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Lecture 16: Euler's Equations



Attitude Dynamics

In this Lecture we will cover:

The Problem of Attitude Stabilization
® Actuators

Newton’s Laws

o S M;=4H
o Zﬁi—m%ff

Rotating Frames of Reference
® Equations of Motion in Body-Fixed Frame
® Often Confusing
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Review: Coordinate Rotations

Positive Directions

If in doubt, use the right-hand rules.

A
Fe .\-rV Axis

i Right Hand Rule

v

4T Axcin “\_‘ J !

) |
Ay /B//I \ _— .
\ e right hand rule is used to define the

positive direction of the coordinate axes.
\ = \ nght-Ham:I Rule

Figure: Positive Rotations
Figure: Positive Directions
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Review: Coordinate Rotations
Roll-Pitch-Yaw

There are 3 basic rotations a vehicle can make:
® Roll = Rotation about z-axis
® Pitch = Rotation about y-axis
® Yaw = Rotation about z-axis
® Each rotation is a one-dimensional transformation.
Any two coordinate systems can be related by a sequence of 3 rotations.
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Review: Forces and Moments

Forces

These forces and moments have standard labels. The Forces are:
X  Axial Force Net Force in the positive x-direction
Y  Side Force Net Force in the positive y-direction
Z  Normal Force Net Force in the positive z-direction
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Review: Forces and Moments

Moments

X
\ Y, v
X u L,p

The Moments are called, intuitively:

L  Rolling Moment  Net Moment in the positive w,-direction
M Pitching Moment Net Moment in the positive w,-direction
N  Yawing Moment  Net Moment in the positive w_-direction
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6DOF: Newton's Laws

Forces

Newton's Second Law tells us that for a particle F' = ma. In vector form:

FoXfi-miyy

That is, if F = [F, F, F.] and V = [u v w], then

du dv dw

Definition 1.
mV is referred to as Linear Momentum.

Newton's Second Law is only valid if F and V are defined in an Inertial
coordinate system.

Definition 2.
A coordinate system is Inertial if it is not accelerating or rotating.
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I—6DOF: Newton's Laws

We are not in an inertial frame because the Earth is rotating
e ECEF vs. ECI




Newton's Laws

Moments

Using Calculus, momentum can be extended to rigid bodies by integration over
all particles.

. = d =
M:;Mi:%H

Definition 3.

Where H = J (7o x U,)dm is the angular momentum.

Angular momentum of a rigid body can be found as
H =13,

where &7 = [p, ¢, r]7 is the angular rotation vector of the body about the
center of mass.

® p = w, is rotation about the x-axis.

® g = wy is rotation about the y-axis.

® r = w, is rotation about the z-axis.

® iy is defined in an Inertial Frame.
The matrix I is the Moment of Inertia Matrix (Here also in inertial framel).
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l—Newton’s Laws

7. and ¥, are position and velocity vectors with respect to the centroid of the
body.



Newton's Laws

Moment of Inertia

The moment of inertia matrix is defined as

Ia:x
I=|-1I,.
_Izz

IM:IZI:///xzdm
IyZ:IZy:///yzdm

So
Hm IICE
Hy| = |1y
Hz _Iz:v

_Ixy _I;cz
Iyy 71112

I.m:///(y2+22) dm
Iyy:///(:r2+22) dm
IZZ:///(x2+y2) dm

_Iry _Iacz pr
Ly —Iyz| |ar
_Izy Izz I

where pr, qr and r; are the rotation vectors as expressed in the inertial frame

corresponding to x-y-z.

M. Peet

Lecture 16: 9/39



2022-04-26

Lecture 16

l—Newton’s Laws

e If you have symmetry about the z-y plane, I,. = I,. = 0.
e If you have symmetry about the z-z plane, I,y = I,. = 0.

e If you have symmetry about the y-z plane, Iy = I,. = 0.

e If mass is close to the x - axis plane, I, is small.
e |If mass is close to the y - axis plane, I, is small.

e If mass is close to the z - axis plane, I, is small.

Newton's Laws




Moment of Inertia

Examples:
Homogeneous Sphere Ring
9 100 00
2 2 1
Isphere - gm'f 01 0 I’r‘ing =mr 0 5 0
0 0 1 0 0 1
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Moment of Inertia

Examples:

Homogeneous Disk F/A-18
23 0 2.97

0
1
L = gmr® |0 1438 0| I=] 0 1513 0 | kslug— ft
9 297 0  16.99
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L Moment of Inertia

e h is the height of the disk

Moment of Inertia

(=)




Moment of Inertia

Examples:

Cube

M. Peet

Box

Iboz =
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Moment of Inertia

Examples:

1.5-m antenna Gallium arsenide

solar panels

Cassini NEAR Shoemaker
8655.2 —144 132.1 473.924 0 0
I=|—-144 79227 1921 | kg-m?> = 0 494.973 0 | kgm?
132.1  192.1  4586.2 0 0 269.83
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L Moment of Inertia

NEAR Shoemaker landed on Eros in 2001




Problem:
The Body-Fixed Frame

The moment of inertia matrix, I, is fixed in the body-fixed frame. However,
Newton's law only applies for an inertial frame:

. = d =
M:;MizaH

Transport Theorem: Suppose the body-fixed frame is rotating with angular

velocity vector &. Then for any vector, @, %&' in the inertial frame is

dai| da

= = = IO X a
dtlr dt B+w “

Specifically, for Newton's Second Law

and
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Equations of Motion

Displacement

The equation for acceleration (which we will ignore) is:

o v ;
Fyl =m—| +mid xV
F dt |B
z
[ Ty oz
=m|v| +mdet |w, wy w,
w U vow

U+ WyW — W,v
=m |V 4+ w,u — w,w
W+ Wz ¥ — Wyl

As we will see, displacement and rotation in space are decoupled.
® These are the “kinematics”

® The dynamics of w do not depend on u, v, w.
® no aerodynamic forces (which would cause linear motion to affect rotation

e.g. Cp).

M. Peet
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Equations of Motion

The equations for rotation are:

L _ _
dH dH -
M| =G| =Gl rex A
N I B
[ Ia::r _I:cy _Ia:z Wz sz _I:L’y _I:nz Wy
= |—Iyp Lyy —Iy| |wy| +OX | =Ly Iyy —Iys| |wy
__Iz;v _Izy Izz O:}z _Izw _[zy Izz Wy
i Ixa:w:v - Izywy - Ixzwz Wz-[:n:r - nyxy - WZI:L’Z
= | —Lpywy + Iyywy — Ly, | + & X | —walpy + wylyy — w1y,
__I:vzww - Iyzwy + Izzwz _lexz - Wnyz + szzz

Tty — Lpyy — I, +wy(woly —welp, —wyly,) —w. (wylyy — walpy—w.1y)
= | Tyywy — Lpyz — Iy, —wa(we L —wy Ly, —welys) 4w (Welpe —wylpy —w.1y2)
I, — Ipoty — Ity +wa (wylyy —walpy —w. Iy, ) —wy (Wa lpw —wylpy —w. Iy )
Which is too much for any mortal. We simplify as:
® For spacecraft, we have I, = I, = I, = 0 (two planes of symmetry).
® For aircraft, we have I, = I, = 0 (one plane of symmetry).
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- Equations of Motion

If we use the matrix version of the cross-product, we can write

—

M = Tio(t) + [w(t)]x w(t)

Which is a much-simplified version of the dynamics!
Recall




Equations of Motion

Euler Moment Equations

With Iy = I, = I, = 0, we get: Euler’s Equations

L Irrwr + Wy Wz (IZZ - [yy)
M| = IyyWy + mez(-[x:r - Izz)
N 120, + wawy (Iyy — Izz)
Thus:
® Rotational variables (w,,w,,w,) do not depend on translational variables
(u,v,w).

» For spacecraft, Moment forces (L,M,N) do not depend on rotational and
translational variables.
» Can be decoupled

® However, translational variables (u,v,w) depend on rotation (w,,w,,w.).

» But we don't care.
» These are the kinematics.

M. Peet Lecture 16: 17 / 39



Euler Equations

Torque-Free Motion

Notice that even in the absence of external moments, the dynamics are still
active:

0 Lyw, +wyw, (I, — 1)
0 = [[ywy +wyw, (I — I)
0 L, + wywy (I, — 1)
which yield the 3-state nonlinear ODE:
) I,—1
oz = =L, (e (1)
I,—1,
Wy = ————wg (H)w: (t)
Iy
IL,—1
e =~ (1 (1)

Thus even in the absence of external moments
® The axis of rotation & will evolve .
® Although the angular momentum vector A will NOT.
P occurs because tensor I changes in inertial frame.

® This can be problematic for spin-stabilization!
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Euler Equations
Spin Stabilization

We can use Euler’s equation to study

There are two important cases:

Non-Axisymmetric: I, # I,
Axisymmetric: I, = I, ‘
10 0 0
I; 0 I=|0 3 0|kg -m?
I=10 I 0 0 1
0

8
o o

o
&

Rough Estimate w/o solar panel
® real data not available
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L Euler Equations

Note we say a body is axisymmetric if I, = I,.

e We don't need rotational symmetry...

1.5-m antenna Gallium arsenide

solar panels

450-N thruster Fe— —

Non-Axisymmetric: I, # I,

473.924 0 0

= 0 494.973 0 kg-m

0 0 269.83

2




Spin Stabilization

Axisymmetric Case

An important case is spin-stabilization of an axisymmetric A
ft.
spacecra - |
® Assume symmetry about z-axis (I, = I,) -

Then recall

. Iy - Iz

W (t) = ————wgx(t)wy(t) =0 4

I

Thus w, = constant. u

The equations for w, and w, are now

0] - g, 75 0]

Which is a linear ODE.
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LSpin Stabilization



Spin Stabilization

Axisymmetric Case

Fortunately, linear systems have closed-form solutions.
let A = sz Then

G (t) = Ay (1)
oy (8) = A (t)

Combining, we get
Qg (t) = =N2w, (1)

which has solution

wy(t) = wy(0) cos(At) + wx)EO) sin(At)

Differentiating, we get

wy(t) = —wx)\(t) = w,(0) sin(At) — wm)EO) cos(At)

= w5 (0) sin(At) + wy (0) cos(At)
Wz (t) = wz(0) cos(At) — wy(0) sin(At)
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Spin Stabilization

Axisymmetric Case

Define wyy = /w2 + w2.

wiy = (wz(0) sin(At) + wy (0) cos(Mt))? + (wx(0) cos(At) — w, (0) sin(At))?
= w,(0)? sin?(At) + wy (0)2 cos?(At) + 2w, (0)w, (0) cos(At) sin(At)
+ W (0)? cos® (At) + w,, (0)? sin®(At) — 2w, (0)w, (0) cos(At) sin(At)
= w,(0)*(sin?(\t) 4 cos?(\t)) + w, (0)%(cos? (At) + sin?(\t))

= wz(0) + wy (0)?

Thus
® ., is constant
P rotation about axis of symmetry

® /w2 + w2 is constant
P rotation perpendicular to axis of symmetry

This type of motion is often called Precession!
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Circular Motion in the Body-Fixed Frame
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Circular Motion in the Body-Fixed Frame

Lecture 16

I—Circular Motion in the Body-Fixed Frame TNy

e For A\ > 0, this is a Positive (counterclockwise) rotation, about the z-axis,
of the angular velocity vector w as expressed in the body-fixed coordinates!



Prolate vs. Oblate

The speed of the precession is given by the natural frequency:

. . _ 27 _ 2ml, , —1
with period T' = <F = ToEw

Direction of Precession: There are two cases
Definition 4 (Direct).

An axisymmetric (about z-axis) rigid body is Prolate if I, < I, = I,,.

Definition 5 (Retrograde).

An axisymmetric (about z-axis) rigid body is Oblate if I, > I, = I,,.

Thus we have two cases:
® X\ > 0 if object is Oblate (CCW rotation)
® )\ <0 if object is Prolate (CW rotation)
Note that these are rotations of w, as expressed in the Frame.
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Pay Attention to the Body-Fixed Axes

N S

Figure: Prolate Precession Figure: Oblate Precession

The black arrow is &.
® The body-fixed x and y axes are indicated with red and green dots.

® Notice the direction of rotation of w with respect to these dots.

® The angular momentum vector is the inertial z axis.
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Prolate_Body_Movie.mp4
Media File (video/mp4)


Oblate_Body_Movie.mp4
Media File (video/mp4)


Motion in the Inertial Frame

As these videos illustrate, we are typically interested in motion in the
Inertial Frame.

3
® Use of Rotation Matrices is complicated. /
» Which coordinate system to use???

e Lets consider motion relative to h.
» Which is fixed in inertial space.

We know that in Body-Fixed coordinates,

Ipw,
h=1&=|Iw,
Lw,

Now lets find the orientation of w and Z with respect to this fixed vector.
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Motion in the Inertial Frame

Lecture 16

As these ideos lstrat, we ae ypically i

l—Motion in the Inertial Frame e

Now et find h

e The “Space Cone” is how w moves in inertial coordinates

e The “Body Cone" is how w moves with respect to the body.




Motion in the Inertial Frame

Let Z, § and Z define the body-fixed unit vectors.

We first note that since I, = I, and

h = Lwyd + Tywyi + Lw.2
=L (W@ +wy§ +w.2) + (I, — I;)w,2
=L+ (I, — I,)w.2
we have that
1- I,—1,

S 7
“ I, + Iw,

z

which implies that & lies in the 2 — h plane.
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Motion in the Inertial Frame

We now focus on two constants of motion
® ¢ - The angle h makes with the body-fixed Z axis.
® ~ - The angle & makes with the body-fixed Z axis.

Since
hy Tw,
h= [hy| = [Tywy
h. 1w,

The angle 6 is defined by

tan = Vh%Jrhi:Isz’%erg:Ii@
h

L, I, w,

Since wyy and w, are fixed, ¢ is a constant of
motion.
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l—Motion in the Inertial Frame

Again, h here is in the body-fixed frame

e This is why it changes over time.

Motion in the Inertial Frame




Motion in the Inertial Frame

The second angle to consider is
® ~ - The angle & makes with the body-fixed Z axis.
As before, the angle v is defined by
/0,2 2
wy + wy Way

3/
tany = +—— = /
Wy Wy

Since wyy and w, are fixed, 7 is a constant of
motion.

® We have the relationship Body cone Py
I I Space cone
w
tanf = =Y = Ztany
I, w, I,

Thus we have two cases:
1. I, >1,-Then 6 >~
2. I, <I,-Then 6 <~ (As lllustrated)
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Motion in the Inertial Frame

Figure: The case of I, > I. (6 > ~) Figure: The case of I. > I, (v > 0)
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Motion in the Inertial Frame

X

l—Motion in the Inertial Frame

oy th

We illustrate the motion using the Space Cone and Body Cone

The space cone is fixed in inertial space (doesn’t move)
The space cone has width |w — 6|
The body cone is centered around the z-axis of the body.

In body-fixed coordinates, the space cone rolls around the body cone
(which is fixed)

In inertial coordinates, the body cone rolls around the space cone (which
is fixed)



Motion in the Inertial Frame

The orientation of the body in the inertial frame is defined by the sequence of
Euler rotations

® 1) - R3 rotation about h.

» Aligns é, perpendicular to 2.

Space cone
(fixed)

® § - R; rotation by angle 6 about h,.
» Rotate é.-axis to body-fixed Z vector
> We have shown that this angle is fixed!
> 0=0.

® ¢ - R3 rotation about body-fixed Z vector.
> Aligns é, to .

The Euler angles are related to the angular velocity vector as

Wa v sin @ sin ¢
wy| = 1 sin € cos ¢
Wy ¢ + ¥ cos @ = constant
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l—Motion in the Inertial Frame

This comes from

0
& = Ra($)Ra (0) Ra (1) H + Ra(¢)Ra () [
0

4 sin 0 sin 1) 0 0
= [1/) sin @ cos d)] 4 [0] 4F [0]
¥ cosf 0 ()



Motion in the Inertial Frame

To find the motion of w, we differentiate

Wy QMJ §in 0 cos ¢
wy | = | —1p¢sinfsin ¢
W 0

Space cone
(fixed)

Now, substituting into the Euler equations yields

I

V= (I —Iz)0059¢

There are two cases here:
e [, > I, - Direct precession
» 4 and ¢ aligned.
e I, > I, - Retrograde precession
> @Z) and ¢ are opposite.
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l—Motion in the Inertial Frame

Recall w, and w, can be expressed in terms of w, and w,

Motion in the Inertial Frame




Motion in the Inertial Frame

Space cone
(fixed)

Space cone
(fixed)

Body cone

Figure: Retrograde Precession (I. > I;) Figure: Direct Precession (I, < I.)

M. Peet Lecture 16: 33 /39



Mathematica Demonstrations

Mathematica Precession Demonstration
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http://demonstrations.wolfram.com/FreePrecessionOfARotatingRigidBody/

Prolate and Oblate Spinning Objects

Figure: Prolate Object: I, = I, =4 and

I -1 Figure: Oblate Object: Vesta
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prolate441.mp4
Media File (video/mp4)


Vesta_5hr.mp4
Media File (video/mp4)


Next Lecture

Note Bene: Precession of a spacecraft is often called nutation (6 is called the
nutation angle).

® By most common definitions, for torque-free motions,

» Free rotation has NO nutation.
» This is confusing
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Precession
Example: Chandler Wobble

Problem: The earth is 42.72 km wider than it is tall. How quickly will the
rotational axis of the earth precess due to this effect?

Solution: for an axisymmetric ellipsoid with height a and width b, we have
I, =1, =1m(a®+ %) and I, = Zmb?.

Thus b = 6378km, a = 6352km and we have
(me = 5.974 - 10>*kg)

I.=968-10%k—m" [ =] =972.1037k—m"

If we take w, = 2% = 27day ™", then we have

I, -1,
P

That gives a period of T' = 27” = 243.5days. This motion of the earth is known

as the Chandler Wobble.

A= w, = .0041day "

Note: This is only the Torque-free precession.
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Precession

Pole coordinates (xp,-yp)

v (mas) > towards J0°East

“Ts0.00 -50.00 50.00 150 00 250.00
X (mas) --> towards Greenwhich

® Actual period is 434 days
> Actual I, = I, = 8.008 - 103"kg — m>.
> Actual I, = 8.034 - 10%"kg — m>.
» Which would predict 7" = 306days
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Precession

Lecture 16

L Precession

e The precession of the earth was first notices by Euler, D' Alembert and
Lagrange as slight variations in lattitude.

e Error partially due to fact Earth is not a rigid body(Chandler +
Newcomb).

e Magnitude of around 9m

e Previous plot scale is milli-arc-seconds (mas)
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Next Lecture

In the next lecture we will cover
Non-Axisymmetric rotation
® Linearized Equations of Motion
® Stability
Energy Dissipation
® The effect on stability of rotation
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