Spacecraft Dynamics and Control

Matthew M. Peet Arizona State University

Lecture 16: Euler's Equations

In this Lecture we will cover:

The Problem of Attitude Stabilization

Actuators

Newton's Laws

- $\sum \vec{M_i} = \frac{d}{dt}\vec{H}$
- $\sum \vec{F_i} = m \frac{d}{dt} \vec{v}$

Rotating Frames of Reference

- Equations of Motion in Body-Fixed Frame
- Often Confusing

Review: Coordinate Rotations

Positive Directions

If in doubt, use the right-hand rules.

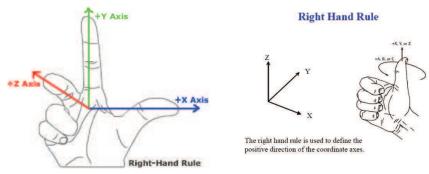
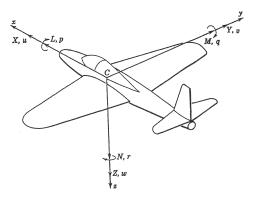


Figure: Positive Directions

Figure: Positive Rotations

Review: Coordinate Rotations

Roll-Pitch-Yaw



There are 3 basic rotations a vehicle can make:

- Roll = Rotation about x-axis
- Pitch = Rotation about y-axis
- Yaw = Rotation about *z*-axis
- Each rotation is a one-dimensional transformation.

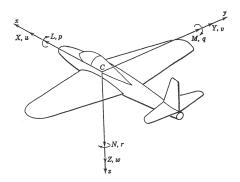
Any two coordinate systems can be related by a sequence of 3 rotations.

M. Peet

Review: Forces and Moments

Forces

X

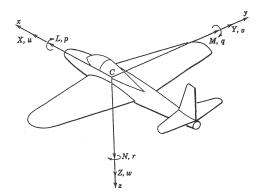


These forces and moments have standard labels. The Forces are:

- Axial Force $\hfill Net$ Force in the positive x-direction
- Y Side Force Net Force in the positive y-direction
- Z Normal Force Net Force in the positive z-direction

Review: Forces and Moments

Moments



The Moments are called, intuitively:

L	Rolling Moment	Net Moment in the positive ω_x -direction
M	Pitching Moment	Net Moment in the positive ω_y -direction
N	Yawing Moment	Net Moment in the positive ω_z -direction

6DOF: Newton's Laws

Forces

Newton's Second Law tells us that for a particle F = ma. In vector form:

$$\vec{F} = \sum_{i} \vec{F_i} = m \frac{d}{dt} \vec{V}$$

That is, if $\vec{F} = [F_x \; F_y \; F_z]$ and $\vec{V} = [u \; v \; w]$, then

$$F_x = m \frac{du}{dt}$$
 $F_x = m \frac{dv}{dt}$ $F_z = m \frac{dw}{dt}$

Definition 1.

 $m\vec{V}$ is referred to as **Linear Momentum**.

Newton's Second Law is only valid if \vec{F} and \vec{V} are defined in an Inertial coordinate system.

Definition 2.

A coordinate system is **Inertial** if it is not accelerating or rotating.

M. Peet

-6DOF: Newton's Laws

A coordinate system is Inertial if it is not accelerating or rotating

We are not in an inertial frame because the Earth is rotating

• ECEF vs. ECI

Newton's Laws

Moments

Using Calculus, momentum can be extended to rigid bodies by integration over all particles.

$$\vec{M} = \sum_{i} \vec{M}_{i} = \frac{d}{dt} \vec{H}$$

Definition 3.

Where $\vec{H} = \int (\vec{r}_c \times \vec{v}_c) dm$ is the angular momentum.

Angular momentum of a rigid body can be found as

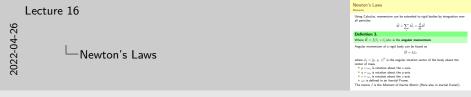
$$\vec{H} = I\vec{\omega}_I$$

where $\vec{\omega}_I = [p, q, r]^T$ is the angular rotation vector of the body about the center of mass.

- $p = \omega_x$ is rotation about the *x*-axis.
- $q = \omega_y$ is rotation about the y-axis.
- $r = \omega_z$ is rotation about the *z*-axis.
- ω_I is defined in an *Inertial* Frame.

The matrix I is the Moment of Inertia Matrix (Here also in inertial frame!).

M. Peet



 $\vec{r_c}$ and $\vec{v_c}$ are position and velocity vectors with respect to the centroid of the body.

Newton's Laws

Moment of Inertia

The moment of inertia matrix is defined as

$$I = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix}$$
$$I_{xy} = I_{yx} = \int \int \int \int xy dm \qquad I_{xx} = \int \int \int \int (y^2 + z^2) dm$$
$$I_{xz} = I_{zx} = \int \int \int \int xz dm \qquad I_{yy} = \int \int \int \int (x^2 + z^2) dm$$
$$I_{yz} = I_{zy} = \int \int \int \int yz dm \qquad I_{zz} = \int \int \int \int (x^2 + y^2) dm$$

So

$$\begin{bmatrix} H_x \\ H_y \\ H_z \end{bmatrix} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \begin{bmatrix} p_I \\ q_I \\ r_I \end{bmatrix}$$

where p_I , q_I and r_I are the rotation vectors as expressed in the inertial frame corresponding to x-y-z.

M. Peet

-

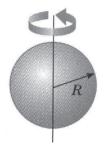
Lecture 16

—Newton's Laws

- If you have symmetry about the x-y plane, $I_{xz} = I_{yz} = 0$.
- If you have symmetry about the x-z plane, $I_{xy} = I_{yz} = 0$.
- If you have symmetry about the y-z plane, $I_{xy} = I_{xz} = 0$.
- If mass is close to the x axis plane, I_{xx} is small.
- If mass is close to the y axis plane, I_{yy} is small.
- If mass is close to the z axis plane, I_{zz} is small.

Moment of Inertia

Examples:



Homogeneous Sphere

Ring

$$I_{sphere} = \frac{2}{5}mr^2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$I_{ring} = mr^2 \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Moment of Inertia

Examples:

Homogeneous Disk

F/A-18

$$I_{disk} = \frac{1}{4}mr^2 \begin{bmatrix} 1 + \frac{1}{3}\frac{h^2}{r^2} & 0 & 0\\ 0 & 1 + \frac{1}{3}\frac{h^2}{r^2} & 0\\ 0 & 0 & 2 \end{bmatrix} \quad I = \begin{bmatrix} 23 & 0 & 2.97\\ 0 & 15.13 & 0\\ 2.97 & 0 & 16.99 \end{bmatrix} kslug - ft^2$$

• *h* is the height of the disk

Moment of Inertia

Examples:

Cube

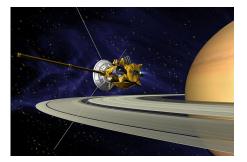
$$I_{cube} = \frac{2}{3}l^2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

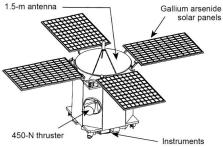
Box

$$I_{box} = \begin{bmatrix} \frac{b^2 + c^2}{3} & 0 & 0\\ 0 & \frac{a^2 + c^2}{3} & 0\\ 0 & 0 & \frac{a^2 + b^2}{3} \end{bmatrix}$$

Moment of Inertia

Examples:

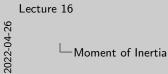




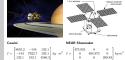
Cassini

NEAR Shoemaker

$$I = \begin{bmatrix} 8655.2 & -144 & 132.1 \\ -144 & 7922.7 & 192.1 \\ 132.1 & 192.1 & 4586.2 \end{bmatrix} kg \cdot m^2 \quad I = \begin{bmatrix} 473.924 & 0 & 0 \\ 0 & 494.973 & 0 \\ 0 & 0 & 269.83 \end{bmatrix} kg \cdot m^2$$



Moment of Inertia Example:



NEAR Shoemaker landed on Eros in 2001

Problem:

The Body-Fixed Frame

The moment of inertia matrix, I, is fixed in the body-fixed frame. However, Newton's law only applies for an inertial frame:

$$\vec{M} = \sum_{i} \vec{M_i} = \frac{d}{dt} \vec{H}$$

Transport Theorem: Suppose the body-fixed frame is rotating with angular velocity vector $\vec{\omega}$. Then for any vector, \vec{a} , $\frac{d}{dt}\vec{a}$ in the inertial frame is

$$\frac{d\vec{a}}{dt}\Big|_{I} = \frac{d\vec{a}}{dt}\Big|_{B} + \vec{\omega} \times \vec{a}$$

Specifically, for Newton's Second Law

$$\vec{F} = m \frac{d\vec{V}}{dt} \Big|_B + m \vec{\omega} \times \vec{V}$$

and

$$\vec{M} = \frac{d\vec{H}}{dt}\Big|_B + \vec{\omega} \times \vec{H}$$

M. Peet

Equations of Motion

Displacement

The equation for acceleration (which we will ignore) is:

$$\begin{aligned} F_x \\ F_y \\ F_z \end{bmatrix} &= m \frac{d\vec{V}}{dt} \Big|_B + m\vec{\omega} \times \vec{V} \\ &= m \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} + m \det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ \omega_x & \omega_y & \omega_z \\ u & v & w \end{bmatrix} \\ &= m \begin{bmatrix} \dot{u} + \omega_y w - \omega_z v \\ \dot{v} + \omega_z u - \omega_x w \\ \dot{w} + \omega_x v - \omega_y u \end{bmatrix}$$

As we will see, displacement and rotation in space are decoupled.

- These are the "kinematics"
- The dynamics of $\dot{\omega}$ do not depend on u, v, w.
- no aerodynamic forces (which would cause linear motion to affect rotation e.g. C_m).

Equations of Motion

The equations for rotation are:

$$\begin{bmatrix} L\\ M\\ N \end{bmatrix} = \frac{d\vec{H}}{dt} \Big|_{I} = \frac{d\vec{H}}{dt} \Big|_{B} + \vec{\omega} \times \vec{H}$$

$$= \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \begin{bmatrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{bmatrix} + \vec{\omega} \times \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$$

$$= \begin{bmatrix} I_{xx}\dot{\omega}_{x} - I_{xy}\dot{\omega}_{y} - I_{xz}\dot{\omega}_{z} \\ -I_{xy}\dot{\omega}_{x} + I_{yy}\dot{\omega}_{y} - I_{yz}\dot{\omega}_{z} \\ -I_{xz}\dot{\omega}_{x} - I_{yz}\dot{\omega}_{y} + I_{zz}\dot{\omega}_{z} \end{bmatrix} + \vec{\omega} \times \begin{bmatrix} \omega_{x}I_{xx} - \omega_{y}I_{xy} - \omega_{z}I_{xz} \\ -\omega_{x}I_{xy} + \omega_{y}I_{yy} - \omega_{z}I_{yz} \\ -\omega_{x}I_{xz} - \omega_{y}I_{yz} + \omega_{z}I_{zz} \end{bmatrix}$$

$$\begin{bmatrix} I_{xx}\dot{\omega}_{x} - I_{xy}\dot{\omega}_{y} + I_{zz}\dot{\omega}_{z} \\ -I_{xz}\dot{\omega}_{x} - I_{yz}\dot{\omega}_{y} + I_{zz}\dot{\omega}_{z} \end{bmatrix} + \vec{\omega} \times \begin{bmatrix} \omega_{x}I_{xx} - \omega_{y}I_{yy} - \omega_{z}I_{xz} \\ -\omega_{x}I_{xz} - \omega_{y}I_{yz} + \omega_{z}I_{zz} \end{bmatrix}$$

$$\begin{bmatrix} I_{xx}\dot{\omega}_{x} - I_{xy}\dot{\omega}_{y} - I_{xz}\dot{\omega}_{z} + \omega_{y}(\omega_{z}I_{zz} - \omega_{x}I_{xz} - \omega_{y}I_{yz}) - \omega_{z}(\omega_{y}I_{yy} - \omega_{x}I_{xy} - \omega_{z}I_{yz}) \\ I_{yy}\dot{\omega}_{y} - I_{xy}\dot{\omega}_{x} - I_{yz}\dot{\omega}_{y} + \omega_{x}(\omega_{y}I_{yy} - \omega_{x}I_{xy} - \omega_{z}I_{yz}) - \omega_{y}(\omega_{x}I_{xx} - \omega_{y}I_{xy} - \omega_{z}I_{xz}) \\ I_{zz}\dot{\omega}_{z} - I_{xz}\dot{\omega}_{x} - I_{yz}\dot{\omega}_{y} + \omega_{x}(\omega_{y}I_{yy} - \omega_{x}I_{xy} - \omega_{z}I_{yz}) - \omega_{y}(\omega_{x}I_{xx} - \omega_{y}I_{xy} - \omega_{z}I_{xz}) \end{bmatrix}$$

Which is too much for any mortal. We simplify as:

- For spacecraft, we have $I_{yz} = I_{xy} = I_{xz} = 0$ (two planes of symmetry).
- For aircraft, we have $I_{yz} = I_{xy} = 0$ (one plane of symmetry).

Lecture 16

2022-04-26

-Equations of Motion

If we use the matrix version of the cross-product, we can write

$$\vec{M} = I\dot{\omega}(t) + [\omega(t)]_{\times}I\omega(t)$$

Which is a much-simplified version of the dynamics! Recall

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

Equations of Motion

Euler Moment Equations

With
$$I_{xy} = I_{yz} = I_{xz} = 0$$
, we get: Euler's Equations

$$\begin{bmatrix} L\\ M\\ N \end{bmatrix} = \begin{bmatrix} I_{xx}\dot{\omega}_x + \omega_y\omega_z(I_{zz} - I_{yy})\\ I_{yy}\dot{\omega}_y + \omega_x\omega_z(I_{xx} - I_{zz})\\ I_{zz}\dot{\omega}_z + \omega_x\omega_y(I_{yy} - I_{xx}) \end{bmatrix}$$

Thus:

- Rotational variables $(\omega_x, \omega_y, \omega_z)$ do not depend on translational variables (u,v,w).
 - For spacecraft, Moment forces (L,M,N) do not depend on rotational and translational variables.
 - Can be decoupled
- However, translational variables (u,v,w) depend on rotation ($\omega_x, \omega_y, \omega_z$).
 - But we don't care.
 - These are the kinematics.

Euler Equations

Torque-Free Motion

Notice that even in the absence of external moments, the dynamics are still active:

$$\begin{bmatrix} 0\\0\\0\end{bmatrix} = \begin{bmatrix} I_x \dot{\omega}_x + \omega_y \omega_z (I_z - I_y)\\I_y \dot{\omega}_y + \omega_x \omega_z (I_x - I_z)\\I_z \dot{\omega}_z + \omega_x \omega_y (I_y - I_x) \end{bmatrix}$$

which yield the 3-state nonlinear ODE:

$$\begin{split} \dot{\omega}_x &= -\frac{I_z - I_y}{I_x} \omega_y(t) \omega_z(t) \\ \dot{\omega}_y &= -\frac{I_x - I_z}{I_y} \omega_x(t) \omega_z(t) \\ \dot{\omega}_z &= -\frac{I_y - I_x}{I_z} \omega_x(t) \omega_y(t) \end{split}$$

Thus even in the absence of external moments

- The axis of rotation $\vec{\omega}$ will evolve
- Although the angular momentum vector \vec{h} will NOT.
 - occurs because tensor I changes in inertial frame.
- This can be problematic for spin-stabilization!

M. Peet

Euler Equations

Spin Stabilization

We can use Euler's equation to study Spin Stabilization.

There are two important cases:

Axisymmetric: $I_x = I_y$

$$I = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_x & 0 \\ 0 & 0 & I_z \end{bmatrix}$$

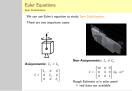
Non-Axisymmetric: $I_x \neq I_y$

$$I = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} kg \cdot m^2$$
 Rough Estimate w/o solar panel

• real data not available

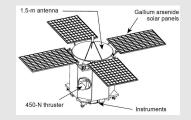
Lecture 16

-Euler Equations



Note we say a body is axisymmetric if $I_x = I_y$.

• We don't need rotational symmetry...



Non-Axisymmetric: $I_x \neq I_y$

$$I = \begin{bmatrix} 473.924 & 0 & 0\\ 0 & 494.973 & 0\\ 0 & 0 & 269.83 \end{bmatrix} kg \cdot m^2$$

Spin Stabilization

Axisymmetric Case

An important case is spin-stabilization of an axisymmetric spacecraft.

• Assume symmetry about z-axis $(I_x = I_y)$

Then recall

$$\dot{\omega}_z(t) = -\frac{I_y - I_x}{I_z} \omega_x(t) \omega_y(t) = 0$$

Thus $\omega_z = constant$.

The equations for ω_x and ω_y are now

$$\begin{bmatrix} \dot{\omega}_x(t) \\ \dot{\omega}_y(t) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{I_z - I_y}{I_x} \omega_z \\ -\frac{I_x - I_z}{I_y} \omega_z & 0 \end{bmatrix} \begin{bmatrix} \omega_x(t) \\ \omega_y(t) \end{bmatrix}$$

Which is a linear ODE.

Lecture 16

Spin Stabilization

Thus $\omega_{\tau} = constant$

spacecraft. • Assume symmetry about z-axis $(I_x = I_y)$ Then recall Í

The equations for ω_x and ω_y are now $(\omega, \omega) = \int_{-\infty}^{\infty} \omega dx$

$\begin{bmatrix} \dot{\omega}_{x}(t) \\ \dot{\omega}_{y}(t) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{I_{x}-I_{y}}{I_{y}}\omega_{x} \\ -\frac{I_{x}-I_{y}}{I_{y}}\omega_{x} & 0 \end{bmatrix} \begin{bmatrix} \omega_{x}(t) \\ \omega_{y}(t) \end{bmatrix}$ Which is a linear ODE.

 $\dot{\omega}_s(t) = -\frac{I_y - I_s}{I}\omega_s(t)\omega_y(t) = 0$

An important case is spin-stabilization of an axisymmetric

 $I_x = I_y$

Spin Stabilization

Axisymmetric Case

Fortunately, linear systems have closed-form solutions. let $\lambda=\frac{I_z-I_x}{I_x}\omega_z.$ Then

$$\dot{\omega}_x(t) = -\lambda \omega_y(t)$$

 $\dot{\omega}_y(t) = \lambda \omega_x(t)$

Combining, we get

$$\ddot{\omega}_x(t) = -\lambda^2 \omega_x(t)$$

which has solution

$$\omega_x(t) = \omega_x(0)\cos(\lambda t) + \frac{\dot{\omega}_x(0)}{\lambda}\sin(\lambda t)$$

Differentiating, we get

$$\omega_y(t) = -\frac{\dot{\omega}_x(t)}{\lambda} = \omega_x(0)\sin(\lambda t) - \frac{\dot{\omega}_x(0)}{\lambda}\cos(\lambda t)$$
$$= \omega_x(0)\sin(\lambda t) + \omega_y(0)\cos(\lambda t)$$
$$\omega_x(t) = \omega_x(0)\cos(\lambda t) - \omega_y(0)\sin(\lambda t)$$

Spin Stabilization

Axisymmetric Case

Define
$$\omega_{xy} = \sqrt{\omega_x^2 + \omega_y^2}$$
.

$$\omega_{xy}^2 = (\omega_x(0)\sin(\lambda t) + \omega_y(0)\cos(\lambda t))^2 + (\omega_x(0)\cos(\lambda t) - \omega_y(0)\sin(\lambda t))^2$$

$$= \omega_x(0)^2\sin^2(\lambda t) + \omega_y(0)^2\cos^2(\lambda t) + 2\omega_x(0)\omega_y(0)\cos(\lambda t)\sin(\lambda t)$$

$$+ \omega_x(0)^2\cos^2(\lambda t) + \omega_y(0)^2\sin^2(\lambda t) - 2\omega_x(0)\omega_y(0)\cos(\lambda t)\sin(\lambda t)$$

$$= \omega_x(0)^2(\sin^2(\lambda t) + \cos^2(\lambda t)) + \omega_y(0)^2(\cos^2(\lambda t) + \sin^2(\lambda t))$$

$$= \omega_x(0)^2 + \omega_y(0)^2$$

Thus

• ω_z is constant

rotation about axis of symmetry

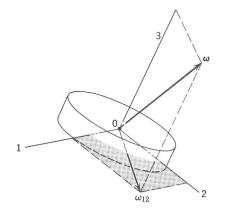
•
$$\sqrt{\omega_x^2 + \omega_y^2}$$
 is constant

rotation perpendicular to axis of symmetry

This type of motion is often called Precession!

M. Peet

Circular Motion in the Body-Fixed Frame



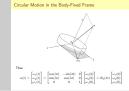
Thus

$$\omega(t) = \begin{bmatrix} \omega_x(t) \\ \omega_y(t) \\ \omega_z(t) \end{bmatrix} = \begin{bmatrix} \cos(\lambda t) & -\sin(\lambda t) & 0 \\ \sin(\lambda t) & \cos(\lambda t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \omega_x(0) \\ \omega_y(0) \\ \omega_z(0) \end{bmatrix} = R_3(\lambda t) \begin{bmatrix} \omega_x(0) \\ \omega_y(0) \\ \omega_z(0) \end{bmatrix}$$

2022-04-26

Lecture 16

-Circular Motion in the Body-Fixed Frame



 For λ > 0, this is a Positive (counterclockwise) rotation, about the z-axis, of the angular velocity vector ω as expressed in the body-fixed coordinates!

Prolate vs. Oblate

The speed of the precession is given by the natural frequency:

$$\lambda = \frac{I_z - I_x}{I_x} \omega_z$$

with period $T = \frac{2\pi}{\lambda} = \frac{2\pi I_x}{I_z - I_x} \omega_z^{-1}$.

Direction of Precession: There are two cases

Definition 4 (Direct).

An axisymmetric (about z-axis) rigid body is **Prolate** if $I_z < I_x = I_y$.

Definition 5 (Retrograde).

An axisymmetric (about z-axis) rigid body is **Oblate** if $I_z > I_x = I_y$.

Thus we have two cases:

- $\lambda > 0$ if object is *Oblate* (CCW rotation)
- λ < 0 if object is *Prolate* (CW rotation)

Note that these are rotations of ω , as expressed in the **Body-Fixed** Frame.

M. Peet

Figure: Prolate Precession

Figure: Oblate Precession

The black arrow is $\vec{\omega}$.

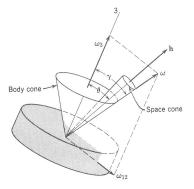
- The body-fixed x and y axes are indicated with red and green dots.
- Notice the direction of rotation of ω with respect to these dots.
- The angular momentum vector is the inertial z axis.

As these videos illustrate, we are typically interested in motion in the **Inertial Frame**.

- Use of Rotation Matrices is complicated.
 - Which coordinate system to use???
- Lets consider motion relative to \vec{h} .
 - Which is fixed in inertial space.

We know that in Body-Fixed coordinates,

$$\vec{h} = I\vec{\omega} = \begin{bmatrix} I_x \omega_x \\ I_y \omega_y \\ I_z \omega_z \end{bmatrix}$$



Now lets find the orientation of ω and \hat{z} with respect to this fixed vector.

-Motion in the Inertial Frame

- **Motion in the Inertial Frame** As the advancement of the anti-advancement of the advancement of the advanc
- The "Space Cone" is how ω moves in inertial coordinates
- The "Body Cone" is how ω moves with respect to the body.

Let $\hat{x},\,\hat{y}$ and \hat{z} define the body-fixed unit vectors.

We first note that since $I_x = I_y$ and

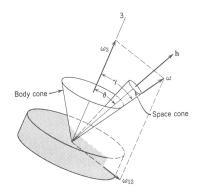
$$\vec{h} = I_x \omega_x \hat{x} + I_y \omega_y \hat{y} + I_z \omega_z \hat{z}$$

= $I_x (\omega_x \hat{x} + \omega_y \hat{y} + \omega_z \hat{z}) + (I_z - I_x) \omega_z \hat{z}$
= $I_x \vec{\omega} + (I_z - I_x) \omega_z \hat{z}$

we have that

$$\vec{\omega} = \frac{1}{I_x}\vec{h} + \frac{I_x - I_z}{I_x\omega_z}\hat{z}$$

which implies that $\vec{\omega}$ lies in the $\hat{z} - \vec{h}$ plane.



We now focus on two constants of motion

- θ The angle \vec{h} makes with the body-fixed \hat{z} axis.
- γ The angle $\vec{\omega}$ makes with the body-fixed \hat{z} axis.

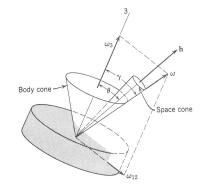
Since

$$\vec{h} = \begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix} = \begin{bmatrix} I_x \omega_x \\ I_y \omega_y \\ I_z \omega_z \end{bmatrix}$$

The angle $\boldsymbol{\theta}$ is defined by

$$\tan \theta = \frac{\sqrt{h_x^2 + h_y^2}}{h_z} = \frac{I_x \sqrt{\omega_x^2 + \omega_y^2}}{I_z \omega_z} = \frac{I_x}{I_z} \frac{\omega_{xy}}{\omega_z}$$

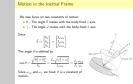
Since ω_{xy} and ω_z are fixed, θ is a constant of motion.



```
Lecture 16
```

2022-04-26

-Motion in the Inertial Frame



Again, \vec{h} here is in the body-fixed frame

• This is why it changes over time.

The second angle to consider is

• γ - The angle $\vec{\omega}$ makes with the body-fixed \hat{z} axis.

As before, the angle γ is defined by

$$\tan \gamma = \frac{\sqrt{\omega_x^2 + \omega_y^2}}{\omega_z} = \frac{\omega_{xy}}{\omega_z}$$

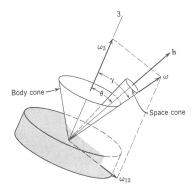
Since ω_{xy} and ω_z are fixed, γ is a constant of motion.

• We have the relationship

$$\tan\theta = \frac{I_x}{I_z}\frac{\omega_{xy}}{\omega_z} = \frac{I_x}{I_z}\tan\gamma$$

Thus we have two cases:

1.
$$I_x > I_z$$
 - Then $\theta > \gamma$
2. $I_x < I_z$ - Then $\theta < \gamma$ (As Illustrated)



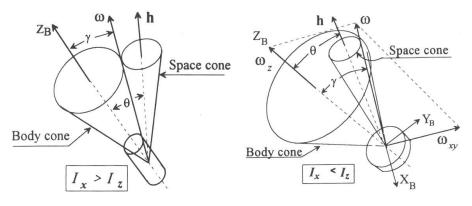
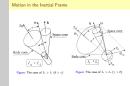


Figure: The case of $I_x > I_z$ ($\theta > \gamma$)

Figure: The case of $I_z > I_x$ ($\gamma > \theta$)



We illustrate the motion using the Space Cone and Body Cone

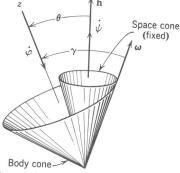
- The space cone is fixed in inertial space (doesn't move)
- The space cone has width $|\omega \theta|$
- The body cone is centered around the z-axis of the body.
- In body-fixed coordinates, the space cone rolls around the body cone (which is fixed)
- In inertial coordinates, the body cone rolls around the space cone (which is fixed)

The orientation of the body in the inertial frame is defined by the sequence of Euler rotations

- ψ R_3 rotation about \vec{h} .
 - Aligns \hat{e}_x perpendicular to \hat{z} .
- θ R_1 rotation by angle θ about h_x .
 - ▶ Rotate \hat{e}_z -axis to body-fixed \hat{z} vector
 - We have shown that this angle is fixed!

$$\dot{\theta} = 0.$$

- ϕ R_3 rotation about body-fixed \hat{z} vector.
 - Aligns \hat{e}_x to \hat{x} .



The Euler angles are related to the angular velocity vector as

$$\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \dot{\psi} \sin \theta \sin \phi \\ \dot{\psi} \sin \theta \cos \phi \\ \dot{\phi} + \dot{\psi} \cos \theta = constant \end{bmatrix}$$

This comes from

Lecture 16

$$\vec{\omega} = R_3(\phi)R_1(\theta)R_3(\psi) \begin{bmatrix} 0\\0\\\dot{\psi} \end{bmatrix} + R_3(\phi)R_1(\theta) \begin{bmatrix} 0\\\dot{\theta}\\0 \end{bmatrix} + R_3(\phi) \begin{bmatrix} 0\\0\\\dot{\phi} \end{bmatrix}$$
$$= \begin{bmatrix} \dot{\psi}\sin\theta\sin\phi\\\dot{\psi}\sin\theta\cos\phi\\\dot{\psi}\cos\theta \end{bmatrix} + \begin{bmatrix} 0\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\0\\\dot{\phi} \end{bmatrix}$$

2022-04-26

To find the motion of $\omega,$ we differentiate

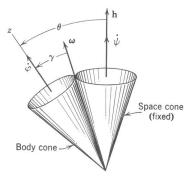
$$\begin{bmatrix} \dot{\omega}_x \\ \dot{\omega}_y \\ \dot{\omega}_z \end{bmatrix} = \begin{bmatrix} \dot{\psi} \dot{\phi} \sin \theta \cos \phi \\ -\dot{\psi} \dot{\phi} \sin \theta \sin \phi \\ 0 \end{bmatrix}$$

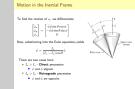
Now, substituting into the Euler equations yields

$$\dot{\psi} = \frac{I_z}{(I_x - I_z)\cos\theta}\dot{\phi}$$

There are two cases here:

- $I_x > I_z$ **Direct** precession • $\dot{\psi}$ and $\dot{\phi}$ aligned.
- *I_y* > *I_x* **Retrograde** precession
 ψ and *φ* are opposite.





Recall $\dot{\omega}_x$ and $\dot{\omega}_y$ can be expressed in terms of ω_x and ω_y

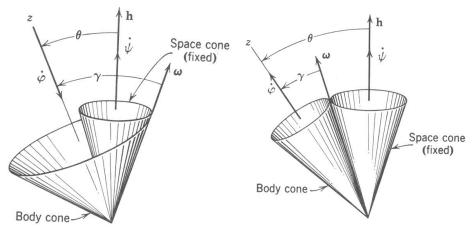


Figure: Retrograde Precession $(I_z > I_x)$

Figure: Direct Precession $(I_z < I_x)$

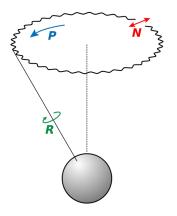
Mathematica Precession Demonstration

Prolate and Oblate Spinning Objects

Figure: Prolate Object: $I_x = I_y = 4$ and $I_z = 1$

Figure: Oblate Object: Vesta

Next Lecture



Note Bene: Precession of a spacecraft is often called nutation (θ is called the nutation angle).

- By most common definitions, for torque-free motions, N = 0
 - Free rotation has NO nutation.
 - This is confusing

M. Peet

Precession

Example: Chandler Wobble

Problem: The earth is 42.72 km wider than it is tall. How quickly will the rotational axis of the earth precess due to this effect?

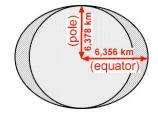
Solution: for an axisymmetric ellipsoid with height *a* and width *b*, we have $I_x = I_y = \frac{1}{5}m(a^2 + b^2)$ and $I_z = \frac{2}{5}mb^2$.

Thus b = 6378 km, a = 6352 km and we have $(m_e = 5.974 \cdot 10^{24} kg)$

$$I_z = 9.68 \cdot 10^{37kg - m^2}, \qquad I_x = I_y = 9.72 \cdot 10^{37kg - m^2}$$

If we take $\omega_z=\frac{2\pi}{T}\cong 2\pi day^{-1},$ then we have

$$\lambda = \frac{I_z - I_x}{I_x} \omega_z = .0041 day^{-1}$$

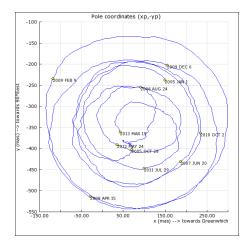


That gives a period of $T = \frac{2\pi}{\lambda} = 243.5 days$. This motion of the earth is known as the **Chandler Wobble**.

Note: This is only the Torque-free precession.

M. Peet

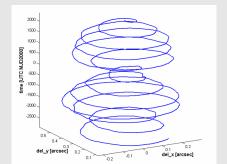
Precession



- Actual period is 434 days
 - Actual $I_x = I_y = 8.008 \cdot 10^{37} kg m^2$.
 - Actual $I_z = 8.034 \cdot 10^{37} kg m^2$.
 - Which would predict T = 306 days

M. Peet

- The precession of the earth was first notices by Euler, D'Alembert and Lagrange as slight variations in lattitude.
- Error partially due to fact Earth is not a rigid body(Chandler + Newcomb).
- Magnitude of around 9m
- Previous plot scale is milli-arc-seconds (mas)



In the next lecture we will cover

Non-Axisymmetric rotation

- Linearized Equations of Motion
- Stability

Energy Dissipation

• The effect on stability of rotation