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Lecture 16: Euler’s Equations



Attitude Dynamics

In this Lecture we will cover:

The Problem of Attitude Stabilization

• Actuators

Newton’s Laws

• ∑
M⃗i =

d
dtH⃗

• ∑
F⃗i = m d

dt v⃗

Rotating Frames of Reference

• Equations of Motion in Body-Fixed Frame

• Often Confusing
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Review: Coordinate Rotations
Positive Directions

If in doubt, use the right-hand rules.

Figure: Positive Directions

Figure: Positive Rotations
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Review: Coordinate Rotations
Roll-Pitch-Yaw

There are 3 basic rotations a vehicle can make:
• Roll = Rotation about x-axis
• Pitch = Rotation about y-axis
• Yaw = Rotation about z-axis
• Each rotation is a one-dimensional transformation.

Any two coordinate systems can be related by a sequence of 3 rotations.
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Review: Forces and Moments
Forces

These forces and moments have standard labels. The Forces are:

X Axial Force Net Force in the positive x-direction
Y Side Force Net Force in the positive y-direction
Z Normal Force Net Force in the positive z-direction
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Review: Forces and Moments
Moments

The Moments are called, intuitively:

L Rolling Moment Net Moment in the positive ωx-direction
M Pitching Moment Net Moment in the positive ωy-direction
N Yawing Moment Net Moment in the positive ωz-direction
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6DOF: Newton’s Laws
Forces

Newton’s Second Law tells us that for a particle F = ma. In vector form:

F⃗ =
∑
i

F⃗i = m
d

dt
V⃗

That is, if F⃗ = [Fx Fy Fz] and V⃗ = [u v w], then

Fx = m
du

dt
Fx = m

dv

dt
Fz = m

dw

dt

Definition 1.

mV⃗ is referred to as Linear Momentum.

Newton’s Second Law is only valid if F⃗ and V⃗ are defined in an Inertial
coordinate system.

Definition 2.

A coordinate system is Inertial if it is not accelerating or rotating.
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Lecture 16

6DOF: Newton’s Laws

We are not in an inertial frame because the Earth is rotating

� ECEF vs. ECI



Newton’s Laws
Moments

Using Calculus, momentum can be extended to rigid bodies by integration over
all particles.

M⃗ =
∑
i

M⃗i =
d

dt
H⃗

Definition 3.

Where H⃗ =
∫
(r⃗c × v⃗c)dm is the angular momentum.

Angular momentum of a rigid body can be found as

H⃗ = Iω⃗I

where ω⃗I = [p, q, r]T is the angular rotation vector of the body about the
center of mass.

• p = ωx is rotation about the x-axis.
• q = ωy is rotation about the y-axis.
• r = ωz is rotation about the z-axis.
• ωI is defined in an Inertial Frame.

The matrix I is the Moment of Inertia Matrix (Here also in inertial frame!).
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Lecture 16

Newton’s Laws

r⃗c and v⃗c are position and velocity vectors with respect to the centroid of the

body.



Newton’s Laws
Moment of Inertia

The moment of inertia matrix is defined as

I =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz


Ixy = Iyx =

∫ ∫ ∫
xydm Ixx =

∫ ∫ ∫ (
y2 + z2

)
dm

Ixz = Izx =

∫ ∫ ∫
xzdm Iyy =

∫ ∫ ∫ (
x2 + z2

)
dm

Iyz = Izy =

∫ ∫ ∫
yzdm Izz =

∫ ∫ ∫ (
x2 + y2

)
dm

So Hx

Hy

Hz

 =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

pIqI
rI


where pI , qI and rI are the rotation vectors as expressed in the inertial frame
corresponding to x-y-z.
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Newton’s Laws

� If you have symmetry about the x-y plane, Ixz = Iyz = 0.

� If you have symmetry about the x-z plane, Ixy = Iyz = 0.

� If you have symmetry about the y-z plane, Ixy = Ixz = 0.

� If mass is close to the x - axis plane, Ixx is small.

� If mass is close to the y - axis plane, Iyy is small.

� If mass is close to the z - axis plane, Izz is small.



Moment of Inertia
Examples:

Homogeneous Sphere

Isphere =
2

5
mr2

1 0 0
0 1 0
0 0 1


Ring

Iring = mr2

 1
2 0 0
0 1

2 0
0 0 1


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Moment of Inertia
Examples:

Homogeneous Disk

Idisk =
1

4
mr2

1 + 1
3
h2

r2 0 0

0 1 + 1
3
h2

r2 0
0 0 2


F/A-18

I =

 23 0 2.97
0 15.13 0

2.97 0 16.99

 kslug − ft2
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Lecture 16

Moment of Inertia

� h is the height of the disk



Moment of Inertia
Examples:

Cube

Icube =
2

3
l2

1 0 0
0 1 0
0 0 1


Box

Ibox =

 b2+c2

3 0 0

0 a2+c2

3 0

0 0 a2+b2

3


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Moment of Inertia
Examples:

Cassini

I =

8655.2 −144 132.1
−144 7922.7 192.1
132.1 192.1 4586.2

 kg ·m2

Figure 1: Sketch of NEAR Shoemaker spacecraft3

[4] C.D. Hall, P. Tsiotras, and H. Shen. Tracking Rigid Body Motion Using Thrusters and

Momentum Wheels. The Journal of the Astronautical Sciences, 50(3):311–323, 2002.

[5] C.D. Hall. Spacecraft Dynamics and Control, AOE 4140 Class Notes.

http://www.aoe.vt.edu/c̃dhall/courses/aoe4140/, February 5, 2003.

[6] J.L. Meriam and L.G. Kraige. Engineering Mechanics: Dynamics. John Wiley & Sons,

inc., 4 edition, 1997.

11

NEAR Shoemaker

I =

473.924 0 0
0 494.973 0
0 0 269.83

 kg·m2
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Lecture 16

Moment of Inertia

NEAR Shoemaker landed on Eros in 2001



Problem:
The Body-Fixed Frame

The moment of inertia matrix, I, is fixed in the body-fixed frame. However,
Newton’s law only applies for an inertial frame:

M⃗ =
∑
i

M⃗i =
d

dt
H⃗

Transport Theorem: Suppose the body-fixed frame is rotating with angular
velocity vector ω⃗. Then for any vector, a⃗, d

dt a⃗ in the inertial frame is

da⃗

dt

∣∣∣
I
=
da⃗

dt

∣∣∣
B
+ ω⃗ × a⃗

Specifically, for Newton’s Second Law

F⃗ = m
dV⃗

dt

∣∣∣
B
+mω⃗ × V⃗

and

M⃗ =
dH⃗

dt

∣∣∣
B
+ ω⃗ × H⃗
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Equations of Motion
Displacement

The equation for acceleration (which we will ignore) is:Fx

Fy

Fz

 = m
dV⃗

dt

∣∣∣
B
+mω⃗ × V⃗

= m

u̇v̇
ẇ

+m det

 x̂ ŷ ẑ
ωx ωy ωz

u v w


= m

u̇+ ωyw − ωzv
v̇ + ωzu− ωxw
ẇ + ωxv − ωyu


As we will see, displacement and rotation in space are decoupled.

• These are the “kinematics”

• The dynamics of ω̇ do not depend on u, v, w.

• no aerodynamic forces (which would cause linear motion to affect rotation
e.g. Cm).
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Equations of Motion

The equations for rotation are:LM
N

 =
dH⃗

dt

∣∣∣
I
=
dH⃗

dt

∣∣∣
B
+ ω⃗ × H⃗

=

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

ω̇x

ω̇y

ω̇z

+ ω⃗ ×

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

ωx

ωy

ωz


=

 Ixxω̇x − Ixyω̇y − Ixzω̇z

−Ixyω̇x + Iyyω̇y − Iyzω̇z

−Ixzω̇x − Iyzω̇y + Izzω̇z

+ ω⃗ ×

 ωxIxx − ωyIxy − ωzIxz
−ωxIxy + ωyIyy − ωzIyz
−ωxIxz − ωyIyz + ωzIzz


=

Ixxω̇x − Ixyω̇y−Ixzω̇z+ωy(ωzIzz−ωxIxz−ωyIyz)−ωz(ωyIyy − ωxIxy−ωzIyz)
Iyyω̇y−Ixyω̇x−Iyzω̇z−ωx(ωzIzz−ωyIyz−ωxIxz)+ωz(ωxIxx−ωyIxy−ωzIxz)
Izzω̇z − Ixzω̇x − Iyzω̇y+ωx(ωyIyy−ωxIxy−ωzIyz)−ωy(ωxIxx−ωyIxy−ωzIxz)


Which is too much for any mortal. We simplify as:

• For spacecraft, we have Iyz = Ixy = Ixz = 0 (two planes of symmetry).

• For aircraft, we have Iyz = Ixy = 0 (one plane of symmetry).
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Equations of Motion

If we use the matrix version of the cross-product, we can write

M⃗ = Iω̇(t) + [ω(t)]×Iω(t)

Which is a much-simplified version of the dynamics!
Recall xy

z


×

=

 0 −z y
z 0 −x
−y x 0





Equations of Motion
Euler Moment Equations

With Ixy = Iyz = Ixz = 0, we get: Euler’s EquationsLM
N

 =

Ixxω̇x + ωyωz(Izz − Iyy)
Iyyω̇y + ωxωz(Ixx − Izz)
Izzω̇z + ωxωy(Iyy − Ixx)


Thus:

• Rotational variables (ωx, ωy, ωz) do not depend on translational variables
(u,v,w).
▶ For spacecraft, Moment forces (L,M,N) do not depend on rotational and

translational variables.
▶ Can be decoupled

• However, translational variables (u,v,w) depend on rotation (ωx, ωy, ωz).
▶ But we don’t care.
▶ These are the kinematics.

M. Peet Lecture 16: 17 / 39



Euler Equations
Torque-Free Motion

Notice that even in the absence of external moments, the dynamics are still
active: 00

0

 =

Ixω̇x + ωyωz(Iz − Iy)
Iyω̇y + ωxωz(Ix − Iz)
Izω̇z + ωxωy(Iy − Ix)


which yield the 3-state nonlinear ODE:

ω̇x = −Iz − Iy
Ix

ωy(t)ωz(t)

ω̇y = −Ix − Iz
Iy

ωx(t)ωz(t)

ω̇z = −Iy − Ix
Iz

ωx(t)ωy(t)

Thus even in the absence of external moments
• The axis of rotation ω⃗ will evolve
• Although the angular momentum vector h⃗ will NOT.

▶ occurs because tensor I changes in inertial frame.
• This can be problematic for spin-stabilization!

M. Peet Lecture 16: 18 / 39



Euler Equations
Spin Stabilization

We can use Euler’s equation to study Spin Stabilization.

There are two important cases:introduce products of inertia in the spacecraft inertia
tensor.

Angular Momentum coincides 
 with Nominal Spin Axis

Figure 3. Spin Stabilized Spacecraft

Angular Momentum 
Vector

Nominal Spi n
Axis

Nutation Angle

Figure 4.  Spacecraft Nutational Motion

In the absence of energy dissipation, nutational
motion is stable about the axis of either the maximum or
minimum moment of inertia.  This implies that the
amplitude of motion is bounded by initial conditions.
However, all real spacecraft experience some form of
energy dissipation.  In this case, nutational motion is
only stable about the axis of maximum moment of
inertia.  The axes of minimum and maximum moments
of inertia are referred to as minor and major axes,
respectively.  Thus, if a spacecraft is spinning about its
minor axis, nutational motion will grow until the
spacecraft tumbles and eventually reorients itself
spinning about its major axis.  Reorientation of the  spin

axis is illustrated in Figure 5.  Conversely, if a spacecraft
is spinning about its major axis, any nutational motion
will simply decay.

ASMOS can be used to investigate stability and
energy dissipation effects.  With ASMOS, the user can
introduce various rates of internal energy dissipation into
the rigid body model by entering viscous damping
coefficients and wheel inertias.  The user can then watch
resulting motion.  This motion can also be plotted for
further analysis.

Angular Momentum 
Vector & New Spin Axis

Old Spin Axis

Figure 5.  Reorientation of the Spin Axis

Conclusion

ASMOS is a simulation tool that incorporates
animated 3-D computer graphics to visualize spacecraft
attitude motion.  The program runs on Macintosh
personal computers and features pull down menus and
dialog boxes making the program accessible and easy to
use.  The program is capable of simulating and
animating a wide range of rigid body attitude motion.
The rigid body model includes an energy sink for
investigating stability and energy dissipation effects.

References

1.  Hughes, P.C., "Spacecraft Attitude Dynamics," John
Wiley & Sons, Inc., 1986.
2.  Kaplan, M.H., "Modern Spacecraft Dynamics &
Control," John Wiley & Sons, Inc., 1986.
3.  Wertz, J.R, "Spacecraft Attitude Determination and
Control," D. Reidel Publishing Co., 1985.
4.  Lampton, C., "Flights of Fantasy / Programming 3-D
Video Games in C++", Waite Group Press, 1993.

Axisymmetric: Ix = Iy

I =

Ix 0 0
0 Ix 0
0 0 Iz


Non-Axisymmetric: Ix ̸= Iy

I =

10 0 0
0 3 0
0 0 1

 kg ·m2

Rough Estimate w/o solar panel
• real data not available
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Euler Equations

Note we say a body is axisymmetric if Ix = Iy.

� We don’t need rotational symmetry...

Figure 1: Sketch of NEAR Shoemaker spacecraft3
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Non-Axisymmetric: Ix ̸= Iy

I =

473.924 0 0
0 494.973 0
0 0 269.83

 kg ·m2



Spin Stabilization
Axisymmetric Case

An important case is spin-stabilization of an axisymmetric
spacecraft.

• Assume symmetry about z-axis (Ix = Iy)

Then recall

ω̇z(t) = −Iy − Ix
Iz

ωx(t)ωy(t) = 0

Thus ωz = constant.

introduce products of inertia in the spacecraft inertia
tensor.
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ASMOS can be used to investigate stability and
energy dissipation effects.  With ASMOS, the user can
introduce various rates of internal energy dissipation into
the rigid body model by entering viscous damping
coefficients and wheel inertias.  The user can then watch
resulting motion.  This motion can also be plotted for
further analysis.
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Conclusion

ASMOS is a simulation tool that incorporates
animated 3-D computer graphics to visualize spacecraft
attitude motion.  The program runs on Macintosh
personal computers and features pull down menus and
dialog boxes making the program accessible and easy to
use.  The program is capable of simulating and
animating a wide range of rigid body attitude motion.
The rigid body model includes an energy sink for
investigating stability and energy dissipation effects.
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The equations for ωx and ωy are now[
ω̇x(t)
ω̇y(t)

]
=

[
0 − Iz−Iy

Ix
ωz

− Ix−Iz
Iy

ωz 0

] [
ωx(t)
ωy(t)

]
Which is a linear ODE.
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Spin Stabilization
Axisymmetric Case
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The equations for ωx and ωy are now[
ω̇x(t)
ω̇y(t)

]
=

[
0 − Iz−Iy

Ix
ωz

− Ix−Iz
Iy

ωz 0

] [
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Spin Stabilization

ONLY FOR THE AXISYMMET-
RIC CASE!!!!!!!!!!!!!!!!!!!!!!!

Ix = Iy



Spin Stabilization
Axisymmetric Case

Fortunately, linear systems have closed-form solutions.
let λ = Iz−Ix

Ix
ωz. Then

ω̇x(t) = −λωy(t)

ω̇y(t) = λωx(t)

Combining, we get
ω̈x(t) = −λ2ωx(t)

which has solution

ωx(t) = ωx(0) cos(λt) +
ω̇x(0)

λ
sin(λt)

Differentiating, we get

ωy(t) = − ω̇x(t)

λ
= ωx(0) sin(λt)−

ω̇x(0)

λ
cos(λt)

= ωx(0) sin(λt) + ωy(0) cos(λt)

ωx(t) = ωx(0) cos(λt)− ωy(0) sin(λt)
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Spin Stabilization
Axisymmetric Case

Define ωxy =
√
ω2
x + ω2

y.

ω2
xy = (ωx(0) sin(λt) + ωy(0) cos(λt))

2 + (ωx(0) cos(λt)− ωy(0) sin(λt))
2

= ωx(0)
2 sin2(λt) + ωy(0)

2 cos2(λt) + 2ωx(0)ωy(0) cos(λt) sin(λt)

+ ωx(0)
2 cos2(λt) + ωy(0)

2 sin2(λt)− 2ωx(0)ωy(0) cos(λt) sin(λt)

= ωx(0)
2(sin2(λt) + cos2(λt)) + ωy(0)

2(cos2(λt) + sin2(λt))

= ωx(0)
2 + ωy(0)

2

Thus

• ωz is constant
▶ rotation about axis of symmetry

•
√
ω2
x + ω2

y is constant

▶ rotation perpendicular to axis of symmetry

This type of motion is often called Precession!
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Circular Motion in the Body-Fixed Frame

Thus

ω(t) =

ωx(t)
ωy(t)
ωz(t)

 =

cos(λt) − sin(λt) 0
sin(λt) cos(λt) 0

0 0 1

ωx(0)
ωy(0)
ωz(0)

 = R3(λt)

ωx(0)
ωy(0)
ωz(0)


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Circular Motion in the Body-Fixed Frame
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Circular Motion in the Body-Fixed Frame

� For λ > 0, this is a Positive (counterclockwise) rotation, about the z-axis,
of the angular velocity vector ω as expressed in the body-fixed coordinates!



Prolate vs. Oblate

The speed of the precession is given by the natural frequency:

λ =
Iz − Ix
Ix

ωz

with period T = 2π
λ = 2πIx

Iz−Ix
ω−1
z .

Direction of Precession: There are two cases

Definition 4 (Direct).

An axisymmetric (about z-axis) rigid body is Prolate if Iz < Ix = Iy.

Definition 5 (Retrograde).

An axisymmetric (about z-axis) rigid body is Oblate if Iz > Ix = Iy.

Thus we have two cases:

• λ > 0 if object is Oblate (CCW rotation)

• λ < 0 if object is Prolate (CW rotation)

Note that these are rotations of ω, as expressed in the Body-Fixed Frame.
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Pay Attention to the Body-Fixed Axes

Figure: Prolate Precession Figure: Oblate Precession

The black arrow is ω⃗.

• The body-fixed x and y axes are indicated with red and green dots.

• Notice the direction of rotation of ω with respect to these dots.

• The angular momentum vector is the inertial z axis.
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Prolate_Body_Movie.mp4
Media File (video/mp4)


Oblate_Body_Movie.mp4
Media File (video/mp4)



Motion in the Inertial Frame

As these videos illustrate, we are typically interested in motion in the
Inertial Frame.

• Use of Rotation Matrices is complicated.
▶ Which coordinate system to use???

• Lets consider motion relative to h⃗.
▶ Which is fixed in inertial space.

We know that in Body-Fixed coordinates,

h⃗ = Iω⃗ =

Ixωx

Iyωy

Izωz


Now lets find the orientation of ω and ẑ with respect to this fixed vector.
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Motion in the Inertial Frame

As these videos illustrate, we are typically interested in motion in the
Inertial Frame.
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Motion in the Inertial Frame

� The “Space Cone” is how ω moves in inertial coordinates

� The “Body Cone” is how ω moves with respect to the body.



Motion in the Inertial Frame

Let x̂, ŷ and ẑ define the body-fixed unit vectors.

We first note that since Ix = Iy and

h⃗ = Ixωxx̂+ Iyωy ŷ + Izωz ẑ

= Ix(ωxx̂+ ωy ŷ + ωz ẑ) + (Iz − Ix)ωz ẑ

= Ixω⃗ + (Iz − Ix)ωz ẑ

we have that

ω⃗ =
1

Ix
h⃗+

Ix − Iz
Ixωz

ẑ

which implies that ω⃗ lies in the ẑ − h⃗ plane.
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Motion in the Inertial Frame

We now focus on two constants of motion

• θ - The angle h⃗ makes with the body-fixed ẑ axis.

• γ - The angle ω⃗ makes with the body-fixed ẑ axis.

Since

h⃗ =

hxhy
hz

 =

Ixωx

Iyωy

Izωz


The angle θ is defined by

tan θ =

√
h2x + h2y

hz
=
Ix
√
ω2
x + ω2

y

Izωz
=
Ix
Iz

ωxy

ωz

Since ωxy and ωz are fixed, θ is a constant of
motion.
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Motion in the Inertial Frame

We now focus on two constants of motion
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hxhy
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Ixωx
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√
h2x + h2y
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=
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Motion in the Inertial Frame

Again, h⃗ here is in the body-fixed frame

� This is why it changes over time.



Motion in the Inertial Frame

The second angle to consider is

• γ - The angle ω⃗ makes with the body-fixed ẑ axis.

As before, the angle γ is defined by

tan γ =

√
ω2
x + ω2

y

ωz
=
ωxy

ωz

Since ωxy and ωz are fixed, γ is a constant of
motion.

• We have the relationship

tan θ =
Ix
Iz

ωxy

ωz
=
Ix
Iz

tan γ

Thus we have two cases:

1. Ix > Iz - Then θ > γ

2. Ix < Iz - Then θ < γ (As Illustrated)
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Motion in the Inertial Frame

Figure: The case of Ix > Iz (θ > γ) Figure: The case of Iz > Ix (γ > θ)
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Motion in the Inertial Frame

Figure: The case of Ix > Iz (θ > γ) Figure: The case of Iz > Ix (γ > θ)2
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Motion in the Inertial Frame

We illustrate the motion using the Space Cone and Body Cone

� The space cone is fixed in inertial space (doesn’t move)

� The space cone has width |ω − θ|
� The body cone is centered around the z-axis of the body.

� In body-fixed coordinates, the space cone rolls around the body cone
(which is fixed)

� In inertial coordinates, the body cone rolls around the space cone (which
is fixed)



Motion in the Inertial Frame

The orientation of the body in the inertial frame is defined by the sequence of
Euler rotations

• ψ - R3 rotation about h⃗.
▶ Aligns êx perpendicular to ẑ.

• θ - R1 rotation by angle θ about hx.
▶ Rotate êz-axis to body-fixed ẑ vector
▶ We have shown that this angle is fixed!
▶ θ̇ = 0.

• ϕ - R3 rotation about body-fixed ẑ vector.
▶ Aligns êx to x̂.

The Euler angles are related to the angular velocity vector asωx

ωy

ωz

 =

 ψ̇ sin θ sinϕ

ψ̇ sin θ cosϕ

ϕ̇+ ψ̇ cos θ = constant


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Motion in the Inertial Frame

The orientation of the body in the inertial frame is defined by the sequence of
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▶ Aligns êx perpendicular to ẑ.
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Motion in the Inertial Frame

This comes from

ω⃗ = R3(ϕ)R1(θ)R3(ψ)

0
0

ψ̇

+R3(ϕ)R1(θ)

0θ̇
0

+R3(ϕ)

00
ϕ̇


=

ψ̇ sin θ sinϕ

ψ̇ sin θ cosϕ

ψ̇ cos θ

+

00
0

+

00
ϕ̇





Motion in the Inertial Frame

To find the motion of ω, we differentiateω̇x

ω̇y

ω̇z

 =

 ψ̇ϕ̇ sin θ cosϕ

−ψ̇ϕ̇ sin θ sinϕ
0


Now, substituting into the Euler equations yields

ψ̇ =
Iz

(Ix − Iz) cos θ
ϕ̇

There are two cases here:

• Ix > Iz - Direct precession
▶ ψ̇ and ϕ̇ aligned.

• Iy > Ix - Retrograde precession

▶ ψ̇ and ϕ̇ are opposite.
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Motion in the Inertial Frame

Recall ω̇x and ω̇y can be expressed in terms of ωx and ωy



Motion in the Inertial Frame

Figure: Retrograde Precession (Iz > Ix)
Figure: Direct Precession (Iz < Ix)
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Mathematica Demonstrations

Mathematica Precession Demonstration
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http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/


Prolate and Oblate Spinning Objects

Figure: Prolate Object: Ix = Iy = 4 and
Iz = 1

Figure: Oblate Object: Vesta
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prolate441.mp4
Media File (video/mp4)


Vesta_5hr.mp4
Media File (video/mp4)



Next Lecture

Note Bene: Precession of a spacecraft is often called nutation (θ is called the
nutation angle).

• By most common definitions, for torque-free motions, N = 0
▶ Free rotation has NO nutation.
▶ This is confusing

M. Peet Lecture 16: 36 / 39



Precession
Example: Chandler Wobble

Problem: The earth is 42.72 km wider than it is tall. How quickly will the
rotational axis of the earth precess due to this effect?

Solution: for an axisymmetric ellipsoid with height a and width b, we have
Ix = Iy = 1

5m(a2 + b2) and Iz = 2
5mb

2.

Thus b = 6378km, a = 6352km and we have
(me = 5.974 · 1024kg)

Iz = 9.68 · 1037kg−m2

, Ix = Iy = 9.72 · 1037kg−m2

If we take ωz = 2π
T

∼= 2πday−1, then we have

λ =
Iz − Ix
Ix

ωz = .0041day−1

That gives a period of T = 2π
λ = 243.5days. This motion of the earth is known

as the Chandler Wobble.

Note: This is only the Torque-free precession.
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Precession

• Actual period is 434 days
▶ Actual Ix = Iy = 8.008 · 1037kg −m2.
▶ Actual Iz = 8.034 · 1037kg −m2.
▶ Which would predict T = 306days
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Precession

� The precession of the earth was first notices by Euler, D’Alembert and
Lagrange as slight variations in lattitude.

� Error partially due to fact Earth is not a rigid body(Chandler +
Newcomb).

� Magnitude of around 9m

� Previous plot scale is milli-arc-seconds (mas)



Next Lecture

In the next lecture we will cover

Non-Axisymmetric rotation

• Linearized Equations of Motion

• Stability

Energy Dissipation

• The effect on stability of rotation
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