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Coordinate Systems

Recall:
e A basis, {z;} is a set of independent elements which span a vector space.
e A minimal basis defines a Coordinate System.

Consider a vector space, X.

Definition 1.
For any 2 € X, the Coordinates of x in basis B = {b;} is the unique set of
scalars {«;} such that
T = Z Oélbl
i

We denote the coordinates of x in basis B = {b;} as

g
rp =
79

Note: Some bases are better for certain applications
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Coordinate Systems

Examples

Consider the vector
x:[l 2 3 4 5}

Canonical Basis: Alternative Basis:
1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1
B = o, (0], (1],|0],]O By = O, (O], (1], ([1],]1
0 0 0 1 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1 1
Then Then
zp,=[1 2 3 4 5" ep=[1 1 1 1 1]
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Coordinate Systems

Examples

The polynomial p(z) = 2 + 2

Monomial Basis: Chebyshev Basis:
By = {1,z,2° 2%} By = {1,z,22° — 1,42° — 3z}
Then Then

vp=[2 0 0 1" wp,=[2 3/4 0 1/4
It is often necessary to convert from one coordinate system to another.
e Given bases {v;} and {w;} and coordinates z = >, a;v;, find {;} such

that Zl o0 = Ez Biw;

}T
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Coordinate Transformations

Convert (zp, — xp,) Coordinates in basis B; = {v;} to coordinates in basis
By = {w;}.

Let ¢; = v; g, be the coordinates of the basis vector v; in basis By = {w,} so

v; = E tm‘wj.
J

If we have an arbitrary vector x in By coordinates

T
rp, = [041 PN an]
Then
T=D e =) i} tigw; =) () aitiu
i i J Jjooi
So
t171 . tl,n aq
ep,=| i . ||| =Tes
tn,l . tn n (67%

s
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Coordinate Transformations

The coordinate transformation T': xp, +— xp, is a linear mapping.
Notable Examples of Coordinate Transforms

e Laplace Transform
e Fourier Transform
e Z-transform
Any coordinate transformation is invertible since
e Surjective (e.g. R” — R")
e Injective (Im(T) = span({w;}) = R™)
Question: What about Operators?

e A linear operator on a vector space X defines a linear operator on the
coefficient space.

e The operator A for the map y = Ax defines a linear operator Ap on the
space of coefficients for basis B.

yp = Apzp

where x5 and yp are the coefficients of x and y in basis B
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Coordinate Transformations

The representation of the map A in another basis By can be found easily

e Suppose yp, = Ap,zp, defines Ap, .
e Suppose the coordinate transform from By to Bs is g, = TB,—»B,TB, -

e Then

_ _ _ -1
yB, = IB—»B,YB, = TB—»BAB 2B, = 1B, »B, AR TR, .B,TB,

To simplify
Ap, =1B,»B,AB, Tgllﬁgz
This is called a similarity transformation

e e.g. Frequency Domain <+ Time Domain.

e We will return to this in the next chapter.
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Normed Spaces

A norm is used to express a concept of distance.
e A concept of energy for signal spaces.

Definition 2.
A norm on a vector space, X is a mapping, ||-|| : X — R which satisfies
1. |lz|| > 0 for all x € X. (Positivity)
2. ||z|| = 0 if and only if 2 = 0. (Non-Degeneracy)
3. ||Az|| = |A|||z|| for all z € X and a € R.
4. ||z +y| < |lz|| + |ly|| for all z,y € X. (Triangle Inequality)

By Definition:
e Triangle Inequality means space satisfies the Pythagorean Inequality.
Note: The submultiplicative inequality is often NOT SATISFIED:

[ABI| £ [[Alll| B]]

e For this we need multiplication

¢ A normed space with the submultiplicative inequality is called a Normed
Algebra.
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Normed Spaces

Definition 3.
A Normed Space is a vector space with an associated norm.
The same vector space may define several different normed spaces:
On R™:
o |lz|li = X7 |zi| (Taxicab norm)
o ||lz|l2 = /X, 7 (Euclidean norm)
o Nl = /225 il
o [[zfloo = max|z;|
On infinite sequences g : N — R On functions f : [0,1] = R
o I flly, =222 ail o fllz, = f) |£(s)]ds

* I flly = v 23::01 9; o |Ifllz, = /fol f(s)2ds
o Iflls, = VT TP :
o 1fllz, = {/ Jo [F(s)IPds

® ||f||$cc = maxX;=1,...,c0 |9:
° fllze. = SUPseo,1] | £(s)]
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Normed Spaces

On a normed space, we define the following common subsets
e Closed unit ball/disk
{z : (=] <1}
e Open unit ball/disk
{ ¢ [lzll <1}
e Unit sphere/circle
{z : (=] =1}
For each norm, the unit ball is different.
e In ||-||oo, the unit ball is a cube!
e [I-llh?
Note: Norms are often associated to a coordinate system.
e All our norms on R™ use Euclidean coordinates

e Define a polar norm?
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Open and Closed Sets

Define the closed ball of radius r centered at x.

B(r,zo) :={z : ||z — x| <1}

Definition 4.
A subset @) C X is Open if for any z € Q, there exists a closed ball, centered at

x, which is contained in Q.
i.e. For any z, there exists some r > 0 such that

B(r,zo) C Q
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Open and Closed Sets

Example

Lemma 5.
The open unit ball, B, := {x : ||z|| < 1}, is open.

Proof.

e For any xg € B,, ||£L’0H <L

o Let e=1—||zg]| > 0 and 7 = ¢/2. Then for any y € B(r,x), we have
lly — zoll < /2.
e Thus for any y € B(r, x¢)

Iyl = llzo +y — ol
< [lzoll + [ly — ol
<l—c+¢/2
=1-¢/2<1

e Thus B(r,x0) C B,. Since x is arbitrary, this proves that B, is open.
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Open and Closed Sets

Closed Sets
Definition 6.
The Complement of a subset Q C X in X is

RI=X/Q:={zeX :2&Q}

Definition 7.
Q C X is closed in X if X/Q is open.

Definition 8.
The closure of @ in X is the set of points in X which are infinitely close to Q.

Q:={ze€X : B(r,z)NQ # 0 for every r > 0}

The closure of a set is the smallest closed set containing the set.
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Open and Closed Sets

Closed Sets

Definition 9.
The interior of Q in X is

int@ := {z : B(r,x) C Q for some r > 0}

Definition 10.
The boundary of Q in X is Q/intQ

Definition 11.

A set is bounded if it is contained in some ball. There exists an > 0 such that

Q C B(r,0)

Definition 12.

In R™, a set is compact if it is closed and bounded.
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Limit of a Sequence or Function

Definition 13 (Limit of a Sequence).

Let X be a normed space and z; a sequence of points in X. We say that z;
converges to a point z € X provided that for every open set U containing x,
there is an integer N such that zy € U for all K > N. This is denoted

lim zp =z
k— o0

Definition 14 (Limit of a Function).

For a mapping f : Y — X, we say that b € X is the limit of f at x if given
any € > 0, there exists a § > 0 such that for all x € Y satisfying = # x( and
|z — xo|| < 6, we have || f(z) — b|]| < e. This is denoted

lim f(z) =b

Tr—rxo
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Convexity

Definition 15.
A set is convex if for any z,y € @,

{fpz+ (1 —py - pel0,1]} CQ.

The line connecting any two points lies in the set.
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Convex Cones

Definition 16.
A set is a cone if for any = € Q,
{pz 2 p >0} CQ.

A subspace is a cone but not all cones are subspaces.
e |f the cone is also convex, it is a convex cone.
e Cones are convex if they are closed under addition.

S, v,
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