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Lecture 12: Orbital Perturbations



Introduction

In this Lecture, you will learn:

Perturbation Basics
® The Satellite-Normal Coordinate System

® Equations for
> a0, Q¢

Drag Perturbations
® Models of the atmosphere.
® QOrbit Decay
® Av budgeting.

e Effect on eccentricity.
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Introduction to Perturbations

So far, we have only discussed
idealized orbits.

® Solutions to the 2-body
problem.

® All orbital elements are
fixed (except f).
In reality, there are many other
forces at work:

® Drag
® Non-spherical Earth

® Lunar Gravity

Solar Radiation
Tidal Effects
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L Introduction to Perturbations

e Perturbations can be good or bad.
e Perturbations allow us to break free of the Av budget.

e There is not much flexibility in the restricted two-body problem. All
maneuvering is accomplished using Av budget (Gravity assist being an
exception)

e Perturbations allow us to identify new forces which, if used correctly, can
reduce our dependency on Av budget.



Generalized Perturbation Analysis

Satellite-Normal Coordinate System

How to characterize the perturbing forces?

—

o noo.
Ftotal = _WeR +Fp

® Where do they point?
® Need a new coordinate system.
Fp = Rérp + Neny +Tér

Satellite-Normal CS (R-T-N):

® ¢g points along the earth —
satellite vector.

® ¢y points in the direction of h
® ép is defined by the RHR
» ér-v>0.
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L Generalized Perturbation Analysis

In Frenet coordinates, éxn is the same, ér is

éT XéN.

Generalized Perturbation Analysis

By Rin+ Now + Tér

1 €S (RT-N):
u

tangential to motion, and ér =



Generalized Perturbation Analysis

Now suppose we have an expression for the disturbing force:
F = Rép + Néy + Tér
How does this affect a, i, Q, w, e?

Most elements depend on h and E:

__ "
“=73E
2Eh?2
e=4/1+—
"
COS’L_E )
)
h
tan Q) = —=
an 7h
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L Generalized Perturbation Analysis

e Here we see the direct relationship between physical parameters h, E and
orbital parameters a, e.

e In the presence of perturbations, angular momentum and energy of the
satellite are not conserved.

e Hence, in the presence of perturbations, the orbit is no longer truly
elliptic. Hence the orbital elements are not perfect parameters of motion.
However, deviations from the ellipse occur over long time-horizons and so
we assume a quasi-stationary elliptic motion and include adjustments to
the ellipse in the form of orbit-averaged versions of a, i, Q, w, é. Also, we
don't have anything better.



Energy and Momentum Perturbation

We have the orbital elements in terms of & and E.

1. Find expressions for h and E.

2. Translate into expressions for a, é, etc.

Example 1: Semimajor axis. Example 2: Eccentricity.
I
a=—o- 2Eh?
1
Chain Rule:
 dadE Chain Rule:
CTdEdr ,_dedh  dedE
Mg ‘T dndt " dE a@t
2E2 . .
:i(()Q—l) L
2e h FE
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I—Energy and Momentum Perturbation
h? 2 H 2 2 2ER?
p:7:a(1*e):*ﬁ(1*€), So (17 ):7 NQ
So
1
2ER? 2ER*\ ?
e=4/1+ 2 =1+ —
So
de _1(  2BW\TT4BR _2Bh _ K _ p _(E-1
dh 2 2 u2  p2e  puahe ahe  he
and likewise
1
de 1 +2Eh2 “22n? R p _20(1-€*) _ €-1
dE ~ 2 2 2 T u2e pe 2pue ~ 2Ee




Energy and Momentum Perturbation

So now the key is to find expressions for i and E. Let F be the disturbing force
per unit mass (watch those units!) in RTN coordinates:

. R
F=|T
N

Energy: Energy is Force times distance. Momentum: Newton's Second Law:

dE = F - d7 h=ixF
So in RTN coordinates, =rTeény —rNeér
- F.7 With magnitude h = d/dtV h-h
= F- (ien +rber) . F-h (héw)- (rTéw — rNér)

=
T h
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I—Energy and Momentum Perturbation

Energy is NOT conserved. Some disturbances can sap energy (e.g. drag).
Some can increase energy (e. g. solar wind)

e We have assumed quasi-elliptic motion, so...

Recall ¥ = 7ég + rfér is the velocity in RTN - recall Lecture 2!

Recall 7 is always in the orbital plane! So én - 7= 0.

e Also recall h = héln.



Semi-Major Axis Perturbation

2
Using r = 1+he{:l;sf and the approximation 6 = 4 (w + f) = f = h/r?, we
combine G M

_ 252
with E =R+ 0T
where £ = — % to get:

a=22 {R“esmf +T}
n h r

or, in terms of a, e, and f,

3
a=2 /L(lai—eQ) [eRsin f + T (1 + ecos f)]
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l—Semi—Major Axis Perturbation

Recall by definition h =7 -vy =7 (rf) = r2f.

Since r =

’f‘:

h?/p
1+ecosf’

h?/p

(1+ ecos f)?

we have used the chain rule to get

r? esin f o

— esinff=

rf =

pesin f

esmff

h?/u h?/u



Eccentricity Perturbation

B2 . .
Using r = 1+e/clolsf and the approximation § = 4 (w+ f) = f =
combine .
1, h E
= (2 —1) |25 - =
¢=g. -1 [ h E
with . .
E=7R+r0T and h=rT
where E = — % to get
1 —e2
e = u [Rsin f + T'(cos f + cos Eece)]
I

where F,.. is eccentric anomaly,

ECCC

tan
2
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- Eccentricity Perturbation

In the last equation, we used the expression for r

r =a(l — ecos Fecc)




Energy and Momentum
Inclination and RAAN

Inclination: From

cosi = —=
h

we have from the chain rule

d . 1

d hi, — hh,
dt' = “sing h?

from which we can get

Perturbation

RAAN: From

tan Q) =
an hy

we have from the chain rule

Q) = cos® 2
y

from which we can get

hahy — hahy

d . a(l —e?) N cos(w + f) o a(l —e?) Nsin(w + f)
7/[/ p— AW/ f—
dt 1 1+ecosf Ju sini(1 + ecos f)
Although complicated, we can also find w.
. (1 — €2 2+ ecos f)si
w=—Qcosi+ u —Rcosf—O—T( Jrv(()s,f)s)mf
e 1+ecosf
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I—Energy and Momentum Perturbation

Use Rotation matrices to convert:

h=7xF
0
=rTén —rNér = |—rN
rT RNT
ha

rT cosi — rN cosfsini G0

Where in the last step, we used the rotation matrix RrrNn—pcr =
R3(Q)R1(i)R3(0) from Lecture 7. However, the expression for hs, hy is too
complicated for these slides.



Levitated Orbit Example

Problem: Suppose a satellite of 100kg in circular polar orbit of 42,164km
experiences a continuous solar pressure of .1 Newton in éy direction. How do
the orbital elements vary with time?

Solution: The Force per unit mass is

N = F/m = .00lm/s* = 1E — 6km/s>.
SinceT=R=e=0,and f 2 FE... 2 M =nt

a= 2UH(1CL362) [eRsin f +T(1+4ecos f)] =
é= ”a(l;eQ) [Rsin f 4 T'(cos f + cos Eeee)] =0

For inclination, we have

_ 2
ii:N (1 e) cos(w + f) =N cosnt
dt 14 ecos f
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Levitated Orbit Example

The formula for inclination integrates out to

1
Ai(t) = N\/E sinnt = ’ .00446 sin nt radians
wn

Similarly, since i = 90°

. — 2 i
Q- N a(l—e?) sin(w+ f) ) :N\/Esinnt
/L

w sini(l+ecos f

We have

1
AQ(t) = N\/E cos nt = | —.00446 cos nt radians
wn

The effect is a "Displaced” orbit. The size of the displacement is .0045rad *
42164 km = 188km. See “Light Levitated Geostationary Cylindrical Orbits are
Feasible” by S. Baig and C. R. Mclnnes.

M. Peet Lecture 12: Spacecraft Dynamics 12 /31



2025-05-07

Lecture 12
Spacecraft Dynamics

L Levitated Orbit Example

At ascending node, pulled forward (+éx) by 188km due to +A€, no A¢
At descending node, pulled forward (+éxn) by 188km due to —AQ, no A
At north pole, pulled forward (+éx) by 188km due to —Ai, no AQ

At south pole, pulled forward (+éx) by 188km due to +Aé, no AQ



Periodic and Secular Variation

The preceding example illustrated the effect of periodic variation.

Secular
ke

il
A
W
vl
VAN(ﬂ sron Period R

Orbit Penod Time

There are three types of disturbances

® Short Periodic - Cycles every orbital period.
® Long Periodic - Cycles last longer than one orbital period.
® Secular - Does not cycle. Disturbances mount over time.
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Atmospheric Drag

Earth’s atmosphere extends into space.

£
o

lonosphere (Aurora)

Mesosphere

Stratosphere
Tropopause

Troposphere

The ionosphere extends well past 350km.
® |ISS orbit lies between 330 and 400km.
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I—Atmospheric Drag

e |ts called the ionosphere because all the atmospheric gasses have lost their
electrons.




The lonosphere

B,

.I“ ‘

Figure: The Aurora Borealis Shows the lonosphere Extending Well into Orbital Range
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The Drag Perturbation
Drag force for satellites is the same as for aircraft
1
FD = CDQA = ip’UzCDA

By definition, drag is opposite to the velocity
vector.

* Since by definition, & L h, N =0 6
® For now, ignore the rotation of the earth
(adds Av = wer = .5km/s).
® For now, assume circular orbit, so ¥ = vér. i
Ballistic Coefficient: &,
(X N\,
— /*\»e/ .
B = — »
ODA et

Then as first approximation,

1 1 pv
N=R=0] |T=-;2Cpa?=—2t

2m
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I—The Drag Perturbation

@ is dynamic pressure.

¥ is in the orbital plane and his perpendicular to the orbital plane.
A is the area of the spacecraft projected onto the éx — ér plane.
C'p measures how aerodynamic the spacecraft is.

Drag can also generate lift (C')! A component in the ér direction (or
even the éy direction)




The Drag Effect on Orbital Elements

Circular Orbits, Constant Density

First note that since N = 0, the orbital plane does not change
e 0=0.
o di—y.
Semi-Major Axis: Since ¢ = 0, only a is
affected.

Q=2 u(1a—362) [eRsin f + T(1 + ecos f)]

3 3,2
N (GRS (Vi)
©wm uw a? B

= — (L/LB
B
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L The Drag Effect on Orbital Elements

e v = 4/u/r for circular orbits.
e Unfortunately, p(¢) is NOT constant.

The Drag Effect on Orbital Elem




Example: International Space Station

410
km
400
390
370 {-
360

350 4----oe-

340

330 T T T T T T T T T T
1998 1999 2000 2001 2002 2003 2004 2008 2008 2007 2008 2009

Figure: Orbit Decay of the International Space Station
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Density Variation

The atmospheric density is not even remotely constant

Exponential Growth in Density:
® Extends to 1.225 % 10~3g/cm? at
sea level.

® Orbits below (100km)
will not survive a single orbit.

» Suborbital flight.

Solar Activity: We have different
models of the atmosphere depending on
solar activity level.

® Unlike aircraft applications

® Variation mainly occurs in
ionosphere

® Sunspots increase solar wind which
changes earth’s EM field

M. Peet

3

DENSITY - GH/CH

Lecture 12:

10713 ATMOSPHERIC DERSITY

JACCHIA 1964 MODEL
— — — ARDC 1959 MODEL
——.—. US STANDARD, 1862 MODE

300 400 500 600
ALTITUDE - KX
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LDensity Variation

[ ]

Most density models of the atmosphere start to fail at the ionosphere.
e Kdrman Line is named after Theodore van Karman (1881-1963)

e A nominal aircraft at the Kdrman Line would have to travel at orbital
velocity to generate more lift than weight.

[ ]

Usually differentiates the fields of aeronautics and astronautics

gnetic Shield

Y o — Auroral

Oval

,
F9netic Fiely




Stationkeeping

107

All Satellites must budget Av (m/s/yr) to compensate for atmospheric drag.

= Ballistic Coefficient m/CpA = 100kg/m?

F10.7=125, Ap=12

_ Solar Minimum

Time Averaged Densityl -

-] F10.7=225, Ap=20
) |

F10.7=175, Ap=16 |=

107 h
100 200 300 400 500 600 700 800 900 1000

The problem with budgeting is predicting solar activity.
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I—Stationkeeping

This data is scaled to Ballistic Coefficient.

e So if your ballistic coefficient is 10 times lower, you need 10 times the Av!



Spacecraft Lifetime

Without stationkeeping, orbits will
decay quickly.
Definition 1.

The Lifetime of a spacecraft is the
time it takes to reach the 100km
Karman Line.

® The Figure shows mean value of
lifetime.

® Actual values will depend on solar
activity.

M. Peet
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Spacecraft Lifetime
Solar Activity Effect

LIFETIMES FOR CIRCULAR ORBITS
(Normalized to W/CdA = 1 [b/ft**2)

10000 , —
3 Quiet atmosphere, F10.7=7502 ,‘ i
] T it Il \
%] 1 ]
Z 1000 F10.7=100 g.ﬂJ |
eu— T
= : — i
Z 1 T
w
= 1005 I . 1
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5 i J ‘:
[m]
g = : =—{F10.7=200 s
- I Z 1 - I —
. I
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LSpacecraft Lifetime =

Plot is normalized for a ballistic coefficient and US customary units.

e To get actual lifetime, multiply number from plot by .2044% in metric
units.



Spacecraft Lifetime
Solar Activity Effect

LIFETIMES FOR CIRCULAR ORBITS
(Normalized to CAA/W = 0.2044m?/kg)

1000 —: ; ; i =
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Solar Activity

Solar Activity varies substantially with time. F'jg7 measures normalized solar
power flux at EM wavelength 10.7cm.

400 T
4 Solar maxima

350 |-
306 7

. 250 ]

Figy (SFU)

200 |

150 - 81-day average

m(}: lﬁ b”“,\{’ e L

Mw»mnlfww#ww “’M f ok,

50 Solar minima
: 1 Il
() [ T } T { 7T \l T } 77777 { T ‘? T } T } LI 0 A T A A B

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
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Solar Activity is Hard to Predict

400

Selar maxima

200

Fi0.7 (SFU)
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Figure: Shatten Prediction Model with Actual Data
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I—Solar Activity is Hard to Predict

175

150
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Figure: More recent data is not looking good



Drag Effects on Eccentric Orbits

Eccentric orbits are particularly prone to drag.

Perigee |[//% \ Apogee
|

Start

Even if a is large, drag at perigee is high.
® Very difficult to integrate, due to changing density
Using Exponential Density model,

CpA

Aeyey = =27 appe”‘geee_ae/H[h + 6([0 + Ig)/2]

> p, is density at perigee. H is a height constant. I; are Bessel functions
Aa is also complicated.
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Decay of Eccentricity

Although drag occurs at perigee, apogee is lowered.

PERIGEE/APOGEE ALTITUDE IN KM

600.

450.

300.

PERIGEE/APOGEE DECAY HISTORY (LIFETIME)

APOGEE ALTITUDE

—
e
PERIGEE ALTITUDE \\\
2.00 4.00 &£.00 8.00 16.0C 12.0 14.0 )64.0 18.0
TIME IN DAYS FROH EPOCH
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Drag Effects on Eccentric Orbits

e P alt

0.12 108 - 222
1 Period

0.11 1063 2037

0.10 104 1852

0.09 1027 1667

0.08 1007 1482

Eccentricity

0.07 98- Altitude of apogee 1296
0.06 96 ; 1111
0.05 94 ; 926
0.04 92 T 741
0.03 90 556
0.02 88 : 370
0.01 86 4 Altitude of perigee ﬂ 185
0.00 84 - bttt et 0
0.0 Time 100 days

M. Peet Lecture 12: Spacecraft Dynamics 28 /31



Hayabusa Re-entry

S
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reentry_hayabusa.mp4
Media File (video/mp4)


Summary

This Lecture you have learned:

Perturbation Basics

® The Satellite-Normal Coordinate System
® Equations for
> a0, Q¢

Drag Perturbations
® Models of the atmosphere.
® Orbit Decay
® Av budgeting.

® Effect on eccentricity.

Next Lecture: Earth’s Shape and Sun-synchronous Orbits.
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Equations

1/ eRs1nf+T 1+ ecos f)]
U Rsmf + T'(cos f + cos Eece)]
a(l

—e2) N cos(w + f)
1+ ecosf

71_

1—@2) Nsin(w + f)
sini(1 + ecos f)

—€2)
&= —Qcosi+ | 2 RCOSf+T(2+eCOSf)Smf
1+ecosf

Drag (circular orbit):

NeR=0, T=-ipw?=_lp,"
2 2 a

M. Peet Lecture 12: Spacecraft Dynamics 31/31



	Spacecraft Dynamics

