \sqrt{\frac{a(1-e^2)}{\mu}} \frac{N\cos(\omega+f)}{1+e\cos f} \\ \dot{\Omega} &= \sqrt{\frac{a(1-e^2)}{\mu}} \frac{N\sin(\omega+f)}{\sin i(1+e\cos f)} \\ \dot{\omega} &= -\dot{\Omega}\cos i + \sqrt{\frac{a(1-e^2)}{e^2\mu}} \left(-R\cos f + T\frac{(2+e\cos f)\sin f}{1+e\cos f} \right) \end{split}$$

Drag (circular orbit):

$$N=R=0, \qquad T=-\frac{1}{2}B\rho v^2=-\frac{1}{2}B\rho\frac{\mu}{a}.$$

M. Peet