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Coordinate Systems

Recall:

• A basis, {xi} is a set of independent elements which span a vector space.

• A minimal basis defines a Coordinate System.

Consider a vector space, X.

Definition 1.

For any x ∈ X, the Coordinates of x in basis B = {bi} is the unique set of
scalars {αi} such that

x =
∑
i

αibi.

We denote the coordinates of x in basis B = {bi} as

xB =

α1

...
αn


Note: Some bases are better for certain applications
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Coordinate Systems
Examples

Consider the vector
x =

[
1 2 3 4 5

]
Canonical Basis:

B1 =




1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1




Then

xB1 =
[
1 2 3 4 5

]T

Alternative Basis:

B2 =




0
0
0
0
1

 ,


0
0
0
1
1

 ,


0
0
1
1
1

 ,


0
1
1
1
1

 ,


1
1
1
1
1




Then

xB2 =
[
1 1 1 1 1

]T
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Coordinate Systems
Examples

The polynomial p(x) = x3 + 2

Monomial Basis:

B1 =
{

1, x, x2, x3
}

Then

xB1
=
[
2 0 0 1

]T

Chebyshev Basis:

B2 =
{

1, x, 2x2 − 1, 4x3 − 3x
}

Then

xB2
=
[
2 3/4 0 1/4

]T
It is often necessary to convert from one coordinate system to another.

• Given bases {vi} and {wi} and coordinates x =
∑

i αivi, find {βi} such
that

∑
i αivi =

∑
i βiwi
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Coordinate Transformations

Convert (xB1
7→ xB2

) Coordinates in basis B1 = {vj} to coordinates in basis
B2 = {wj}.

Let ti = viB2
be the coordinates of the basis vector vi in basis B2 = {wj} so

vi =
∑
j

ti,jwj .

If we have an arbitrary vector x in B1 coordinates

xB1 =
[
α1 . . . αn

]T
Then

x =
∑
i

αivi =
∑
i

αi

∑
j

ti,jwj =
∑
j

(
∑
i

αiti,j)wj

So

xB2 =

t1,1 . . . t1,n
...

. . .
...

tn,1 . . . tn,n


α1

...
αn

 = TxB1
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Coordinate Transformations

The coordinate transformation T : xB1
7→ xB2

is a linear mapping.
Notable Examples of Coordinate Transforms

• Laplace Transform

• Fourier Transform

• Z-transform

Any coordinate transformation is invertible since

• Surjective (e.g. Rn → Rn)

• Injective (Im(T ) = span({wi}) = Rn)

Question: What about Operators?

• A linear operator on a vector space X defines a linear operator on the
coefficient space.

• The operator A for the map y = Ax defines a linear operator AB on the
space of coefficients for basis B.

yB = ABxB

where xB and yB are the coefficients of x and y in basis B
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Coordinate Transformations

The representation of the map A in another basis B2 can be found easily

• Suppose yB1 = AB1xB1 defines AB1 .

• Suppose the coordinate transform from B1 to B2 is xB2 = TB1→B2xB1 .

• Then

yB2
= TB1→B2

yB1
= TB1→B2

AB1
xB1

= TB1→B2
AB1

T−1B1→B2
xB2

To simplify
AB2

= TB1→B2
AB1

T−1B1→B2

This is called a similarity transformation

• e.g. Frequency Domain ↔ Time Domain.

• We will return to this in the next chapter.
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Normed Spaces

A norm is used to express a concept of distance.
• A concept of energy for signal spaces.

Definition 2.

A norm on a vector space, X is a mapping, ‖·‖ : X → R which satisfies

1. ‖x‖ ≥ 0 for all x ∈ X. (Positivity)

2. ‖x‖ = 0 if and only if x = 0. (Non-Degeneracy)

3. ‖λx‖ = |λ|‖x‖ for all x ∈ X and α ∈ R.

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X. (Triangle Inequality)

By Definition:
• Triangle Inequality means space satisfies the Pythagorean Inequality.

Note: The submultiplicative inequality is often NOT SATISFIED:

‖AB‖ 6≤ ‖A‖‖B‖
• For this we need multiplication
• A normed space with the submultiplicative inequality is called a Normed

Algebra.
M. Peet Lecture 3: Coordinates Systems 8 / 17



Normed Spaces

Definition 3.

A Normed Space is a vector space with an associated norm.

The same vector space may define several different normed spaces:
On Rn:

• ‖x‖1 =
∑n

i=1 |xi| (Taxicab norm)

• ‖x‖2 =
√∑n

i=1 x
2
i (Euclidean norm)

• ‖x‖p = p
√∑n

i=1 |xi|p

• ‖x‖∞ = max |xi|

On infinite sequences g : N→ R
• ‖f‖l1 =

∑∞
i=1 |gi|

• ‖f‖l2 =
√∑∞

i=1 g
2
i

• ‖f‖lp = p
√∑∞

i=1 |gi|p

• ‖f‖l∞ = maxi=1,...,∞ |gi|

On functions f : [0, 1]→ R
• ‖f‖L1 =

∫ 1

0
|f(s)|ds

• ‖f‖L2
=
√∫ 1

0
f(s)2ds

• ‖f‖Lp
= p

√∫ 1

0
|f(s)|pds

• ‖f‖L∞ = sups∈[0,1] |f(s)|
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Normed Spaces

On a normed space, we define the following common subsets

• Closed unit ball/disk
{x : ‖x‖ ≤ 1}

• Open unit ball/disk
{x : ‖x‖ < 1}

• Unit sphere/circle
{x : ‖x‖ = 1}

For each norm, the unit ball is different.

• In ‖·‖∞, the unit ball is a cube!

• ‖·‖1?

Note: Norms are often associated to a coordinate system.

• All our norms on Rn use Euclidean coordinates

• Define a polar norm?
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Open and Closed Sets

Define the closed ball of radius r centered at x0.

B(r, x0) := {x : ‖x− x0‖ ≤ r}

Definition 4.

A subset Q ⊂ X is Open if for any x ∈ Q, there exists a closed ball, centered at
x, which is contained in Q.
i.e. For any x0, there exists some r > 0 such that

B(r, x0) ⊂ Q
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Open and Closed Sets
Example

Lemma 5.

The open unit ball, Bo := {x : ‖x‖ < 1}, is open.

Proof.

• For any x0 ∈ Bo, ‖x0‖ < 1.

• Let ε = 1− ‖x0‖ > 0 and r = ε/2. Then for any y ∈ B(r, x0), we have
‖y − x0‖ ≤ ε/2.

• Thus for any y ∈ B(r, x0)

‖y‖ = ‖x0 + y − x0‖
≤ ‖x0‖+ ‖y − x0‖
≤ 1− ε+ ε/2

= 1− ε/2 < 1

• Thus B(r, x0) ⊂ Bo. Since x0 is arbitrary, this proves that Bo is open.
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Open and Closed Sets
Closed Sets

Definition 6.

The Complement of a subset Q ⊂ X in X is

Qc = X/Q := {x ∈ X : x 6∈ Q}

Definition 7.

Q ⊂ X is closed in X if X/Q is open.

Definition 8.

The closure of Q in X is the set of points in X which are infinitely close to Q.

Q̄ := {x ∈ X : B(r, x) ∩Q 6= ∅ for every r > 0}

The closure of a set is the smallest closed set containing the set.
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Open and Closed Sets
Closed Sets

Definition 9.

The interior of Q in X is

intQ := {x : B(r, x) ⊂ Q for some r > 0}

Definition 10.

The boundary of Q in X is Q̄/intQ

Definition 11.

A set is bounded if it is contained in some ball. There exists an r > 0 such that

Q ⊂ B(r, 0)

Definition 12.

In Rn, a set is compact if it is closed and bounded.
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Limit of a Sequence or Function

Definition 13 (Limit of a Sequence).

Let X be a normed space and xi a sequence of points in X. We say that xi
converges to a point x ∈ X provided that for every open set U containing x,
there is an integer N such that xk ∈ U for all k ≥ N . This is denoted

lim
k→∞

xk = x

Definition 14 (Limit of a Function).

For a mapping f : Y → X, we say that b ∈ X is the limit of f at x0 if given
any ε > 0, there exists a δ > 0 such that for all x ∈ Y satisfying x 6= x0 and
‖x− x0‖ < δ, we have ‖f(x)− b‖ ≤ ε. This is denoted

lim
x→x0

f(x) = b
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Convexity

Definition 15.

A set is convex if for any x, y ∈ Q,

{µx+ (1− µ)y : µ ∈ [0, 1]} ⊂ Q.

The line connecting any two points lies in the set.
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Convex Cones

Definition 16.

A set is a cone if for any x ∈ Q,

{µx : µ ≥ 0} ⊂ Q.

A subspace is a cone but not all cones are subspaces.
• If the cone is also convex, it is a convex cone.
• Cones are convex if they are closed under addition.
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