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Introduction

In this Lecture, you will learn:

The Non-Spherical Earth

• The gravitational potential

• Expression in the R-T-N frame

• Perturbations
▶ Periodic
▶ Secular

Mission Planning

• Sun-Synchronous Orbits

• Frozen Orbits

• Critical Inclination
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Recall The Perturbation Equations

F⃗disturbance = RêR + T êT +NêN

Semi-major Axis

ȧ = 2

√
a3

µ(1 − e2)
[eR sin f + T (1 + e cos f)]

Inclination:

d

dt
i =

√
a(1− e2)

µ

N cos(ω + f)

1 + e cos f

Eccentricity:

ė =

√
a(1 − e2)

µ
[R sin f + T (cos f + cosEecc)]

RAAN:

Ω̇ =

√
a(1− e2)

µ

N sin(ω + f)

sin i(1 + e cos f)

Argument of Perigee:

ω̇ = −Ω̇ cos i+

√
a(1− e2)

e2µ

(
−R cos f + T

(2 + e cos f) sin f

1 + e cos f

)
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Recall The Perturbation Equations

Drag is only significant in LEO. Above LEO, J2 is more important (From
Gil/Montenbruck).



Recall
Satellite-Normal Coordinate System

F⃗ = NêN +RêR + T êT

Satellite-Normal CS (R-T-N):

• êR points along the earth →
satellite vector.

• êN points in the direction of h⃗

• êT is defined by the RHR
▶ êT · v > 0.
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The Non-spherical Earth
The Spherical Earth

Recall that gravity for a point mass is

F⃗ = −µ
r⃗

∥r⃗∥2

Gravity force derives from the potential
field.

F⃗ = ∇U

To find U , we integrate

dU = −2πR2Gσm2 sin θ

ρ
dθ

For a uniform spherical mass,

• There is symmetry about the line r⃗12.

• The point-mass approximation holds.
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The Non-spherical Earth
A Distorted Potential Field

For a spherical earth, dU is symmetric

dU = −2πR2Gσm2 sin θ

ρ
dθ

The actual gravity field

• Is not precisely spherical.

• density varies throughout the earth.

The result is a distorted potential field.

Figure: The geoid, 15000:1 scale
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The Non-spherical Earth

The Geoid is the surface of gravitational and centrifugal equipotential

� Describes the surface of the ocean if it covered the entire earth

Of course, for orbit perturbations, we exclude the centrifugal potential energy.



The Non-spherical Earth
A Distorted Potential Field

Socrates: So how do we derive the potential field?

Tycho Brahe: We measure it!!!

Definition 1.

Physical Geodesy is the study of the
gravitational potential field of the earth.

Definition 2.

The Geoid is equipotential surface
which coincides with the surface of the
ocean.
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NASA’s Geodesy Video
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NASA_geodesy.mp4
Media File (video/mp4)



Development of Geodesy
Eratosthenes of Cyrene(276-195 BC)

The first measurements of the earth were made by Eratosthenes

• Third Librarian of Library of Alexandria
(240BC).

• Invented “Geography”

• Invented Latitude and Longitude
▶ The difference in angle between high

noon at two points on the earth.
▶ Measured using deep wells

• Measured the circumference of the earth.

• May have starved to death.
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Development of Geodesy

� Starved himself to death after going blind and therefore being unable to
read.



Geometry of Eratosthenes

S

Aφ

δ
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The Non-spherical Earth
A Distorted Potential Field

Question: So how do we measure the potential field of the earth?

LAGEOS: Laser Geodynamics Satellites

1. Precisely measure the trajectory of
a satellite as it orbits the earth

2. Account for drag, third-body
dynamics, etc.

3. Remaining perturbation must be
causes by gravitational potential

The orbits of the LAGEOS satellites are
measured precisely by laser reflection.

Note: Only measures potential along
path of the orbit.

• We must observe for a long time to
get comprehensive data.

a = 12, 278km, i = 109.8◦, 52.6◦, Launch dates: 1976, 1992
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The Non-spherical Earth

� Does not measure potential field directly.

� Requires this field to be fit to the trajectory data.



The Non-spherical Earth

Measuring satellite positions from earth is inaccurate.

• Atmospheric Distortion

GRACE (2002):

1. Measure the relative position of
two adjacent satellites

2. Relative motion yields gradient of
the potential field

3. Allows direct reconstruction of
U(r⃗).

Less fancy methods:

• Survey markers

• Altimetry

• Ocean level variation

a = 6700km, i = 90◦
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The Non-spherical Earth



Data from GRACE

Ocean surface equivalent
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Global_Gravity_Anomaly_Animation_LAND.gif
Media File (image/gif)
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Global_Gravity_Anomaly_Animation_OCEANS.gif
Media File (image/gif)



The Non-spherical Earth

Question: So what is U(r⃗)? (Needed to compute F⃗ = ∇U)
Response: Too much data to write as a function.

In order to be useful, we match the data to a few basis functions.

Coordinates: Express position using
ϕgc, λ, r.

• ϕgc is declination from equatorial
plane.

• r is radius

• λ is right ascension, measured
from Greenwich meridian.

We will have a function of form

U(ϕgc, λ, r)
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The Non-spherical Earth

Note that U will be defined in ECEF coordinates.

� We will need to change to ECI and ultimately RTN coordinates in order
to apply the orbit perturbation equations.

� This is one of those cases where RTN is not the natural coordinate system
for the force.



The Harmonics

The potential has the form

U(ϕgc, λ, r) =
µ

r
+ Uzonal(r, ϕgc)

+ Usectorial(r, λ)

+ Utesseral(r, ϕgc, λ)

Actually, Usectorial varies with ϕgc, but not “harmoniously”.
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The Zonal Harmonics

Zonal Harmonics: These have the form

Uzonal(r, ϕgc) =
µ

r

∞∑
i=2

Ji

(
Re

r

)i

Pi(sinϕgc)

• Re is the earth radius
• Pi are the Legendre Polynomials
• The Ji are determined by the Geodesy data!

Zonal harmonics vary only with latitude.
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The Zonal Harmonics

Technically, the zonal harmonics are only the Pi(sinϕgc) terms where the Pi are
the Legendre polynomials

Pn(x) = Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

This is Rodrigues’ formula

� This is a bit confusing, since, e.g.

P1(sinϕ) = cosϕ

P2(sinϕ) = 3 cos2 ϕ

� What is even more confusing is some texts (e.g. Curtis) measure
ϕ = 90− ϕgc.

� Then sinϕgc becomes cosϕ.



The Sectorial Harmonics

Sectorial Harmonics: These have the form

Usect(r, ϕgc, λ) =
µ

r

∞∑
i=2

(Ci,sect cos(iλ) + Si,sect sin(iλ))

(
Re

r

)i

Pi(sinϕgc)

• Divides globe into slices by longitude.
• Varies with ϕgc, but Pi(sinϕgc) is uniformly positive.
• The Ci,sectorial and Si,sectorial are also determined by the Geodesy data!

Sectorial harmonics vary only with longitude.
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The Sectorial Harmonics

Many texts ignore the Sectorial and Tesseral Harmonics

� The effect often appears random/hard to predict. Not much secular
perturbation

� The exception to this is repeating ground tracks.

If interested, “Satellite Orbits” by Gil and Montenbruck has all the dynamics

well-explained.



The Tesseral Harmonics

These have the form

Utesseral(r, ϕgc, λ) =
µ

r

∞∑
i,j=2

(Ci,j cos(iλ) + Si,j sin(iλ))

(
Re

r

)i

Pi,j(sinϕgc)

• Divides globe into slices by longitude and latitude.
• The Ci,j and Si,j are also determined by the Geodesy data!
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The J2 Perturbation

For simplicity, we ignore all harmonics except the first zonal harmonic.

∆UJ2(r, ϕgc) = −µ

r
J2

(
Re

r

)2 [
3

2
sin2(ϕgc)−

1

2

]

This corresponds to a single band about the
equator.

• The earth is 21 km wider than it is tall.

• A flattening ratio of 1
300 .

• J2 = .0010826

• J3 = .000002532

• J4 = .000001620
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The J2 Perturbation

Image credit: https://ai-solutions.com/ freeflyeruniversityguide/j2 perturbation.htm



The J2 Perturbation
Defined in the Wrong Coordinate System

∆UJ2(r, ϕgc) = −µ

r
J2

(
Re

r

)2 [
3

2
sin2(ϕgc)−

1

2

]
• Expressed in the ECI Frame (same as ECEF here)
• Since sinϕgc =

z
r ,

∆UJ2(r, ϕgc) = −µ

r

J2
2

(
Re

r

)2 [
3z2

r2
− 1

]
We now calculate the perturbation force as

F⃗ = −∂UJ2

∂r
êR +

∂UJ2

∂z
êz

= −µJ2R
2
e

[
3z

r5
êz +

(
3

2r4
− 15z2

2r6

)
êR

]
But to use our perturbation equations, we need a force expressed in the R-T-N
frame.

M. Peet Lecture 13: Spacecraft Dynamics 20 / 44



The J2 Perturbation
Defined in the Wrong Coordinate System

∆UJ2(r, ϕgc) = −µ

r
J2

(
Re

r

)2 [
3

2
sin2(ϕgc)−

1

2

]
• Expressed in the ECI Frame (same as ECEF here)
• Since sinϕgc =

z
r ,

∆UJ2(r, ϕgc) = −µ

r

J2
2

(
Re

r

)2 [
3z2

r2
− 1

]
We now calculate the perturbation force as

F⃗ = −∂UJ2

∂r
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The J2 Perturbation

These calculations are from the 1993 version of Prussing and Conway



Recall: Perifocal to ECI Transformation

To convert a PQW vector to ECI, we use

r⃗ECI = R3(Ω)R1(i)R3(ω)r⃗PQW = RPQW→ECI r⃗PQW

RPQW→ECI =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0
0 0 1


=

cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i
sinΩ cosω + cosΩ sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i


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The R-T-N to ECI Transformation

An additional rotation gives us the R-T-N
frame.

RRTN→ECI

=

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos i − sin i
0 sin i cos i


cos(ω + f) − sin(ω + f) 0
sin(ω + f) cos(ω + f) 0

0 0 1


RRTN→ECI =cosΩ cos θ − sinΩ sin θ cos i − cosΩ sin θ − sinΩ cos θ cos i sinΩ sin i
sinΩ cos θ + cosΩ sin θ cos i − sinΩ sin θ + cosΩ cos θ cos i − cosΩ sin i

sin θ sin i cos θ sin i cos i


Where for brevity, we define θ = ω + f . This gives us the expression

êz = sin i sin(ω + f)êR + sin i cos(ω + f)êT + cos iêN
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The R-T-N to ECI Transformation

Since the final rotation is just R3(f), we combine it with the R3(ω) rotation so
that

R3(f)R3(ω) = R3(f + ω) = R3(θ)

similar to PC, page 200



Forces in the R-T-N Frame

F⃗ = −µJ2R
2
e

[
3z

r5
êz +

(
3

2r4
− 15z2

2r6

)
êR

]
From the rotation matrices, we have that

êz = sin i sin(ω + f)êR + sin i cos(ω + f)êT + cos iêN

and since
z = r sinϕgc = r sin i sin(ω + f),

this yields the disturbing force in the R-T-N frame:

F⃗ =
−3µJ2R

2
e

r4

[(
1

2
− 3 sin2 i sin2 θ

2

)
êR + sin2 i sin θ cos θêT + sin i sin θ cos iêN

]

=
−3µJ2R

2
e

r4

 1
2 − 3 sin2 i sin2 θ

2

sin2 i sin θ cos θ
sin i sin θ cos i


RTN

where again, for brevity, we use θ = ω + f
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The J2 Perturbation

The primary effect of J2 is on Ω and ω.

N =
−3µJ2R

2
e

r4
sin i sin(ω + f) cos i

We plug the force equations into the expressions for Ω̇ and ω̇

Ω̇ =

√
a(1− e2)

µ

N sin(ω + f)

sin i(1 + e cos f)

to get

Ω̇ = −3µJ2R
2
e

hp3
cos i sin2(ω + f) [1 + e cos f ]

3

This is the instantaneous rate of change.
• The angles θ and f will cycle from 0◦ to 360◦ over each orbit.
• We would like to know how much of that perturbation is secular?
• What is the average over θ?

dΩ

dθ
=

Ω̇

θ̇
=

Ω̇

h/r2
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The J2 Perturbation

� Recall θ̇ = h/r2 comes from equal area - equal time. Ȧ = 1
2
θ̇r2 = h/2.

� We use the polar equation r = p
1+e cos f

to eliminate r.



Averaging the J2 Perturbation

Starting with

dΩ

dθ
=

Ω̇

h/r2
= −3J2

(
Re

p

)2

cos i sin2 θ [1 + e cos(θ − ω)]

Then the average change over an orbit is

dΩ

dθ

∣∣∣∣
AV

=
1

2π

∫ 2π

0

dΩ

dθ
dθ = −3J2

2π

(
Re

p

)2

cos i

∫ 2π

0

sin2 θ [1 + e cos(θ − ω)] dθ

Now we use cos(θ − ω) = cosω cos θ + sinω sin θ to get∫ 2π

0

sin2 θ [1 + e cos(θ − ω)] dθ =

∫ 2π

0

sin2 θdθ + e

∫ 2π

0

sin2 θ cos(θ − ω)dθ

= π + e cosω

∫ 2π

0

sin2 θ cos θdθ + e sinω

∫ 2π

0

sin3 θdθ

= π + 0 + 0 = π

Thus, we have
dΩ

dθ

∣∣∣∣
AV

= −3

2
J2

(
Re

p

)2

cos i
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Averaging the J2 Perturbation

Given
dΩ

dθ

∣∣∣∣
AV

= −3

2
J2

(
Re

p

)2

cos i

we can use the fact that

n =
dθ

dt
|AV

to get the final expression

Ω̇J2,av = −3

2
nJ2

(
Re

p

)2

cos i
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J2 Nodal Regression
Physical Explanation

The ascending node migrates opposite the direction of flight

Ω̇J2,av = −3

2
nJ2

(
Re

p

)2

cos i

The equatorial bulge produces extra pull
in the equatorial plane

• Creates an averaged torque on the
angular momentum vector

• Like gravity, the torque causes h⃗ to
precess.

• Only depends on inclination
▶ Also a and e...

Image credit: Vallado
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J2 Nodal Regression
Magnitude

The nodal regression rate is often large. Cannot Be Neglected!!!.

Figure: Magnitude of Regression Rate vs. inclination and altitude
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Repeating Ground Tracks

Ω̇ has a large effect on the design of Repeating Ground Tracks.

• The rotation of the earth over an orbit is
given by

∆L1 = −2π
T

TE
= −2π

2π
√

a3

µ

TE

TE = 23.9345hrs (1 sidereal day)

• The change in Ω over an orbit is

∆L2 = −3πJ2R
2
ecos(i)

a2(1− e2)2

• For a ground track to repeat, we require

j |∆L1 +∆L2| = j

∣∣∣∣∣∣−2π
2π
√

a3

µ

TE
− 3πJ2R

2
ecos(i)

a2(1− e2)2

∣∣∣∣∣∣ = k2π

for some integers j and k.

• j is the # of orbits before repeat.

• k is the # of days (sidereal) before repeat.

M. Peet Lecture 13: Spacecraft Dynamics 29 / 44



Repeating Ground Tracks

Ω̇ has a large effect on the design of Repeating Ground Tracks.
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T

TE
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2π
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a3

µ

TE
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∣∣∣∣∣∣ = k2π

for some integers j and k.
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Repeating Ground Tracks

Figure: SZ-4 Repeating ground track (Sven’s Space Place)



J2 Apsidal Rotation
Recall the Argument of Perigee Equation:

ω̇ = −Ω̇ cos i+

√
a(1− e2)

e2µ

(
−R cos f + T

(2 + e cos f) sin f

1 + e cos f

)
R =

−3µJ2R
2
e

r4

(
1

2
− 3 sin2 i sin2 θ

2

)
, T =

−3µJ2R
2
e

r4
sin2 i sin θ cos θ

The argument of perigee (ω) is linked to RAAN
(Ω). The average value is

dω

dθ
= −dΩ

dθ
cos i+

3J2R
2
e

2p2

[
1− 3

2
sin2 i

]
where

dΩ

dθ
cos i = −3

2
J2

(
Re

p

)2

cos2 i

= −3

2
J2

(
Re

p

)2 (
1− sin2 i

)
Image credit: Vallado
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J2 Apsidal Rotation

There are 3 parts acting here

� If the perigee were fixed in space, Ω̇ would shorted the angle to this point.

� A tangential component advances perigee

� A radial component pull perigee forward in the orbit.



J2 Apsidal Rotation

Similar to nodal regression, but perigee moves forward or backward, depending
on inclination.

ω̇J2,av =
3

2
nJ2

(
Re

p

)2 [
2− 5

2
sin2 i

]
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J2 Apsidal Rotation
Magnitude

The apsidal rotation rate is often large.

Figure: Magnitude of Regression Rate vs. inclination and altitude
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J2 Effect
Other Elements: Eccentricity

The J2 effect on other elements is usually minor. ȧ ∼= 0.

Figure: Eccentricity Change for Low-Inclination Orbit
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J2 Effect
Other Elements: Eccentricity

Figure: Eccentricity Change for Moderate-Inclination Orbit
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J2 Effect
Other Elements: Eccentricity

Figure: Eccentricity Change for High-Inclination Orbit

“Frozen Orbits” can be designed to minimize changes in eccentricity

• Use the J3 perturbation (Not covered here)

• Require particular choices of e and ω
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J2 Effect
Other Elements: Inclination

Figure: Inclination Change for Eccentric and Circular Orbits
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J2 Effect
Other Elements: Inclination

Figure: Inclination Change for Eccentric and Circular Orbits
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J2 Effect

To illustrate relative magnitude of these perturbations, for Gallileo satellites
(T=14hr)
Source acceleration (10−9m/s2)

Direct SRP (solar panels*) 122.0
Direct SRP (rotating bus) 9.1
Albedo 0.0–1.5
Infrared earth radiation 0.7–1.4
Antenna thrust 1.4
Thermal efects 0.1–0.7

Earth oblateness 37,600
Lunar acceleration 3300
Solar acceleration 1700
Venus accelerations 0.2
Jupiter accelerations 0.03
Higher-degree geoid potential 240
Solid earth tides 0.7
Ocean tides 0.08

General relativity (Schwarzschild) 0.3883



J2 Special Orbits
Critical Inclination

ω̇J2,av =
3

2
nJ2

(
Re

p

)2 [
2− 5

2
sin2 i

]

Definition 3.

A Critically Inclined Orbit is one where ω̇ = 0

For a critically inclined orbit,

4− 5 sin2 i = 0

which means

i = sin−1
√

4/5

= 63.43◦ or 116.57◦
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J2 Special Orbits

Figure: Molniya Orbit

Figure: Tundra Orbit



J2 Special Orbits
Sun-Synchronous Orbits

Sun-Synchronous orbits maintain the same orientation of the orbital plane with
respect to the sun.

Applications:

• Mapping

• Solar-Powered

• Shadow-evading

• Time-of-Day Apps
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J2 Special Orbits
Sun-Synchronous Orbits

The earth rotates 360◦ about the sun every 365.25 days.

Definition 4.

A Sun-Synchronous Orbit is one where Ω̇ = .9855◦/day = 1.992 · 10−7rad/s.

Thus

cos i = −1.992 · 10−7

(
p

Re

)2
2

3nJ2

• The orbital plane rotates once
every year.
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J2 Special Orbits
Sun-Synchronous Orbits

Unlike critically inclined orbits, sun-synchronous orbits depend on altitude.
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Numerical Example
LANDSAT

Problem: Design a sun-synchronous orbit with rp = Re + 695km and
ra = Re + 705km.

Solution: The desired inclination for a sun-synchronous orbit is given by

i = cos−1

(
1.992 · 10−7

(
p

Re

)2
2

3nJ2

)

For this orbit a = Re + 700km = 7078km. The eccentricity is

e = 1− rp
a

= .00071

Thus p = a(1− e2) = 6999.65km. n =
√

µ
a3 = .0011. Finally, J2 = .0010826.

Thus the required inclination is

i = 1.716rad = 98.33◦

M. Peet Lecture 13: Spacecraft Dynamics 41 / 44



Numerical Example
Molniya Orbit

Problem: Molniya Orbits are usually designed so that perigee always occurs
over the same latitude. Design a critically inclined orbit with a period of 24
hours (actually Tundra orbit) and which precesses at Ω̇ = −.2◦/day .

Solution: We can first use the period to solve for a. From

n =

√
µ

a3
= 7.27 · 10−5

and n = 2π/T = 2rad/day we have

a = 3

√
µ

n2
= 42, 241km

Now the critical inclination for ω̇ = 0 is i = 63.4◦ or i = 116.6◦. Since Ω̇ < 0,
we must choose i = 63.4◦. To achieve Ω̇ = −.2◦/day, we use

Ω̇ = − 3nJ2R
2
e

2a2(1− e2)2
cos i
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� Northern Molniya orbits have an argument of perigee of +90◦.

� Used for sensing and communication.

� Geosynchronous orbits cannot communicate well with or observe locations
at high latitude.

� Molniya orbits launched from high latitude do not require large inclination
changes after launch, unlike geosynchronous orbits.

� Provides continuous coverage with 3 satellites.

� Also used for US-observing spy sats and early-warning sats.

� Example of a semi-synchronous frozen tundra orbit with repeating ground
track.



Numerical Example
Molnaya Orbit, continued

Since a is already fixed, we must use e. We can solve for e as

e =

√√√√
1−

√
−3nJ2R2

e

2Ω̇a2
cos i = .7459.

Note: Make sure the units of a and n match those of Re and Ω̇, respectively.
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Summary

This Lecture you have learned:

How to account for perturbations to Earth gravity

• Gravity Mapping

• Harmonic Functions

• J2 Perturbation
▶ Effect on Ω
▶ Effect on ω
▶ Minor effect (e, i)

How to design specialized orbits

• Critically - Inclined Orbit.

• Sun-Synchronous Orbit.

• Applications

Next Lecture: Interplanetary Mission Planning.

M. Peet Lecture 13: Spacecraft Dynamics 44 / 44


	Spacecraft Dynamics

