Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 3: Normed Spaces, Matrix Properties

Coordinate Systems

Recall:

- A basis, $\{x_i\}$ is a set of independent elements which span a vector space.
- A minimal basis defines a Coordinate System.

Consider a vector space, X.

Definition 1.

For any $x \in X$, the **Coordinates** of x in basis $B = \{b_i\}$ is the unique set of scalars $\{\alpha_i\}$ such that

$$x = \sum_{i} \alpha_i b_i.$$

We denote the coordinates of x in basis $B = \{b_i\}$ as

$$x_B = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Note: Some bases are better for certain applications

M. Peet

Coordinate Systems

Examples

Consider the vector

$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

Canonical Basis:

$$B_{1} = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\end{bmatrix} \right\}$$

Then

 $x_{B_1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}^T$

Alternative Basis:

$$B_{2} = \left\{ \begin{bmatrix} 0\\0\\0\\0\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\\1\end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1\end{bmatrix} \right\}$$

Then

$$x_{B_2} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$

Coordinate Systems

Examples

The polynomial $p(x) = x^3 + 2$ Monomial Basis:

 $B_1 = \left\{1, x, x^2, x^3\right\}$

Chebyshev Basis:

$$B_2 = \left\{1, x, 2x^2 - 1, 4x^3 - 3x\right\}$$

Then

Then

$$x_{B_1} = \begin{bmatrix} 2 & 0 & 0 & 1 \end{bmatrix}^T$$
 $x_{B_2} = \begin{bmatrix} 2 & 3/4 & 0 & 1/4 \end{bmatrix}^T$

It is often necessary to convert from one coordinate system to another.

• Given bases $\{v_i\}$ and $\{w_i\}$ and coordinates $x=\sum_i\alpha_iv_i,$ find $\{\beta_i\}$ such that $\sum_i\alpha_iv_i=\sum_i\beta_iw_i$

Coordinate Transformations

Convert $(x_{B_1} \mapsto x_{B_2})$ Coordinates in basis $B_1 = \{v_j\}$ to coordinates in basis $B_2 = \{w_j\}$.

Let $t_i = v_{iB_2}$ be the coordinates of the basis vector v_i in basis $B_2 = \{w_j\}$ so

$$v_i = \sum_j t_{i,j} w_j.$$

If we have an arbitrary vector x in B_1 coordinates

$$x_{B_1} = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix}^T$$

Then

$$x = \sum_{i} \alpha_{i} v_{i} = \sum_{i} \alpha_{i} \sum_{j} t_{i,j} w_{j} = \sum_{j} (\sum_{i} \alpha_{i} t_{i,j}) w_{j}$$

So

$$x_{B_2} = \begin{bmatrix} t_{1,1} & \dots & t_{1,n} \\ \vdots & \ddots & \vdots \\ t_{n,1} & \dots & t_{n,n} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = T x_{B_1}$$

Coordinate Transformations

The coordinate transformation $T: x_{B_1} \mapsto x_{B_2}$ is a linear mapping. Notable Examples of Coordinate Transforms

- Laplace Transform
- Fourier Transform
- Z-transform

Any coordinate transformation is invertible since

- Surjective (e.g. $\mathbb{R}^n o \mathbb{R}^n$)
- Injective $(Im(T) = \operatorname{span}(\{w_i\}) = \mathbb{R}^n)$

Question: What about Operators?

- A linear operator on a vector space X defines a linear operator on the coefficient space.
- The operator A for the map y = Ax defines a linear operator A_B on the space of coefficients for basis B.

$$y_B = A_B x_B$$

where x_B and y_B are the coefficients of x and y in basis B

The representation of the map A in another basis B_2 can be found easily

- Suppose $y_{B_1} = A_{B_1} x_{B_1}$ defines A_{B_1} .
- Suppose the coordinate transform from B_1 to B_2 is $x_{B_2} = T_{B_1 \rightarrow B_2} x_{B_1}$.

$$y_{B_2} = T_{B_1 \to B_2} y_{B_1} = T_{B_1 \to B_2} A_{B_1} x_{B_1} = T_{B_1 \to B_2} A_{B_1} T_{B_1 \to B_2}^{-1} x_{B_2}$$

To simplify

$$A_{B_2} = T_{B_1 \to B_2} A_{B_1} T_{B_1 \to B_2}^{-1}$$

This is called a similarity transformation

- e.g. Frequency Domain \leftrightarrow Time Domain.
- We will return to this in the next chapter.

Normed Spaces

A norm is used to express a concept of distance.

• A concept of energy for signal spaces.

Definition 2.

A norm on a vector space, X is a mapping, $\|\cdot\|:X\to\mathbb{R}$ which satisfies

- 1. $||x|| \ge 0$ for all $x \in X$. (Positivity)
- 2. ||x|| = 0 if and only if x = 0. (Non-Degeneracy)
- 3. $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $\alpha \in \mathbb{R}$.
- 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$. (Triangle Inequality)

By Definition:

• Triangle Inequality means space satisfies the *Pythagorean Inequality*. **Note:** The submultiplicative inequality is often NOT SATISFIED:

$\|AB\| \not\leq \|A\| \|B\|$

- For this we need multiplication
- A normed space with the submultiplicative inequality is called a **Normed Algebra**.

M. Peet

Normed Spaces

Definition 3.

A Normed Space is a vector space with an associated norm.

The same vector space may define several different normed spaces: On \mathbb{R}^n :

•
$$||x||_1 = \sum_{i=1}^n |x_i|$$
 (Taxicab norm)

•
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
 (Euclidean norm)

•
$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

•
$$||x||_{\infty} = \max |x_i|$$

On infinite sequences $g:\mathbb{N}\to\mathbb{R}$

•
$$||f||_{1} = \sum_{i=1}^{\infty} |g_i|$$

•
$$||f||_{1_2} = \sqrt{\sum_{i=1}^{\infty} g_i^2}$$

•
$$\|f\|_{\updownarrow_p} = \sqrt[p]{\sum_{i=1}^{\infty} |g_i|^p}$$

•
$$||f||_{\uparrow_{\infty}} = \max_{i=1,\dots,\infty} |g_i|$$

On functions $f:[0,1] \to \mathbb{R}$

•
$$||f||_{L_1} = \int_0^1 |f(s)| ds$$

•
$$||f||_{L_2} = \sqrt{\int_0^1 f(s)^2 ds}$$

•
$$||f||_{L_p} = \sqrt[p]{\int_0^1 |f(s)|^p ds}$$

•
$$||f||_{L_{\infty}} = \sup_{s \in [0,1]} |f(s)|$$

Lecture 3: Coordinates Systems

Normed Spaces

On a normed space, we define the following common subsets

• Closed unit ball/disk

 $\{x \, : \, \|x\| \le 1\}$

• Open unit ball/disk

 $\{x \, : \, \|x\| < 1\}$

• Unit sphere/circle

 $\{x \ : \ \|x\| = 1\}$

For each norm, the unit ball is different.

- In $\|\cdot\|_{\infty}$, the unit ball is a cube!
- $\|\cdot\|_1$?

Note: Norms are often associated to a coordinate system.

- All our norms on \mathbb{R}^n use Euclidean coordinates
- Define a polar norm?

Define the closed ball of radius r centered at x_0 .

$$B(r, x_0) := \{x : ||x - x_0|| \le r\}$$

Definition 4.

A subset $Q \subset X$ is **Open** if for any $x \in \mathbb{Q}$, there exists a closed ball, centered at x, which is contained in Q.

i.e. For any x_0 , there exists some r > 0 such that

 $B(r, x_0) \subset Q$

Open and Closed Sets

Example

Lemma 5.

The open unit ball, $B_o := \{x : ||x|| < 1\}$, is open.

Proof.

- For any $x_0 \in B_o$, $||x_0|| < 1$.
- Let $\epsilon=1-\|x_0\|>0$ and $r=\epsilon/2.$ Then for any $y\in B(r,x_0),$ we have $\|y-x_0\|\leq\epsilon/2.$
- Thus for any $y \in B(r, x_0)$

$$||y|| = ||x_0 + y - x_0||$$

$$\leq ||x_0|| + ||y - x_0||$$

$$\leq 1 - \epsilon + \epsilon/2$$

$$= 1 - \epsilon/2 < 1$$

• Thus $B(r, x_0) \subset B_o$. Since x_0 is arbitrary, this proves that B_o is open.

Open and Closed Sets

Closed Sets

Definition 6.

The **Complement** of a subset $Q \subset X$ in X is

$$Q^c = X/Q := \{x \in X : x \notin Q\}$$

Definition 7.

 $Q \subset X$ is **closed** in X if X/Q is open.

Definition 8.

The closure of Q in X is the set of points in X which are infinitely close to Q.

$$\bar{Q} := \{ x \in X : B(r, x) \cap Q \neq \emptyset \text{ for every } r > 0 \}$$

The closure of a set is the smallest closed set containing the set.

M. Peet

Open and Closed Sets

Closed Sets

Definition 9.

The **interior** of Q in X is

$$intQ := \{x : B(r, x) \subset Q \text{ for some } r > 0\}$$

Definition 10.

The **boundary** of Q in X is $\overline{Q}/\text{int}Q$

Definition 11.

A set is **bounded** if it is contained in some ball. There exists an r > 0 such that

 $Q \subset B(r,0)$

Definition 12.

In \mathbb{R}^n , a set is **compact** if it is closed and bounded.

M. Peet

Lecture 3: Coordinates Systems

Limit of a Sequence or Function

Definition 13 (Limit of a Sequence).

Let X be a normed space and x_i a sequence of points in X. We say that x_i converges to a point $x \in X$ provided that for every open set U containing x, there is an integer N such that $x_k \in U$ for all $k \ge N$. This is denoted

 $\lim_{k \to \infty} x_k = x$

Definition 14 (Limit of a Function).

For a mapping $f: Y \to X$, we say that $b \in X$ is the **limit** of f at x_0 if given any $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in Y$ satisfying $x \neq x_0$ and $||x - x_0|| < \delta$, we have $||f(x) - b|| \le \epsilon$. This is denoted

$$\lim_{x \to x_0} f(x) = b$$

Convexity

Definition 15.

A set is **convex** if for any $x, y \in Q$,

$$\{\mu x + (1-\mu)y : \mu \in [0,1]\} \subset Q.$$

The line connecting any two points lies in the set.

Convex Cones

Definition 16.

A set is a **cone** if for any $x \in Q$,

$$\{\mu x : \mu \ge 0\} \subset Q.$$

A subspace is a cone but not all cones are subspaces.

- If the cone is also convex, it is a convex cone.
- Cones are convex if they are closed under addition.

