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Introduction

In this Lecture, you will learn:

Sphere of Influence

• Definition

Escape and Re-insertion

• The light and dark of the Oberth Effect

Patched Conics

• Heliocentric Hohmann

Planetary Flyby

• The Gravity Assist
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The Sphere of Influence Model
Simplifying Three-Body Motion

Consider a Simple Earth-Moon Trajectory.

1. Launch

2. Establish Parking Orbit

3. Escape Trajectory

4. Arrive at Destination

5. Circularize or Depart Destination

The big difference is that now there are 3 bodies.

• We only know how to solve the 2-body problem.

• Solving the 3-body problem is beyond us.
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Patched Conics

For interplanetary travel, the problem is even more complicated.

Consider the Figure

• The motion is elliptic
about the sun.

• The motion is affected by
the planets
▶ Interference only occurs

in the green bands.
▶ Motion about planets is

hyperbolic.
▶ Direction and

Magnitude of v⃗
changes.

The solution is to break the mission into segments.

• During each segment we use two-body motion.

• The third body is a disturbance.
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Sphere of Influence (SOI)
The WRONG Definition

Question: Who is in charge??

• The Sphere of Influence of A stops when A is no longer the dominant force.

• What do we mean by dominant?

Wrong Definition:
The Sphere of Influence of A is
the region wherein A exerts the
largest gravitational force.

Why Wrong?
This would imply the moon is
not in earth’s Sphere of
Influence!!!

M. Peet Lecture 14: Spacecraft Dynamics 5 / 43



Sphere of influence
The Sun’s Perspective (Orbital motion around the sun)

Sun Perspective: Lets group the forces as central and disturbing.
Consider motion of a spacecraft relative to the sun:

¨⃗rsv + Gms
r⃗sv

∥r⃗sv∥3︸ ︷︷ ︸
Effect of sun on object

= −Gmp

[
r⃗pv

∥r⃗pv∥3︸ ︷︷ ︸
Effect of planet on object

+
r⃗sp

∥r⃗sp∥3︸ ︷︷ ︸
Effect of planet on sun

]

where p denotes planet, v denotes vehicles and s denotes sun.

The Central “Force” is

¨⃗rcentral,s = −Gms
r⃗sv

∥r⃗sv∥3

The Disturbing “Force” is

¨⃗rdist,s = −Gmp

[
r⃗pv

∥r⃗pv∥3
+

r⃗sp
∥r⃗sp∥3

]
︸ ︷︷ ︸
Acceleration of object due to planet
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� For the sun-moon system, e.g., the vectors

r⃗pv
∥r⃗pv∥3

>>
r⃗sp

∥r⃗sp∥3
∼= 0

so
¨⃗rdist,s

¨⃗rcentral,s

∼=
mp

ms

∥r⃗sv∥2

∥r⃗pv∥2

� So if ∥r⃗pv∥ is small and ∥r⃗sv∥ is big, the disturbing force dominates.



Sphere of influence
The Planet’s Perspective (Orbit around the planet)

Planet Perspective: The relative motion of the spacecraft with respect to the
planet is

¨⃗rpv + Gmp
r⃗pv

∥r⃗pv∥3︸ ︷︷ ︸
Effect of planet on object

= −Gms

[
r⃗sv

∥r⃗sv∥3︸ ︷︷ ︸
Effect of sun on object

− r⃗sp
∥r⃗sp∥3︸ ︷︷ ︸

Effect of sun on planet

]

The Central “Force” for the planet is

¨⃗rcentral,p = −Gmp
r⃗pv

∥r⃗pv∥3

The Disturbing “Force” for the planet is

¨⃗rdist,p = −Gms

[
r⃗sv

∥r⃗sv∥3
− r⃗sp

∥r⃗sp∥3

]
︸ ︷︷ ︸
Acceleration of object due to sun
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� When the vehicle is near the planet, r⃗sp ∼= r⃗sv and hence

r⃗sp
∥r⃗sp∥3

∼=
r⃗sv

∥r⃗sv∥3

so ¨⃗rdist,p ∼= 0 and
¨⃗rdist,p

¨⃗rcentral,p

∼=
ms

mp
· 0 ∼= 0

and hence the relative size of the disturbance is small.

� Sphere of influence is based on the relative distance.



Sphere of influence
Definition

Definition 1.

An object is in the Sphere of Influence(SOI) of body 1 if

∥¨⃗rdist,1∥
∥¨⃗rcentral,1∥

<
∥¨⃗rdist,2∥

∥¨⃗rcentral,2∥

for any other body 2.

That is, the ratio of disturbing “force” to central “force” determines which
planet is in control.

For planets, an approximation for determining the SOI of a planet of mass mp

at distance dp from the sun is

RSOI
∼=

(
mp

ms

)2/5

dp
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∥¨⃗rdist,p∥
∥¨⃗rcentral,p∥

<
∥¨⃗rdist,s∥

∥¨⃗rcentral,s∥

mp

ms

∥r⃗sv∥2

∥r⃗pv∥2
>

ms

[
r⃗sv

∥r⃗sv∥3
− r⃗sp

∥r⃗sp∥3

]
mp

r⃗pv
∥r⃗pv∥3

∼=
ms [r⃗sv − r⃗sp]

mp
r⃗pv∥r⃗sv∥3
∥r⃗pv∥3

m2
p

m2
s

∥r⃗sv∥5

∥r⃗pv∥5
>

[r⃗sv − r⃗sp]

r⃗pv
∼= 1

m2
p

m2
s

∥r⃗sv∥5 > ∥r⃗pv∥5

∥r⃗pv∥ <

(
mp

ms

)2/5

∥r⃗sv∥



Sphere of influence
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Sphere of influence
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� The sphere of influence of a planet is defined w/r another mass.

� Distance from earth to the moon is 385,000km

� e.g. Note that sphere of influence of the Moon (w/r to the earth) is inside
the sphere of influence of the Earth (w/r to the sun)!

� The SOI of the earth w/r to the moon is different that the SOI w/r to the
sun!

Pluto’s sphere of influence is generally considered to be 4.2 million km or 3,650

body radii.



Example: Lunar Lander

Problem: Suppose we want to plan a lunar-lander mission. Determine the
spheres of influence to consider for a patched-conic approach.

• The SOI of the earth is of radius 924,000km.
• The SOI of the moon is of radius 66,100km.

Solution: The moon orbits at a distance of 385,000km. The spacecraft will
transition to the lunar sphere at distance

r = 385, 000− 66, 100 = 318, 900km

We will probably also need a plane change. A
reasonable mission design is

1. Depart earth on a Hohmann transfer to
radius 317, 900 km.

2. Perform inclination change near apogee.

3. Enter sphere of influence of the moon.

4. Establish parking orbit.
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Example: Lunar Lander

Why a Plane Change is needed.
• Lunar orbit is inclined at about 4.99◦–5.30◦ to the ecliptic plane.
• The Moon rotates CCW at 1km/s (Earth rotates CCW)
• The inclination of the lunar orbit is almost fixed with respect to the ecliptic.
• Not fixed relative to the equatorial plane (Saros cycle - Solar and J2).
• Inclination to equator varies = 21.3◦ ± 5.8◦ every 18 years.
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Example: Lunar Lander

� The orbit of the moon is significantly perturbed by the sun.

� Somewhat similar to J2 perturbation, but centered on ecliptic.

� RAAN of lunar orbit processes with period of 18 years.



More Illustrations of the Lunar Orbit
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More Illustrations of the Lunar Orbit
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More Illustrations of the Lunar Orbit

Motion during Eclipse:



5 Stage Lunar Intercept Mission
First Stage Lunar Tug Assist
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Stages of Interplanetary Mission Planning

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity v∞

3. Establishes Velocity in Solar Frame

3.1 vp = ve + v∞ for dark-side burn (Outer planets)
3.2 va = ve − v∞ for light-side burn (Inner planets)

4. Propagate Hohman (or Lambert) to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vv∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.
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Interplanetary Mission Planning
Design Problem: Venus Rendez-vous

Problem: Design an Earth-Venus rendez-vous.
Final orbit around Venus should be posigrade
and have altitude 500km.

First Step: Align parking orbit with ecliptic
plane.

• All planets move in the ecliptic plane
▶ i ∼= 23.4◦

• Circular orbit.
▶ Radius r ∼= 6578km
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Interplanetary Mission Planning

Stages of Interplanetary Mission:

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity v∞

3. Establishes Velocity in Solar Frame

3.1 vp = ve + v∞ for dark-side burn (Outer planets)
3.2 va = ve − v∞ for light-side burn (Inner planets)

4. propagate Hohman to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vv∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.



Moving to the Ecliptic Plane

All planets in the solar system orbit the sun in the ecliptic plane.

• Transition must occur when the orbital plane and ecliptic planes intersect.

Any earth-centered orbit passes through the ecliptic twice per orbit.

• But not at the ascending node (w/r to the equatorial plane).

• But not at the correct time (f??).
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Transition to the ecliptic

To change to the ecliptic plane:

• Burn at ascending node w/r to the ecliptic plane.

• Execute a plane change.

Requires a change in both Ω and i

• New Ω = 0

• New i = 23.27◦
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Interplanetary Hohmann Transfer
Transition to the ecliptic

Our desired orbit has
• i2 = ϵ = 23.5◦ - Inclination to the ecliptic
• Ω2 = 0◦ - by definition: Ω is measured from FPOA (intersection of

equatorial and ecliptic planes).

If our initial orbit has inclination i1 and RAAN Ω1, then the angle change is

cos θ = cos i1 cos i2 + sin i1 sin i2 cos(Ω2 − Ω1)
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Interplanetary Hohmann Transfer

� It is not possible to launch directly into the ecliptic from the U.S. (Recall
for Kennedy ϕgc = 28.5◦)

� However, we may choose launch time θLST in order to select RAAN Ω1

� For the ecliptic, i2 = 23.5◦.

� For Kennedy, i1 = 28.5◦

� For the ecliptic plane, Ω2 = 0◦.

� To minimize ∆v, we want to minimize θ. To do this, we may select
Ω1 = 0◦, which yields

θ = cos−1 (cos(28.5◦) cos(23.5◦) + sin(28.5◦) sin(23.5◦) ∗ cos(0◦)) = 5◦

� If combined with a burn to escape, the ∆v for a 5◦ plane change is almost
negligible!



Interplanetary Hohmann Transfer
Transition to the ecliptic

The position in the orbit is given by

cos(ω + f) =
cos i1 cos θ − cos i2

sin i1 sin θ

Where recall
• i2 = ϵ = 23.5◦
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The Plane Change

The ∆v required required for the plane change is then

∆v = 2v sin
θ

2

or
∆v2 = v(t−k )

2 + v(t+k )
2 − 2v(t−k )v(t

+
k ) cos∆θ

if combined with a velocity change (v(t−k ) to v(t+k )).
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The Plane Change

In truth, we try and avoid large plane changes. Typically, it is better to launch
directly into the ecliptic plane. This is normally possible if the launch site is
below 23.5◦ latitude and the launch time is carefully chosen.



Stage 2: Escape Trajectory
Step 2a: Design an Interplanetary Hohmann Transfer

We need the magnitude and direction of velocity in the Heliocentric Frame.

The perigee and apogee velocities of the
Heliocentric transfer ellipse are

v+1 = vp =

√
2µsun

re
rv(re + rv)

= 37.73km/s

v+2 = va =

√
2µsun

rv
re(re + rv)

= 27.29km/s

Where

• re is dist. from sun to earth (ve = 29.8)

• rv is dist. from sun to venus (vv = 35.1)

Because Venus is an inner planet, apogee
velocity occurs at Earth
The Hohmann transfer is defined using the Sphere of Influence of the Sun

• Velocities are in the Heliocentric Frame.
M. Peet Lecture 14: Spacecraft Dynamics 21 / 43



Stage 2: Escape Trajectory
Step 2a: Design an Interplanetary Hohmann Transfer

We need the magnitude and direction of velocity in the Heliocentric Frame.

The perigee and apogee velocities of the
Heliocentric transfer ellipse are

v+1 = vp =

√
2µsun

re
rv(re + rv)

= 37.73km/s

v+2 = va =

√
2µsun

rv
re(re + rv)

= 27.29km/s

Where

• re is dist. from sun to earth (ve = 29.8)

• rv is dist. from sun to venus (vv = 35.1)

Because Venus is an inner planet, apogee
velocity occurs at Earth
The Hohmann transfer is defined using the Sphere of Influence of the Sun
• Velocities are in the Heliocentric Frame.

2
0
2
5
-0
4
-1
7

Lecture 14
Spacecraft Dynamics

Stage 2: Escape Trajectory

Stages of Interplanetary Mission:

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity vx

3. Establishes Velocity in Solar Frame

3.1 vp = ve + vx for dark-side burn (Outer planets)
3.2 va = ve − vx for light-side burn (Inner planets)

4. propagate Hohman to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vm∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.



Phasing of the Hohmann Transfer

If you want to intercept a planet, you have to time your departure!

The transfer orbit sweeps 180◦ in time ∆T = π
√

a3

µ = π
√

(r1+r2)3

µ . During this

time, the planet will sweep an angle of

Dθ = 360◦
∆T

Tplanet
= 360◦

π
√

(r1+r2)3

µ

π
√

r32
µ

= 360◦

√
(r1 + r2)3

r32

So you want your relative angle at departure to be

ϕ0 = 180◦ − 360◦

√
(r1 + r2)3

r32
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Phasing of the Hohmann Transfer

The relative angle between two planets changes at rate

nrel = n1 − n2

So, if you miss your launch, you will have to wait for

Tsyn =
2π

nrel

This is known as the synodic period. The synodic period for: Mercury: 88
days; Venus: 225 days; Mars: 2.1 years; Jupiter: 11.9 years; Saturn: 29.7 years;
Uranus: 84.0 years; Neptune: 164.8 years.



Step 2: Interplanetary Hohmann Transfer

We can use the Hohmann transfer (2-body, Elliptic orbits) because the voyage
will take place almost exclusively in the sun’s sphere of influence.

• The earth orbits at radius 1au = 1.5 · 108km = 23, 518ER.
• The SOI of the earth is only 145ER, or .5%.
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Step 2: Interplanetary Hohmann Transfer

� None of the trajectories in this diagram are Hohmann transfers (although
the first is nearly so)

� The phasing must be perfect for a Hohman transfer, and so these are only
possible for single-planet routes, with no gravity assist.

� The ∆v at planet 2 to intersect planet 3 is chosen by solving Lambert’s
Problem.



Interplanetary Hohmann Transfer
Injection (va)

Problem: We need to know the ∆v magnitude
relative to earth’s motion.
• va = v+2 is w/r to inertial frame.

• Earth is moving in the inertial frame.
▶ The earth frame is moving with velocity

v−2 = ve =

√
µs

∥r⃗se∥
= 29.78km/s

• What is this va velocity relative to earth?

We have

v+2 = va = v−2 + v∞,e

Thus our desired velocity with respect to the earth is

∆ve = v∞,e = va − v−e = 27.29− 29.78 = −2.49km/s

• The magnitude of ∆ve is determined by excess velocity
• The direction of ∆ve is determined by timing

M. Peet Lecture 14: Spacecraft Dynamics 24 / 43



Interplanetary Hohmann Transfer
Injection (va)

Problem: How to achieve the initial
v∞,e = −2.49km/s?

• We need to escape earth orbit.

• Must have leftover velocity (excess
velocity) of 2.49km/s.
▶ Implies the total energy (w/r to the

earth) after burn is

E+ =
1

2
v2∞,e = 3.1223
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Interplanetary Hohmann Transfer

Suppose the spacecraft is in a circular parking orbit of radius rpark = 6578km.

• The velocity before the burn will be

vpark =

√
µe

rpark
= 7.7843km/s

• The velocity after burn (vafter) can be
found by solving the energy equation.

E =
1

2
v2after −

µe

rpark
= E+ = +3.1223

Solving for vafter, we get

vafter =

√
2E + 2

µe

rpark
=

√
v2∞,e + 2

µe

rpark
= 11.288km/s

• This yields a ∆vlocal of

∆vlocal = vafter − vpark = 3.5044km/s
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v2∞,e + 2

µe

rpark
= 11.288km/s

• This yields a ∆vlocal of

∆vlocal = vafter − vpark = 3.5044km/s
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Interplanetary Hohmann Transfer

Note that ∆v = 3.5 km/s is less than the ∆v to reach GEO.



Light Side or Dark Side Departure?
Getting the Sign (direction, ±) right

Light Side / Dark Side:
• The earth rotates counterclockwise about the sun.
• Vehicles typically orbit counterclockwise about the earth.

The departure side determines direction of ∆ve in the heliocentric frame.
• On the dark side for vheliocentric = v∞,e + ve > ve

▶ Missions to outer planets (vheliocentric = vp).
• On the light side for vheliocentric = −v∞,e + ve < ve

▶ Missions to inner planets (vheliocentric = va).
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Light Side or Dark Side Departure?

Stages of Interplanetary Mission:

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity vx

3. Establishes Velocity in Solar Frame

3.1 vp = ve + vx for dark-side burn (Outer planets)
3.2 va = ve − vx for light-side burn (Inner planets)

4. propagate Hohman to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vm∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.



Interplanetary Hohmann Transfer
When to make the burn?

Timing: The ∆v should occur at δ/2 before
midnight/noon, where δ is the turning angle

δ = 2 sin−1 1

e

Eccentricity (e) can be found as:

• Energy: E = 1
2v

2
∞,e = 2.067 = − µ

2a yields

a = − µ

v2∞,e

= − µ

2E
= −96, 420km

• Perigee: rp,e = rc = a(1− e) = 6578km yields

e = 1− rp,e
a

= 1.0682

This yields a turning angle of

δ = 2.423rad = 138.83◦

Thus the spacecraft should depart at δ/2 = 69.4◦ before noon.
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Arrival at Venus

At arrival, our excess velocity w/r to Venus (v∞,v) will be

v∞,v = vp − vv = v−1 − v+1 = 37.81km/s− 35.09km/s = 2.71km/s

where

• v+1 = vv is the velocity of venus

v+1 = vv =

√
µs

rv

• vp is the periapse velocity of the Hohmann
transfer

Because v∞,v > 0, the spacecraft will approach
Venus from behind.

• Spacecraft is catching up to planet (not
vice-versa)

• The back door
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Arrival at Venus

Stages of Interplanetary Mission:

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity vx

3. Establishes Velocity in Solar Frame

3.1 vp = ve + vx for dark-side burn (Outer planets)
3.2 va = ve − vx for light-side burn (Inner planets)

4. propagate Hohman to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vm∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.



Arrival at Venus

Venus Data:

Rv = 6187km, µv = 324859, avenus = 1.08 · 108

Desired Orbit: Circular, posigrade (counterclockwise) with

rc = 6187 + 500 = 6687km

For a Counterclockwise orbital insertion from the Back Door, we want to
approach Venus on the Dark Side
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Arrival at Venus

� If we were travelling to an outer planet, we are using the Front Door and
hence would approach on the Light Side to achieve a Counterclockwise
orbit

� This is because for outer planets, we are moving slower than the planet

� Hence the planet is approaching us.

� We would enter the SOI from the left.



Arrival at Venus

For orbital insertion, we want to perform a retrograde burn at periapse of the
incoming hyperbola.

To achieve a circular orbit of radius rc = 6687km, we need the periapse of our
incoming hyperbola to occur at

rp,v = a(1− e) = 6687km.

The energy of the incoming hyperbola
is given by the excess velocity as

E =
1

2
v2∞,v = 3.67.

This fixes the semimajor axis at

a = − µv

v2inf,v
= −44, 232km.

Thus to achieve rp = a(1− e), we need

e = 1− rp
a

= 1.15.
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Arrival at Venus

To achieve the desired e = 1.15, we control the conditions at the Patch Point.

• We do this through the angular momentum, h.

We can control the Target Radius, ∆ through small adjustments far from the
planet. Angular momentum can be exactly controlled through target radius, ∆.

hv = v∞,v∆
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Arrival at Venus

Solution: For a given a, e is determined by p = a(1− e2).
• But p is defined by angular momentum (and thus target radius).

p =
h2

µv
=

∆2v2∞,v

µv

• For a = −44, 232km and e = 1.15, we get p = 14, 265km.

Given a desired p we solve for target radius, ∆,

∆ =

√
pµv

v2∞,v

=

√
a(1− e2)µv

v2∞,v

= 25, 120km
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Injection into Circular Orbit

Finally, we need to slow down to achieve circular orbit.

• The velocity at periapse (6687km) is given
by the vis-viva equation.

v =

√
2µv

rp,v
− µv

a
= 10.223km/s

• The velocity of a circular orbit is

vc =
√
µvrp,v = 6.97km/s

Thus the ∆v required to circularize the orbit is

∆v = 6.97− 10.223 = −3.253km/s

Figure: Aerobraking can also assist
with ∆v

Alternatively, for simple planetary capture:

Escape Velocity at 6687: vesc =
√

2µv

rp,v
= 9.8577

Min ∆v for Injection: ∆vmin = v − vesc = .3653
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Injection into Circular Orbit

� Aerocapture is used to reduce a hyperbolic orbit to an elliptic orbit.

� Aerocapture has never been used except in Kerbel Space Program and
2010.

� Aerobraking is used to reduce the apogee of an elliptic orbit over many
rotations.

� Requires a very detailed model of the atmosphere to be safe.

� Many aerobraking maneuvers are performed using Earth’s atmosphere!


2006-03-10 00:00 Mars Reconnaissance Orbiter

0.000km/s 234,515km



Mars_Reconnaissance_Orbiter_aerobraking.gif
Media File (image/gif)



Messenger Probe to Mercury
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Messenger Probe to Mercury
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Messenger Probe to Mercury



Gravity Assist Trajectories
Trajectories for Voyager 1, Voyager 2, and Cassini Spacecraft
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Gravity Assist Trajectories

Concept: Planets rotate the relative velocity vector.
• The relative motion changes as

v⃗f − v⃗planet︸ ︷︷ ︸
v⃗f,rel

= R1(δ) (v⃗i − v⃗planet)︸ ︷︷ ︸
v⃗i,rel

• In the inertial frame (2 dimensions) this means

v⃗f =

[
cos δ − sin δ
sin δ cos δ

]
(v⃗i − v⃗planet) + v⃗planet

Example: If δ = 180◦ and v⃗i =

[
−20
0

]
km/s and v⃗p =

[
20
0

]
km/s, then

vf = R(180◦)

[
−40
0

]
km/s+

[
20
0

]
km/s =

[
40
0

]
km/s+

[
20
0

]
km/s =

[
60
0

]
km/s

Thus a probe can potentially triple its velocity!

Note: v⃗i = VSVI
= V− and v⃗f = VSVo

= V+ and v⃗planet = VSP = VSAT
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Gravity Assist Trajectories

Stages of Interplanetary Mission:

1. Establish Orbit in Ecliptic Plane (Low Earth Orbit) with counter-clockwise
rotation

2. Burn to escape with excess velocity vx

3. Establishes Velocity in Solar Frame

3.1 vp = ve + vx for dark-side burn (Outer planets)
3.2 va = ve − vx for light-side burn (Inner planets)

4. propagate Hohman to destination

4.1 Find va for outer planets
4.2 Find vp for inner planets

5. Compute relative velocity (vr) in planet (Venus) frame vr = ∥vp − vm∥
5.1 For flyby, use targeting radius to find turning angle.
5.2 For insertion, use targeting radius to find rp.

6. Compute post-flyby relative velocity and convert to Heliocentric frame.



Gravity Assist Trajectories

To achieve the desired turning angle, we must control the geometry

The turning angle δ is given by

δ = 2 sin−1 1

e

The total energy of the orbit is fixed.
Thus we can solve for

a = −µplanet/∥v⃗i − v⃗planet∥2

Then the eccentricity can be fixed by the target radius as

∆ =

√
a(1− e2)µplanet

∥v⃗i − v⃗planet∥2

In 3 dimensions, the calculations are more complex.
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Gravity Assist Trajectories
Example: Jupiter flyby

Problem: Suppose we perform a Hohman transfer from Earth to Jupiter. What
is the best-case gravity assist we can expect?

Solution: The velocity of arrival at apogee (Jupiter) in the Heliocentric frame
is:

v⃗i = va =

√
2µsun

re
rj(rj + re)

= 7.414km/s

The velocity of Jupiter itself is

v⃗planet = vj =

√
µs

dj
= 13.0573km/s

Since this is an outer planet, we approach from the
front door. In a suitable Heliocentric frame, we have

v⃗i =

[
7.414
0

]
, v⃗planet =

[
13.0573

0

]
The velocity of the spacecraft relative to Jupiter is v⃗∞ = v⃗i − v⃗p︸ ︷︷ ︸

v⃗i,rel

=

[
−5.6429

0

]
.
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Gravity Assist Trajectories

The Heliocentric frame uses

� Jupiter Velocity vector for x axis

� Jupiter-Sun vector for y axis

� NCP for z-axis



Example: Jupiter flyby

Jupiter Data: Radius rj = 11.209ER; Distance dj = 5.2028AU ;
µj = 317.938µe.

The velocity of the spacecraft relative to jupiter is

v⃗∞ = v⃗i − v⃗p =

[
−5.6429

0

]
km/s

Thus we can calculate the energy of the hyperbolic approach as

a = − µj

∥v⃗i − v⃗p∥2
= −3.98E6km

The closest we can approach jupiter is its radius. If we use this for periapse, we
get

e = 1− rj
a

= 1.018

The eccentricity yields the maximum turning angle as

δ = 2 sin−1

(
1

e

)
= 158.44◦
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Example: Jupiter flyby

Applying this rotation (light-side approach), we get

v⃗f =

[
cos δ − sin δ
sin δ cos δ

]
(v⃗i − vplanet) + v⃗planet =

[
18.305
−2.076

]
The magnitude of
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Example: Jupiter flyby

Note that if we could have reversed our direction of flight (clockwise approach),
we could achieve a ∆v = 20.05km/s.

Recall the y-axis is jupiter-sun line, so the −2 component of velocity points away

from sun.



Trajectories for Voyager 1, Voyager 2, and Pioneer
Spacecraft
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1977-09-05 Voyager 1

—

okm/s  1,515,166,008km



Voyager_1.gif
Media File (image/gif)


1977-08-20 Voyager 2

0.0km/s  4,487,373,409km



Voyager_2.gif
Media File (image/gif)


1972-03-03 Pioneer 10

0.0km/s 831,951,662km



Pioneer_10.gif
Media File (image/gif)


1973-12-02 00:00 Pioneer 10

0.000km/s 2,861,486km



Pioneer_10_jupiter.gif
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Trajectories for Voyager 1, Voyager 2, and Pioneer
Spacecraft
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Trajectories for Voyager 1, Voyager 2, and Pioneer
Spacecraft

Image credit (previous page): By Cmglee

Image credit: By Phoenix7777



Summary

This Lecture you have learned:

Sphere of Influence

• Definition

Escape and Re-insertion

• The light and dark of the Oberth Effect

Patched Conics

• Heliocentric Hohmann

Planetary Flyby

• The Gravity Assist
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