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Mathematical Optimization and Curly’s Law
Curly: Do you know what the secret of life is?
Curly: One thing (metric). Just one thing. You stick to
that (metric) and the rest don’t mean ****.

min
x∈F

f(x) : subject to

gi(x) ≤ 0 i = 1, · · ·K1

hi(x) = 0 i = 1, · · ·K2

Variables: x ∈ F
• The things you must choose.
• F represents the set of possible choices for the variables.
• Can be vectors, matrices, functions, systems, locations, colors...

▶ However, computers prefer vectors or matrices.

Objective: f(x)
• A function which assigns a scalar value to any choice of variables.

▶ e.g. [x1, x2] 7→ x1 − x2; red 7→ 4; et c.

Constraints: g(x) ≤ 0; h(x) = 0
• Defines what is a minimally acceptable choice of variables (Feasible).
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Mathematical Optimization and Curly’s Law

“All [mankind] . . . are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the pursuit of Happiness.” - Thomas
Jefferson, Declaration of Independence (July 4, 1776)

“Happiness is the meaning and the purpose of life, the whole aim and end of
human existence” – Aristotle (384-322 BC)

“Happiness, private happiness, is the proper or ultimate end of all our action” –
John Gay, Concerning the Fundamental Principle of Virtue or Morality (1731)

“this circumstance of public utility is ever principally in view; and wherever
disputes arise, either in philosophy or common life, concerning the bounds of
duty, the question cannot, by any means, be decided with greater certainty, than
by ascertaining, on any side, the true interests of mankind.” – David Hume, An
Enquiry Concerning the Principles of Morals (1751)

“You wake up at 3:00 in the morning and say oh my god, everything is an

optimization problem . . . Get over it quickly, please. Of course, everything is an

optimization problem.” – Steven Boyd



Mathematical Optimization

Why Optimization:
• Because its Optimal Control!
• Optimization algorithms are the most advanced and universal

computational tool we have.
▶ But they can’t solve every problem

Topics to Cover:
Mathematical Optimization

• Objective, variables, constraints
• Different formulations of the same problem

Convex Optimization
• What is convex optimization?
• Why is it important?

Computational Complexity
• Computational Complexity
• How hard are optimization problems to solve?

Goals: Given an optimization problem
• Be able to identify variables, constraints, and objective
• Know if an optimization problem is convex
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Linear Least Squares (Early Machine Learning)
The First Mathematical Form of Optimization

Problem: Given a bunch of data in the form

• Inputs: ai
• Outputs: bi

Find the function f(a) = b which best fits the data.

For Least Squares: Assume f(a) = zTa+ z0 where
z ∈ Rn, z0 ∈ R are the variables with objective

min
z,z0

h(z) :=

K∑
i=1

|f(ai)−bi|2 =

K∑
i=1

|zTai+z0−bi|2 = ∥Az − b∥2

where

A :=

a
T
1 1
...

aTK 1

 b :=

 b1
...
bK


The Optimization Problem is simply:

min
z∈Rn

∥Az − b∥2
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Linear Least Squares (Early Machine Learning)

Boring/Conservative/Grumpy (Monarchist).

One of the greatest mathematicians

� Professor of Astronomy in Göttingen

� Motto: “pauca sed matura” (few but ripe)

Discovered

� Gaussian Distributions

� Gauss’ Law (collaboration with Weber)

� Non-Euclidean Geometry (maybe)

� Least Squares (maybe)

Legendre published the first solution to the Least Squares problem in 1805

� In typical fashion, Carl Friedrich Gauss claimed to have solved the problem
in 1795 and published a more rigorous solution in 1809.

� This more rigorous solution first introduced the normal probability
distribution (or Gaussian distribution)



Solution to the Least Squares Problem
An Unconstrained Optimization Problem

The Least Squares Problem is:

min
z∈Rn

h(z) := ∥Az − b∥2

where

A :=

a
T
1 1
...

aTK 1

 b :=

 b1
...
bK


Least squares problems are easy-ish to solve.

• If z∗ minimizes h(z), then ∇zh(z
∗) = 0

∇zh(z
∗) = 0 ↔ z∗ = (ATA)−1AT b

Note that A is assumed to be skinny.

• More rows than columns (i.e. More data points than inputs).

• Don’t need YALMIP to solve this one...
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Machine Learning (modern least squares)
Classification and Support-Vector Machines

In Classification we have inputs (data) (xi), each of which has a binary label
(yi ∈ {−1,+1})
• yi = +1 means the output of xi belongs to group 1

• yi = −1 means the output of xi belongs to group 2

We want to find a rule (a classifier) which takes
the data x and predicts which group it is in.

• Our rule has the form of a function
f(x) = wTx− b. Then
▶ x is in group 1 if f(x) = wTx− b > 0.
▶ x is in group 2 if f(x) = wTx− b < 0.

Question: How to find the best w and b??
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Figure: We want to find a rule
which separates two sets of data.
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Machine Learning: Classification and SVM
Separating Hyperplanes

Definition 1.

• A Hyperplane is the generalization of the concept of line/plane to multiple
dimensions. {x ∈ Rn : wTx− b = 0}

• Half-Spaces are the parts above and below a Hyperplane.

{x ∈ Rn : wTx− b ≥ 0} OR {x ∈ Rn : wTx− b ≤ 0}
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Machine Learning
Classification and Support-Vector Machines

We want to separate the data into disjoint half-spaces and maximize the
distance between these half-spaces

Variables: w ∈ Rn and b define the hyperplane
Constraint: Each datum has the right label.

• wTx− b > 1 when yi = +1 and
wTx− b < −1 when yi = −1

• Alternatively: yi(w
Txi − b) ≥ 1.

These two constraints are Equivalent.

Figure: Maximizing the distance
between two sets of Data

Objective: The distance between Hyperplanes {x : wTx− b = 1} and
{x : wTx− b = −1} is

f(w, b) = 2
1√
wTw
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Machine Learning
Hard and Soft Margin SVM

Hard Margin SVM solves

min
w∈Rp,b∈R

1

2
wTw, subject to

yi(w
Txi − b) ≥ 1, ∀i = 1, ...,K.

Soft Margin SVM
The hard margin problem can be relaxed to
maximize the distance between hyperplanes
PLUS the magnitude of classification errors

min
w∈Rp,b∈R

1

2
∥w∥2+c

n∑
i=1

max(0, 1−(wTxi−b)yi).

This is unconstrained optimization

• Constraints become penalties!
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Soft Margin SVM Problem
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Figure: Data separation using
soft-margin metric and distances
to associated hyperplanes

Link: Repository of Interesting Machine Learning Data Sets
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MAX-CUT: A Classic Integer Programming Example
binary variables and ‘or’ constraints

Optimization of Nodes and Edges.
• We want to assign each node to group 1 or Group 2.
• We get paid wij dollars for putting node i and node j in different groups.

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index xi = −1 or xi = 1 to maximize profit.
• The profit if xi and xj do not share the same index is wij .
• No profit if they share an index is 0
• The weights wij are all known.
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MAX-CUT
What are the decision variables?

Goal: Assign each node i an index xi = −1 or xj = 1 to maximize overall cost.

Variables: x ∈ {−1, 1}n
• Referred to as Integer Variables or Binary
Variables.

• Binary constraints can be incorporated explicitly:

x2
i = 1

Integer/Binary variables may be declared directly in YALMIP:
> x = intvar(n);

> y = binvar(n);
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MAX-CUT
Formulating the Objective Function

Question: How do we use integer variables to define the objective?

Answer: We use the trick:

• (1− xixj) = 0 if xi and xj have the same sign
(Together).

• (1− xixj) = 2 if xi and xj have the opposite sign
(Apart).

Then the objective function is

min
1

2

∑
i,j

wij(1− xixj)

The optimization problem is the integer program:

max
x2
i=1

1

2

∑
i,j

wij(1− xixj)
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MAX-CUT

The optimization problem is the integer program:

max
x2
i=1

1

2

∑
i,j

wij(1− xixj)

Consider the MAX-CUT problem with 5 nodes

w12 = w23 = w45 = w15 = w34 = .5 and w14 = w24 = w25 = 0

where wij = wji.

An Optimal Cut IS:

• x1 = x3 = x4 = 1

• x2 = x5 = −1

This cut has objective value

f(x) = 2.5−.5x1x2−.5x2x3−.5x3x4−.5x4x5−.5x1x5 = 4

1

1

2

3 4

5

Figure: An Optimal Cut
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The Knapsack Problem
Formulate the Optimization Problem

Suppose you have a knapsack (backpack), into which you can fit 12kg of stuff.

• You are given a list of possible items to place in the knapsack, along with
the value (in $) of each item.

• For Example:
Item Weight (kg) Value ($)
gloves 1 4
coat 13 200
pants 6 4
underthings 1 2
socks 1 1
shirt 5 2

• The objective is to stuff as much value into the knapsack as possible.

Question: How to formulate the mathematical optimization problem?
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Optimization with Dynamics
Open-Loop Case (aka Dynamic Programming or Model Predictive Control)

Objective Function: Lets minimize a quadratic cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: The sequence of states x(k), and inputs, u(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
x(0) = 1

Optimization Formulation of DP:

min
x,u

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

x(0) = 1
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Optimization with Dynamics

Dynamic Programming has been around since the 1950’s and can be solved
recursively using Bellman’s equation

� Actually, a nested sequence of optimization problems.

� Solution relies on the “Principle of Optimality”

� The principle of Optimality says that if we start anywhere along the
optimal trajectory, that solution will still be optimal if we re-started the
optimization problem from that point.

� Implies that the optimal input (for separable objectives) is always a
function of the current state.

� The principle of optimality is also what underlies Djikstra’s algorithm

� Djikstra’s algorithm is what enables internet packet routing and the
route-finding in Google (Apple) maps.



Optimization with Dynamics
Closed-Loop Case (LQR)

Objective Function: Lets minimize a quadratic Cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: We want to find the gain matrix, K, so that u(k) = Kx(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
u(k) = Kx(k), x(0) = 1

Optimization Formulation of LQR:

min
K

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

u(k) = Kx(k), x(0) = 1

Question: Are the Closed-Loop and Open-Loop Problems Equivalent?
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Optimization with Dynamics

LQR stands for Least Quadratic Regulator

� Least Quadratic refers to the quadratic cost function

� Regulator refers to feedback

By Equivalent, can we assume the optimal input is a static function of the current
state?

� Bellman’s equation says the optimal input for separable objectives is
always a function of the current state.

� In the quadratic case, the resulting function is static



Equivalent Optimization Problems
There are many equivalent ways of formulating the same problem

Definition 2.

Two optimization problems are Equivalent if a solution (algorithm/black box)
to one can be used to construct a solution to the other.

Trick 1: Equivalent Objective Functions

Problem 1: min
x

f(x) subject to ATx ≥ b

Problem 2: min
x

10f(x)− 12 subject to ATx ≥ b

Problem 3: max
x

1

f(x)
subject to ATx ≥ b

In this case x∗
1 = x∗

2 = x∗
3. Proof:

• For any x ̸= x∗
1 (both feasible), since x∗

1 is optimal, we have f(x) > f(x∗
1).

Thus 10f(x)− 12 > 10f(x∗
1)− 12 and 1

f(x) <
1

f(x∗
1)
. i.e x is suboptimal

for all.
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Formulating Optimization Problems
Equivalence in Variables

Trick 2: Invertible Change of Variables

Problem 1: min
y

f(y) subject to AT y ≥ b

Problem 2: min
x

f(Tx+ c) subject to (TTA)Tx ≥ b−AT c

Here y∗ = Tx∗ + c and x∗ = T−1(y∗ − c).

• Proof hint: Given y ̸= Tx∗ + c, show f(y) > f(Tx∗ + c).

Trick 3: Variable Separability (e.g. Dynamic Programming)

Problem 1: min
x,y

f(x) + g(y) subject to AT
1 x ≥ b1, A

T
2 y ≥ b2

Problem 2: min
w

f(w) subject to AT
1 w ≥ b1

Problem 3: min
z

g(z) subject to AT
2 z ≥ b2

Then x∗ = w∗ and y∗ = z∗.

• Neither feasibility nor minimality are coupled (Objective fn. is Separable).
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Equivalent Optimization Problems
Constraint Equivalence

Trick 4: Constraint/Objective Equivalence

Problem 1: min
x

f(x) subject to g(x) ≤ 0

Problem 2: min
y,t

t subject to g(y) ≤ 0, t ≥ f(y)

Here y∗ = x∗ and t∗ = f(x∗).

Some other Equivalences:

• Redundant Constraints
▶ {x ∈ R : x > 1} vs. {x ∈ R : x > 1, x > 0}

• Polytopes (Vertices vs. Hyperplanes)
▶ {x ∈ Rn : x =

∑
i Aiαi,

∑
i αi = 1} vs. {x ∈ Rn : Cx > b}

Conclusion: Many different ways to represent the same optimization problem.
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Geometric vs. Functional Constraints
General Theory of Equivalent Optimization Problems

These Problems are all equivalent:

The Classical Representation:
min
x∈Rn

f(x) : subject to

gi(x) ≤ 0 i = 1, · · · k
The Geometric Representation is:

min
x∈Rn

f(x) : subject to x ∈ S

where S := {x ∈ Rn : gi(x) ≤ 0, i = 1, · · · , k}.

The Pure Geometric Representation (x is eliminated!):
min
γ

γ : subject to

Sγ ̸= ∅ (Sγ has at least one element)

where Sγ := {x ∈ Rn : γ − f(x) ≥ 0, gi(x) ≤ 0, i = 1, · · · , k}.

Proposition: Optimization is only as hard as determining feasibility!
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Geometric vs. Functional Constraints

In the pure geometric interpretation, we are finding the smallest γ such that

there exists a feasible point, x with f(x) ≤ γ



Bisection: Optimization by testing feasibility
Power of the magic 8-ball

Optimization Problem:

γ∗ = max
γ

γ :

subject to Sγ ̸= ∅

Bisection Algorithm (Convexity???):

1 Initialize infeasible γu = b

2 Initialize feasible γl = a

3 Set γ = γu+γl

2

5 If Sγ feasible, set γl =
γu+γl

2

4 If Sγ infeasible, set γu = γu+γl

2

6 k = k + 1

7 Goto 3

Then γ∗ ∈ [γl, γu] and |γu − γl| ≤ b−a
2k

.

Bisection with oracle also solves the
Primary Problem. (min γ : Sγ = ∅)

γ
L

γ
u

γ
1

γ
2

S
γ
=∅

γ
4 γ

3

S
γ
≠∅

S
γ
≠∅

γ
5

S
γ
=∅

S
γ
≠∅

S
γ
≠∅

S
γ
≠∅
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How Hard is an Optimization Problem?
We define “Hard” using Computational Complexity

In Computer Science, we focus on Complexity of the PROBLEM

• NOT complexity of the algorithm.

On a Turing machine, the # of steps is a fn of
problem size (number of variables)

• NL: A logarithmic # (SORT)

• P: A polynomial # (LP)

• NP: A polynomial # for verification (TSP)

• NP HARD: at least as hard as NP (TSP)

• NP COMPLETE: A set of Equivalent* NP
problems (MAX-CUT, TSP)

• EXPTIME: Solvable in 2p(n) steps.
p polynomial. (Chess)

• EXPSPACE: Solvable with 2p(n) memory.

*Equivalent means there is a polynomial-time reduction from one to the other.
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How Hard is Optimization?

The Classical Representation:

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0 i = 1, · · · k
hi(x) = 0 i = 1, · · · k

Answer: Easy (P) if f, gi are all Convex and hi are affine.

The Geometric Representation:

min
x∈Rn

f(x) : subject to x ∈ S

Answer: Easy (P) if f is Convex and S is a Convex Set.

The Pure Geometric Representation:

max
γ,x∈Rn

γ : subject to

(γ, x) ∈ S′

Answer: Easy (P) if S′ is a Convex Set.
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Convex Functions

Definition 3 (Convexity of a Function).

A Function (objective or constraint) is Convex if
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all λ ∈ [0, 1].

Useful Facts:
• eax, ∥x∥ are convex. xn (n ≥ 1 or n ≤ 0), − log x are convex on x ≥ 0
• If f1 is convex and f2 is convex, then f3(x) := f1(x) + f2(x) is convex.
• A f is convex iff the Hessian ∇2f(x) is positive semidefinite for all x.
• If f1, f2 are convex, then f3(x) := max(f1(x), f2(x)) is convex.
• If f1, f2 are convex, and f1 is increasing, then f3(x) := f1(f2(x)) is convex.
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Convex Sets

Definition 4 (Convexity of a Set).

A Set (of feasible points) is Convex if for any x, y ∈ Q,

{µx+ (1− µ)y : µ ∈ [0, 1]} ⊂ Q.

The line connecting any two points lies in the set.

Facts:
• If function g is convex, the feasible set, S = {x : g(x) ≤ 0}, is also convex.
• The intersection of convex sets is convex.

▶ If S1 and S2 are convex, then S2 := {x : x ∈ S1, x ∈ S2} is convex.
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Convex Sets

An optimization problem is convex if the objective and set of feasible points
are both convex.

Pop Quiz:

min
x,y∈R2

f(x, y) = x2 − 3xy + y2 :

g(x, y) = 1− x2 − y2 ≥ 0

h(x, y) = x− y = 0

Question: Is this convex optimization?



Descent Algorithms (Why Convex Optimization is Easy)
Unconstrained Optimization – Just solve ∇f(x) = 0

All descent algorithms are iterative, with a search direction (∆x ∈ Rn) and step
size (t ≥ 0). xk+1 = xk + t∆x

Gradient Descent

∆x = −∇f(x)

Newton’s Algorithm:

∆x = −(∇2f(x))−1∇f(x)

Tries to solve the equation ∇f(x) = 0.

Both converge for sufficiently small step size.
M. Peet Lecture 02: Optimization 26 / 42



Descent Algorithms (Why Convex Optimization is Easy)
Unconstrained Optimization – Just solve ∇f(x) = 0

All descent algorithms are iterative, with a search direction (∆x ∈ Rn) and step
size (t ≥ 0). xk+1 = xk + t∆x

Gradient Descent

∆x = −∇f(x)

Newton’s Algorithm:

∆x = −(∇2f(x))−1∇f(x)

Tries to solve the equation ∇f(x) = 0.

Both converge for sufficiently small step size.
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Descent Algorithms (Why Convex Optimization is
Easy)

� If ∇f(x) = 0, then f has a minimum or maximum at x.

� In unconstrained optimization, the solution will occur at this inflection
point.

� For a convex function, there is only one point where ∇f(x) = 0, which is
the global minimum.

� For constrained problems, we have KKT conditions – see the lecture
notes...



Descent Algorithms
Dealing with Constraints

Method 1: Gradient Projection

Figure: Must project step (t∆x) onto feasible Set

Method 2: Barrier Functions

min
x

f(x) + log(g(x))

Converts a Constrained problem to an unconstrained problem.
(Interior-Point Methods)
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Non-Convexity and Local Optima

1. For convex optimization problems, Descent Methods always find the global
optimal point.

2. For non-convex optimization, Descent Algorithms may get stuck at local
optima.
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Important Classes of Optimization Problems
Linear Programming

Linear Programming (LP)

min
x∈Rn

cTx : subject to

Ax ≤ b

A′x = b′

• EASY: Simplex/Ellipsoid Algorithm (P)

• Can solve for >10,000 variables

2 - 13 Convexity and Duality S. Lall, Stanford 2004.08.30.01

Linear Programming (LP)

In a linear program, the objective and constraint functions are affine.

minimize cTx

subject to Ax = b

Cx ≤ d

Example

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20

Link: A List of Solvers, Performance and Benchmark Problems
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Important Classes of Optimization Problems

� The Ellipsoidal algorithm solves LP in polynomial time.

� The Simplex algorithm is not actually worst-case polynomial time.

� However, the simplex algorithm outperforms the ellipsoidal algorithm in
almost all cases.

http://plato.asu.edu/bench.html


Important Classes of Optimization Problems
Quadratic Programming

Quadratic Programming (QP)

min
x∈Rn

xTQx+ cTx : subject to

Ax ≤ b

Quadratically Constrained Quadratic Programming (QCQP)

min
x∈Rn

xTQx+ cTx : subject to

xTPx+ dTx ≤ f

• EASY (P): If Q,P ≥ 0.

• HARD (NP-Hard): Otherwise
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Important Classes of Optimization Problems
Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP)

min
x∈Rn

cTx : subject to

Ax ≤ b

xi ∈ Z i = 1, · · ·K

• HARD (NP-Hard)

Mixed-Integer NonLinear Programming (MINLP)

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0

xi ∈ Z i = 1, · · ·K

• Very Hard
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Important Classes of Optimization Problems

� Gurobi will allow you to solve very large MILPs.

� However, the result may not be truly optimal.

Pop Quiz: Classify the following optimization problems

min
x,y∈R2

x2 − 3xy + y2 : 1− x2 − y2 ≥ 0, h(x, y) = x− y = 0

min
x,y∈R2

x+ y : x+ 3y ≤ 4, 4− 3x ≥ −1

min
x,y∈{−1,0,1}

x+ y : x+ 3y ≤ 4, 4− 3x ≥ −1

min
x,y∈{−1,0,1}

x2 − 3xy + y2 : 1− x2 − y2 ≥ 0, h(x, y) = x− y = 0

Question: which are convex?



New Concept: Relaxations and Tightenings
How to Approximate a Non-Convex Problem (Using a Convex Approximation)

Original Problem:
γ∗ := min

x∈R
f(x) : g(x) ≥ 0 (FS)

Definition 5.

In a Relaxation, we remove or loosen
one of the constraints.

γ∗
R := min

x∈R
f(x) : g(x) ≥ −1

• γ∗
R ≤ γ∗

• Solution x∗ no longer feasible.

• An Outer Approximation of FS.

Definition 6.

In a Tightening, we add new
constraints.

γ∗
T := min

x∈R
f(x) : g(x) ≥ 1

• γ∗
T ≥ γ∗

• Solution x∗ is still feasible.

• An Inner Approximation of FS.
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New Concept: Relaxations and Tightenings

� FS stands for Feasible Set

– The set of values of x which satisfy the constraints

� Relaxations Increase the size of the feasible set

– The solution may not be feasible for the original problem

� Tightenings Decrease the size of the feasible set

– The solution may not be optimal for the original problem



Relaxations and Tightenings
Examples

MAX-CUT: Original Problem

max
x2
i=1

1

2

∑
i,j

wi,j(1− xixj)

MAX-CUT: Relaxed Problem

max
x2
i≤1

1

2

∑
i,j

wi,j(1− xixj)

Solution: γ∗ = 4

• x1 = x3 = x4 = 1

• x2 = x5 = −1

Solution: γ∗
R = 4

• x2 = x5 = 1

• x1 = x4 = −1

• x3 = 0
YALMIP Code:
> x = sdpvar(5,1);

> F=[-1 <= x <= 1];

> obj=2.5-.5*x(1)*x(2)-.5*x(2)*x(3)

> -.5*x(3)*x(4)-.5*x(4)*x(5)-.5*x(1)*x(5);

> optimize(F,-obj);

> value(x);

Link: Download CPLEX (Need version 12.10 or earlier)
Link: Download GUROBI
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Relaxations and Tightenings

Note the solution to the relaxed Max Cut problem is not feasible for the original

problem.

https://www.ibm.com/academic/topic/data-science
https://www.gurobi.com/features/academic-named-user-license/


A Third Option: Duality
A Cool Word, but Meaning is Vague

Definition 7.

Two Optimization Problems are Dual if any feasible solution to one has
objective value which bounds the solution to the other problem.

Primal Problem:

min
x∈R

f(x) : x ∈ S

Dual Problem:

max
y∈R

fD(y) : y ∈ SD

Relationship:
• if y ∈ SD, then fD(y) ≤ f(x) for any x ∈ S.
• if x ∈ S, then f(x) ≥ fD(y) for any y ∈ SD.
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Lagrangian Duality

min
x∈F

f0(x) : subject to fi(x) ≥ 0 i = 1, · · · k

Note that
max
α>0

−αfi(x) =

{
∞ fi(x) < 0

0 otherwise

Equivalent Form:
γ∗ = min

x∈F
max
αi>0

f0(x)−
∑
i

αifi(x) = min
x∈F

max
αi>0

L(x, α)

The function L(x, α) = f0(x)−
∑

i αifi(x) is called the Lagrangian.

The Dual Problem switches the min-max:
λ∗ = max

αi>0
min
x∈F

f0(x)−
∑
i

αifi(x)

Or if we define g(α) = minx∈F f0(x)−
∑

i αifi(x),

λ∗ = max
αi>0

g(α)

For convex optimization, λ∗ = γ∗. However, x∗ ̸= α∗.
Note: We always have maxx miny g(x, y) ≤ miny maxx g(x, y) (2-player game).
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Lagrangian Duality

The property (Weak Duality)

max
x

min
y

g(x, y) ≤ min
y

max
x

g(x, y)

always holds for smooth functions and when equality holds can be interpreted as
a Nash equilibrium (See window drawings in “A Beautiful Mind”).

The player which moves second always wins. Note the second player here is the
inner optimization problem (min on LHS and max on RHS). To verify, just use
the function

g(x, y) = xy



Strong vs. Weak Duality (In the Lagrangian Sense)

Primal Problem:

γ∗ = min
x∈R

f(x) : x ∈ S

Dual Problem:

λ∗ = max
y∈R

fD(y) : y ∈ SD

Definition 8.

Strong Duality holds if λ∗ = γ∗. Weak Duality holds if λ∗ < γ∗.

• Strong Duality holds if f , S are convex and S has non-empty interior.

• Weak Duality always holds.

• The Lagrangian Dual Problem is ALWAYS Convex.
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Convex Cones: What Does Positivity Even Mean?

Question: What does f(x) ≥ 0 mean.

• What does y ≥ 0 mean?

Definition 9.

A set is a cone if for any x ∈ Q,

{µx : µ ≥ 0} ⊂ Q.

The cone, Q, is pointed if 0 ∈ Q.

Examples:

• Positive Orthant: y ≥ 0 if yi ≥ 0 for i = 1, · · · , n.
• Half-space: y ≥ 0 if aT y ≥ 0.

• Intersection of Half-spaces: y ≥ 0 if Ay ≥ 0 (i.e. aTi y ≥ 0).

• Positive Matrices: P ≥ 0 if xTPx ≥ 0 for all x ∈ Rn.

• Positive Functions: f ≥ 0 if f(x) ≥ 0 for all x ∈ Rn.
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Generalized Inequalities and Convex Cones

So far, all inequalities have used the positive orthant cone

min
x∈F

f0(x) : subject to fi(x) ≥ 0 i = 1, · · · k

Question: Can we generalize duality to other types of inequality constraints?

Question: What is an inequality? What does ≥ 0 mean?

• An inequality implies a partial ordering:
▶ x ≥ y if x− y ≥ 0

• Any convex cone, C defines a partial ordering:
▶ x− y ≥ 0 if x− y ∈ C

• The ordering is only partial because x ̸≤ 0 does not imply x ≥ 0
▶ −x ̸∈ C does not imply x ∈ C.
▶ x may be indefinite.

Question: Which of the cones on the last slide define partial orderings?
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Dual Cones and Generalized Duality (with inner-products)

Geometry of the dual problem is defined by an inner product, ⟨x, y⟩

Definition 10.

Two Sets are Dual (X and Y ) if x ∈ X implies ⟨x, y⟩ ≥ 0 for all y ∈ Y .

Interpretation: For every point y ∈ Y , the angle between y and every point in
X is less than 90◦ (and vice-versa holds be definition).

For optimization problem:

min
x∈F

f(x) : subject to gi(x) ≥ 0 i = 1, · · · ,K

If x ≥ 0 ↔ x ∈ C for cone C, then Lagrangian duality is now

min
x∈F

max
yi≥∗0

f(x)−
K∑
i=1

⟨yi, gi(x)⟩ ≥ max
yi≥∗0

min
x∈F

f(x)−
K∑
i=1

⟨yi, gi(x)⟩

where y ≥∗ 0 means y ∈ C∗ := {y : ⟨y, x⟩ ≥ 0 for allx ∈ C}.

M. Peet Lecture 02: Optimization 39 / 42



Self Dual Cones - LP and SDP

Self Dual Cones: Sometimes ≥ 0 and ≥∗ mean the same thing – i.e. C = C∗.

• Positive Orthant: y ≥ 0 if yi ≥ 0 for
i = 1, · · · , n.
▶ ⟨x, y⟩ = xT y = ∥x∥∥y∥ cos θ.
▶ xT y ≥ 0 for all x ≥ 0 if and only if y ≥ 0.

• Positive Matrices: P ≥ 0 if xTPx ≥ 0 for all x ∈ Rn.
▶ ⟨X,Y ⟩ = trace(XY ) =

∑
ij XijYij

▶ X ≥ 0 ↔ X = X 1
2
XT

1
2
, so if ⟨X,Y ⟩ = trace(XY ) = trace(XT

1
2
Y X 1

2
) ≥ 0

for any X 1
2
, we require Y ≥ 0.

This is why we refer to both primal and dual versions of SDP and LP.
• Their dual problems are of the same form.
• Allows Primal-Dual Algorithms
• Faster Convergence
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Lagrangian Duality Examples
Two Ways to Solve the Same Problem

Primal LP:

max
x∈R

cTx :

Ax ≤ b

x ≥ 0

Dual LP:

min
y∈R

bT y :

AT y ≥ c

y ≥ 0

g(α) = max
x≥0

cTx−αT (Ax− b) = max
x≥0

(c−ATα)Tx+αT b =

{
bTα ATα ≥ c

∞ otherwise

Primal SDP:

min
x∈R

m∑
i=1

cixi

X =

m∑
i=1

Fixi − F0 ≥ 0

Dual SDP:

max
y∈R

trace(F0Y ) :

trace(FiY ) = ci (i = 1, · · · ,m)

Y ≥ 0

The trace notation simply means trace(FY ) =
∑

i,j FijYij .
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Lagrangian Duality Examples

max
x≥0, Ax−b≤0

cTx

= max
x≥0

min
α≥0

cTx− αT (Ax− b)

≤ min
α≥0

max
x≥0

cTx− αT (Ax− b)

= min
α≥0

max
x≥0

(cT − αTA)x+ αT b

= min
α≥0, cT−αTA≤0

αT b

= min
α≥0, c≤ATα

bTα



Next Time:

More on Positive Matrices, SDP and LMIs
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