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Introduction

In this Lecture, you will learn:

The Non-Spherical Earth
® The gravitational potential
® Expression in the R-T-N frame

® Perturbations
» Periodic
» Secular

Mission Planning
® Sun-Synchronous Orbits

® Frozen Orbits
® Critical Inclination
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Recall The Perturbation Equations

Fdisturbance = RéR + TéT + NéN

Semi-major Axis Eccentricity:
a? y , a(l—e?) ., .
—— leRsin f + T(1 + ecos f)] é= [Rsin f 4+ T'(cos f + cos Eeccc)]
p(l —e?) Iz
Inclination: RAAN:
d . a(l —e?) N cos(w + f) O a(l —e?) Nsin(w+ f)
— = =
dt ] 1+ecosf w o sini(l+ecosf)

Argument of Perigee:

a(l — e?)
e2u

w=—Qcosi+

(—Rcosf+T(2+eCOSf)Sinf)

1+ecosf
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Recall The Perturbation Equations

Lecture 13
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I—Recall The Perturbation Equations

Drag is only significant in LEO. Above LEO, Jy is more important (From
Gil/Montenbruck).
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Recall

Satellite-Normal Coordinate System

F = Néy + Rég + Tér

Satellite-Normal CS (R-T-N):
® ép points along the earth —
satellite vector.
® ¢y points in the direction of h
® ér is defined by the RHR
> ér v > 0. —

plane
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The Non-spherical Earth

The Spherical Earth

Recall that gravity for a point mass is

Gravity force derives from the potential

field. .
F=VU

To find U, we integrate

2 .
JU — _27TR Gomay smﬁda

p
For a uniform spherical mass,
® There is symmetry about the line 75.

® The point-mass approximation holds.
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The Non-spherical Earth

A Distorted Potential Field

For a spherical earth, dU is symmetric

JU — 727rR2G0m2 Sin0d9
p Ly s
The actual gravity field = 1’,'I'I
® |s not precisely spherical. ; - :
e density varies throughout the earth. . :

The result is a distorted potential field. _ - —

Figure: The geoid, 15000:1 scale
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l—The Non-spherical Earth

The Geoid is the surface of gravitational and centrifugal equipotential

e Describes the surface of the ocean if it covered the entire earth

Of course, for orbit perturbations, we exclude the centrifugal potential energy.



The Non-spherical Earth

A Distorted Potential Field

Socrates: So how do we derive the potential field?

Tycho Brahe: We measure it!!!

Definition 1.
Physical Geodesy is the study of the

gravitational potential field of the earth.

Definition 2.

The Geoid is equipotential surface
which coincides with the surface of the

ocean.

M. Peet
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NASA’'s Geodesy Video

S
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NASA_geodesy.mp4
Media File (video/mp4)


Development of Geodesy
Eratosthenes of Cyrene(276-195 BC)

The first measurements of the earth were made by Eratosthenes

® Third Librarian of Library of Alexandria
(240BQC).

Invented “Geography”

Invented Latitude and Longitude
» The difference in angle between high
noon at two points on the earth.
» Measured using deep wells

Measured the circumference of the earth.

® May have starved to death.
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f Geodesy
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- Development of Geodesy

e Starved himself to death after going blind and therefore being unable to
read.



Geometry of Eratosthenes
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The Non-spherical Earth

A Distorted Potential Field

Question: So how do we measure the potential field of the earth?
LAGEOS: Laser Geodynamics Satellites

1. Precisely measure the trajectory of
a satellite as it orbits the earth

2. Account for drag, third-body
dynamics, etc.

3. Remaining perturbation must be
causes by gravitational potential

The orbits of the LAGEOS satellites are
measured precisely by laser reflection.

Note: Only measures potential along
path of the orbit.

® We must observe for a long time to
get comprehensive data.

a =12,278km, i =109.8°,52.6°, Launch dates: 1976, 1992
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l—The Non-spherical Earth

e Does not measure potential field directly.

e Requires this field to be fit to the trajectory data.




The Non-spherical Earth

Measuring satellite positions from earth is inaccurate.

® Atmospheric Distortion

GRACE (2002):

1. Measure the relative position of
two adjacent satellites

2. Relative motion yields gradient of
the potential field

3. Allows direct reconstruction of

U

Less fancy methods:

® Survey markers

® Altimetry

® Ocean level variation
a = 6700km, i = 90°
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LThe Non-spherical Earth




Data from GRACE

Ocean surface equivalent
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Global_Gravity_Anomaly_Animation_LAND.gif
Media File (image/gif)
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Global_Gravity_Anomaly_Animation_OCEANS.gif
Media File (image/gif)


The Non-spherical Earth

Question: So what is U(7)? (Needed to compute F' = VU)
Response: Too much data to write as a function.

In order to be useful, we match the data to a few basis functions.

Coordinates: Express position using
¢gc: AT

® ¢4 is declination from equatorial
plane.

® 7 is radius

® ) is right ascension, measured
from Greenwich meridian.

We will have a function of form

U(dge; A1)
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The Non-spherical Earth
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l—The Non-spherical Earth

Note that U will be defined in ECEF coordinates.

e We will need to change to ECl and ultimately RTN coordinates in order
to apply the orbit perturbation equations.

e This is one of those cases where RTN is not the natural coordinate system
for the force.



The Harmonics
The potential has the form

U(¢gc: >\a T) :g + Usonai (’rv (bgc)

+ Usectorial(ra /\)
+ Utesseral (’I“, ¢g0a )‘)

Actually, Usectoriar Varies with ¢g., but not “harmoniously”.
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The Zonal Harmonics

Zonal Harmonics: These have the form

=, (R
Uzonal(""7 ¢gc) = %Z Ji (T) Pi(51n¢gc)

1=2

Side

Top

2,0 3,0

® R, is the earth radius
® P; are the Legendre Polynomials

® The J; are
Zonal harmonics vary only with latitude.
M. Peet
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l—The Zonal Harmonics

Technically, the zonal harmonics are only the P;(sin ¢4c) terms where the P; are
the Legendre polynomials

1 ar
~ 2npl dzn

P, (z) = P,(x) (2 —1)"

This is Rodrigues’ formula
e This is a bit confusing, since, e.g.
Py (sin ) = cos ¢
Py (sin ¢) = 3cos” ¢

e What is even more confusing is some texts (e.g. Curtis) measure
¢ =90 — ¢ge.

e Then sin ¢4. becomes cos ¢.



The Sectorial Harmonics

Sectorial Harmonics: These have the form

- RN\
Usect (T; ¢gca )\) = g Z (Ci,sect COS('L.A) + Si,sect SIH(ZA)) <’I"> H(Sll’l (ybgc)

=2

Side

® Divides globe into slices by longitude.

® Varies with ¢, but P;(sin ¢4.) is uniformly positive.

® The Cj sectoriai and S; sectorial are also determined by the Geodesy datal
Sectorial harmonics vary only with longitude.
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I—The Sectorial Harmonics

Many texts ignore the Sectorial and Tesseral Harmonics

e The effect often appears random/hard to predict. Not much secular
perturbation

e The exception to this is repeating ground tracks.

If interested, “Satellite Orbits” by Gil and Montenbruck has all the dynamics
well-explained.



The Tesseral Harmonics

These have the form

R,

Utesseral(ra ¢gc: /\) = Z (O'L',j COS(i)\) + Si,j Sln(Z)‘)) (7‘) Pi,j(Sin d)gc)
i,j=2

RERS

® Divides globe into slices by longitude and latitude.
® The C; ; and S; ; are also determined by the Geodesy datal
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The J2 Perturbation

For simplicity, we ignore all harmonics except the first zonal harmonic.

2

2
AU (r, 64e) = 21 <R7> P sin®(6ge) — %]

This corresponds to a single band about the
equator.

® The earth is 21 km wider than it is tall.

L

® A flattening ratio of ;.

® Jy =.0010826
® J3 =.000002532
* Jy, =.000001620
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I—The J2 Perturbation

| mage credit: https://ai-solutions.com/ freeflyeruniversityguide/j2.perturbation.htm

The J2 Perturbation

.
« Ji= 000001620



The J2 Perturbation

Defined in the Wrong Coordinate System

R.

iz ’13 . 9 1
AUJZ(Ta ngc) = *;J2 (r> |:2 sin (¢gc) - 2:|

® Expressed in the ECl Frame (same as ECEF here)
® Since sin¢g. = £

r!

2 2
AUys(r,bye) = — 222 (R> F’Z = 1}

We now calculate the perturbation force as

or 0z ~

3z 3 152’2
_ 2 ~ ~
—/j,JQRe |:’r"56z + (27"4 - 2’]”6> eR:|

But to use our perturbation equations, we need a force expressed in the R-T-N
frame.

Fo_
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I—The J2 Perturbation

These calculations are from the 1993 version of Prussing and Conway




Recall: Perifocal to ECI Transformation

To convert a PQW vector to ECI, we use

Tecr = Rs(Q)R1 (i) R3(w)Trow = Rpow—ECITPOW

cos) —sinQ) 0Of (1 0 0 cosw —sinw 0
Rpow—gcr = |sinf? cos) 0| [0 cosi —sini| [sinw cosw 0
0 0 1| |0 sinz cosi 0 0 1
coscosw —sinQsinwcosi —cosQsinw —sin2coswcos?  sinsini
= [sinQcosw + cosQsinwcosi —sin{)sinw + coscoswcosi — cosf)sini

sin w sin ¢ cosw sin ¢ cos 1
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The R-T-N to ECI Transformation

An additional rotation gives us the R-T-N
frame.

Rrryn—ECT
cos€) —sinQ) 0Of [1 0 0
= [sinQ cosQ 0| |0 cosi —sing
0 0 1 0 sint cost

cos(w+ f) —sin(w+f) 0
sin(w+ f)  cos(w+ f) 0

0 0 1
Rrrv—ecr =
cos€lcosf —sin2sinfcost —cossinfd —sinQcosfcosi sin{2sing
sinQcosf + cossinfcosi —sin{)sind + cosQcosfcosi —cosfsing
sin@sin g cos fsin i cos i

Where for brevity, we define # = w + f. This gives us the expression
é, = sinisin(w + f)ég + sinicos(w + f)ér + cosiéy

M. Peet Lecture 13: Spacecraft Dynamics 22 /44



2023-02-06

Lecture 13
Spacecraft Dynamics

L The R-T-N to ECI Transformation

Since the final rotation is just Rs(f), we combine it with the R3(w) rotation so
that
R3(f)R3(w) = Rs(f +w) = Rs(0)

similar to PC, page 200



Forces in the R-T-N Frame

— 3z 3 1522
_ 2 A ~
F = _H‘]?Re |:’F5€Z =+ (27‘4 — 72716 ) €R:|

From the rotation matrices, we have that
é, =sinisin(w + f)ég + sinicos(w + f)ér + cosiéy

and since
z =rsin¢g. = rsinisin(w + f),

this yields the disturbing force in the R-T-N frame:
P LA 3sin” isin® ¢
N 4 2 2
3sin?isin’ 6

—3uJoR? |27, 2
= 22 | G602 isin 6 cos 0
sin ¢ sin 6 cos ¢

) ép + sin? i sin 0 cos 0ér + sin i sin 0 cos ié
,

rd
RTN

where again, for brevity, we use 0 = w + f
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The J2 Perturbation

The primary effect of Js is on € and w.
2

_ 3uhR

N 1 sinisin(w + f) cosi
T

We plug the force equations into the expressions for Q and w

a(l —e?) Nsin(w+ f)

Q =
w sini(l+ecosf)

to get
o 3/LJ2R3
=
This is the instantaneous rate of change.
® The angles € and f will cycle from 0° to 360° over each orbit.
® We would like to know how much of that perturbation is secular?
® What is the average over 67
a Q0
a9 §  h/r?

cosisin®(w + f)[1 + ecos f]*
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I—The J2 Perturbation

e Recall § = h/r? comes from

e We use the polar equation r =

equal area - equal time. A =

® ..
TTecosf Lo eliminate r.




Averaging the J2 Perturbation

Starting with

: 2
% = 71527“2 = —3J, (]j;) cosisin? B [1 + ecos(d — w)]

Then the average change over an orbit is

dQ 1 /2740 3Js (R,
o do —(

4y 27 o db 2m

Now we use cos(f — w) = cosw cosf + sinwsin b to get

2 27
p) cosz'/ sin? 0 [1 + ecos(f — w)] d
0

2m 2m 2m
/ sin? 0 [1 + ecos( — w)] df = / sin? 6d6 + e/ sin? 0 cos(0 — w)df
0 0 0

27 27
=7 + ecos w/ sin? 6 cos 0df + e sinw/ sin® 6do
0 0

2
= —§J2 <Re> cos i
AV 2 p

Lecture 13: Spacecraft Dynamics

=7+0+0=m

dQ)

Thus, h —
us, we have 70

M. Peet
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Averaging the J2 Perturbation

Given
@ ——§J (&)2%5@'
|, 27\p
we can use the fact that
do
n= E|AV

to get the final expression




J2 Nodal Regression

Physical Explanation

The ascending node migrates opposite the direction of flight

2
Q200 = *§TLJ2 (Re> cos i
E) 2 p

The equatorial bulge produces extra pull
in the equatorial plane

® Creates an averaged torque on the
angular momentum vector
® |ike gravity, the torque causes h to
precess.
® Only depends on inclination
» Also a and e...

Image credit: Vallado
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J2 Nodal Regression

Magnitude

The nodal regression rate is often large. Cannot Be Neglected!!l.

011 - ¢1 ~ deg! MEAN SOLAR DAY

Fig.10.2
altitude.

Figure:

M. Peet

e heo oosa R\’
h * 100 nmi §-=== ( ) cos | deg/MEAN SOLAR DAY
-9 - - \R+h
h = 200 nmi
* Papogee * MpericeE
K 2
5 h, - hy
ho+h o+
5
-4 o = 3444 nmi
3 NOTE:
« 1000 nmi FOR RETROGRADE ORBIT USE SUPPLEMENTARY,
VALUE OF INCLINATION AND CHANGE SIGN OF
2} T - 500 nml TO PLUS
ak
0 | | 1
0 10 2 30 4 % & 10 8 %
INCLINATION, deg
Regression rate due to oblateness vs inclination for various values of average

Magnitude of Regression Rate vs. inclination and altitude
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Repeating Ground Tracks

Q) has a large effect on the design of Repeating Ground Tracks.

® The rotation of the earth over an orbit is
given by

T 27‘&'1/% w%\
AL = 21— = 27 § 1

Obseration i

Tp Tk
Ty = 23.9345hrs (1 sidereal day) $ i
® The change in €2 over an orbit is ' I C T
3rJaR%cos(i)
ALy = —————%——~
2 a?(1 — e2)?

® For a ground track to repeat, we require

21y / “ 3rJoR%cos(i)
(AL 4 ALy| = j | -2 P2 = k2
JIALy + ALy| = j|—2m Ts 2(1— e2)? &

for some integers j and k.

j is the # of orbits before repeat.

k is the # of days (sidereal) before repeat.
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J2 Apsidal Rotation

Recall the Argument of Perigee Equation:

: 1—e2 2 i
w=—Qcost+ G(Qe)(—RcoSf-i-T( +ecosf)smf>
e2u 1+ecosf
B 2 /1 . 2. .. 92 _ 2
po Z3uRR; (1 3sin7isin 0 ’ 7= 23l GG 0 cost
r4 2 2 rt

The argument of perigee (w) is linked to RAAN
(Q). The average value is

@:—@cosz+ 92 1 — —sin

dw dQ) . 3J2Rz{ 3 22}
2

where

Image credit: Vallado

M. Peet
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I—_12 Apsidal Rotation

There are 3 parts acting here
o If the perigee were fixed in space, 2 would shorted the
e A tangential component advances perigee

e A radial component pull perigee forward in the orbit.

angle to this point.



J2 Apsidal Rotation

Similar to nodal regression, but perigee moves forward or backward, depending

: 3 R\’ 5 . 4.
WJi2,av = §nJ2 (?> [2 ~3 sin? z]

Apogee (Start)

on inclination.

Apogee (End) flIII11||

= Perigee (Start)
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J2 Apsidal Rotation

Magnitude

The apsidal rotation rate is often large.

20
18

16

@0 - €49° ~ deg/ MEAN SOLAR DAY

1

/E=0
h = 100 nmi

T = 200 nmi 22

{1-¢7

63.4 deg or
/ 116.5 deg

| b | | | | |
0 10 2 30 40 50 6 70 8 %0
8 170 160 150 140 130 120 110 100 90

INCLINATION, deg

g. 290 (R
R+ R

h(
\ ha-hp
E R +n +®
L a Ty
I~
B R = 3444 nmi

712 5 -
) -5 sin” i) deg/ MEAN SOLAR DAY

+ . Napocee * "pERiGEE
2

Figure: Magnitude of Regression Rate vs. inclination and altitude
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J2 Effect

Other Elements: Eccentricity

The J effect on other elements is usually minor. a 22 0.

0.01C62 T T T T T
0.01600 — —
U.DUEES—‘\\ Numerical ntegrthon
0a0ess - \ / Firse-and A eon

0.009%4 .
0.00892 — =

f

0.00880 - n
71111988

000588~ 5= 26561.0 km B
e = 0.010000

0.00886 = 5.00 deg 7
Q= 40.00 dec

0.00984 w= §0.00 dea -
! I | L

0.00982
006 1000 2000 3000 4000 uuGD uUC 700.0 BUG“ 8060
ELAPSED TIME (days!

Figure: Eccentricity Change for Low-Inclination Orbit
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J2 Effect

Other Elements: Eccentricity

0.01005
T T s
0.01004 — 4 = 26561.0 km —
e = 0.010000
0.01003— = 30,00 deg —
2 = 40.00 deg
0010021 v = B0.00dey

0.01001

I

0.01000
0.00898
0.00938
0.00887

0.00996

0.009%0 | | | | | 1 1 |
0.0 1000 2000 300.0 400.0 500.0 600.0- 700.0 800.0 900.0
ELAPSED TIME ldayst

Figure: Eccentricity Change for Moderate-Inclination Orbit
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J2 Effect

Other Elements: Eccentricity

0.7200 T T T 1 T
080~ 11985
21pn 3 =26561.0 km
07160~ e= 000000
i = 300 deg
0140~ 0= 4000 deg .
o= 5000 deg
07120 —
. . . .
© 07100 -
0.7080— —
0700 —
07040 —
07020 —
o 74 R N I S N BN

0
00 1000 2000 3000 400.0 S00.0 6000 700.0 8000 000
ELAPSED TIME (days!

Figure: Eccentricity Change for High-Inclination Orbit
“Frozen Orbits” can be designed to minimize changes in eccentricity
® Use the J3 perturbation (Not covered here)
® Require particular choices of e and w
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J2 Effect

Other Elements:

Inclination

99_74\)‘,-—-—-‘ t ‘ \ \ \ \ \ 1
98.735 T \
98.730] |
98,7251

é 98.720——— .—-Am\ww————‘

; |

é 98.715——1 N . R

| || L_

S 71071 | T EPOCH= 1/15/1988

a NVW\'\‘ SEMIMAJOR AXIS = 7190.88 KM
98.705 1" 5A ECCENTRICITY = 0.001

INCLINATION = 98.70 DEG
98.700 RIGHT ASC. OF NODE = 18.26 DEG
ARG. OF PERIGEE = 0.0 DE(
98,695 -
98.690F 56, 1N ELI Y 468, LILA €68, 766 @00. 66 Toge1To8, 1260,  [j00.  1N00. oo,
ELAPSED TIME (DAYS)
Fig. 10.6 Inclination variation without correction (5:30 orbit).
Figure: Inclination Change for Eccentric and Circular Orbits
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LJQ Effect

To illustrate relative magnitude of these perturbations, for Gallileo satellites

J2 Effect

(T=14hr)
Source acceleration (10~%m/s?)
Direct SRP (solar panels*) 122.0
Direct SRP (rotating bus) 9.1
Albedo 0.0-1.5
Infrared earth radiation 0.7-1.4
Antenna thrust 1.4
Thermal efects 0.1-0.7
Earth oblateness 37,600
Lunar acceleration 3300
Solar acceleration 1700
Venus accelerations 0.2
Jupiter accelerations 0.03
Higher-degree geoid potential 240
Solid earth tides 0.7
Ocean tides 0.08
General relativity (Schwarzschild) || 0.3883




Jo Special Orbits

Critical Inclination

3 R.\? 5
LZJJ2,a'U - 5?%]2 <pe> |:2 — 5 sin2 Z:|

Definition 3.

A Critically Inclined Orbit is one where w =0

For a critically inclined orbit,
A aliude o apogen

4—5sin?i=0

dbita Mokaiya

Y pesioto 121

which means

pesiodo 23 S6er4,095
de 3075 s

altnede e veloida
35 768 k. o —e,
i=sin"'/4/5 / oo
anclmagio
— o ° 4 Lt
= 63.43 or 116.57 ssssoyrizes MU Z
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- Jo Special Orbits

Figure: Molniya Orbit

J» Special Orbits

(RN,

5
G = s (22
2%

Definition 3.

Figure: Tundra Orbit



Jo Special Orbits

Sun-Synchronous Orbits

Sun-Synchronous orbits maintain the same orientation of the orbital plane with
respect to the sun.

Applications:
® Mapping

Solar-Powered

Shadow-evading

Time-of-Day Apps

e )B |
beI;-P}lm "9&
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Jo Special Orbits

Sun-Synchronous Orbits

The earth rotates 360° about the sun every 365.25 days.

Definition 4.

A Sun-Synchronous Orbit is one where Q = .9855° /day = 1.992 - 10~ "rad/s.

Thus

2
. _ P 2
=-1.992-1077 [ =
cost % 0 <R6> 3nds

® The orbital plane rotates once
every year.

M. Peet

=/ a,
; \/ N 4o
A 37.5° ’
l )
The Orbit Plane \k
Rotates at the Mean
Rate of the Earth

About the Sun
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Jo Special Orbits

Sun-Synchronous Orbits

Unlike critically inclined orbits, sun-synchronous orbits depend on altitude.

Sun-Synchronous Orhit Inclination (deg)

M. Peet

/
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Numerical Example
LANDSAT

Problem: Design a sun-synchronous orbit with 7, = R, + 695km and
rqe = Re + 705km.

Solution: The desired inclination for a sun-synchronous orbit is given by

2
. 1 —7( P 2
= 1.992-1 —
1 = coS ( 99 0 <Re> 3nJ2>

For this orbit a = R, + 700km = 7078km. The eccentricity is

e=1-—"2— 00071
a

Thus p = a(l — €?) = 6999.65km. n = /%5 = .0011. Finally, J, = .0010826.
Thus the required inclination is

1 = 1.716rad = 98.33°
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Numerical Example
Molniya Orbit

Problem: Molniya Orbits are usually designed so that perigee always occurs
over the same latitude. Design a critically inclined orbit with a period of 24
hours (actually Tundra orbit) and which precesses at 2 = —.2°/day .

Solution: We can first use the period to solve for a. From

n=,|t =727.107"
a

and n = 27 /T = 2rad/day we have

a= {5 =42, 241km
n

Now the critical inclination for w =0 is 'i = 63.4° or i = 116.6°. Since Q < 0,
we must choose ¢ = 63.4°. To achieve Q = —.2°/day, we use

3n.J, R2

_72a2(1 — ey CoS 1

Q:
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e Northern Molniya orbits have an argument of perigee of +90°.
e Used for sensing and communication.

e Geosynchronous orbits cannot communicate well with or observe locations
at high latitude.

e Molniya orbits launched from high latitude do not require large inclination
changes after launch, unlike geosynchronous orbits.

e Provides continuous coverage with 3 satellites.
e Also used for US-observing spy sats and early-warning sats.

e Example of a semi-synchronous frozen tundra orbit with repeating ground
track.



Numerical Example

Molnaya Orbit, continued

Since a is already fixed, we must use e. We can solve for e as

B 371J2Rg
20)a?2

cosi = .7459.

“&g:fh +—— aliitude no apogen

HEO
érbita Molniya
/ periodo 12

periodo 230-5hm:4.095
altinsde welocidade 3 075 m's

35768 km. X = -l
LEO i
atbita polar b/
nclknagio
> o
atiitude 5o perigen 4 2
Fialer (=2

Note: Make sure the units of @ and n match those of R, and €2, respectively.
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Summary

This Lecture you have learned:

How to account for perturbations to Earth gravity
® Gravity Mapping
® Harmonic Functions

® Jy Perturbation

» Effect on Q
> Effect on w
> Minor effect (e, i)

How to design specialized orbits
® Critically - Inclined Orbit.
® Sun-Synchronous Orbit.
® Applications

Next Lecture: Interplanetary Mission Planning.
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