LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 03: Relaxations, Duality, Cones, Positive Matrices, LMIs

Linear Algebra Review: Matrix Decompositions

Definition 1 (Eigenvalue/Eigenvector Decomposition (EED)).

$P \in \mathbb{R}^{n \times n}$, is real non-defective (diagonalizable) if there exists invertible $T \in \mathbb{R}^{n \times n}$ and a diagonal $\Lambda \in \mathbb{R}^{n \times n}$ such that

$$
P=T \Lambda T^{-1}
$$

Not all Matrices have an EED: e.g. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
Matlab command: eig

Theorem 1 (Jordan Normal Form).

For any $P \in \mathbb{R}^{n \times n}$, there exist Jordan blocks, J_{i} (each with associated eigenvalue λ_{i}), and an invertible $T \in \mathbb{R}^{n \times n}$ such that

$$
P=T J T^{-1}, J=\left[\begin{array}{ccc}
J_{1} & & \\
& \ddots & \\
& & J_{n}
\end{array}\right] \quad J_{i}=\lambda_{i} I+N, \quad N=\left[\begin{array}{ccccc}
0 & & & \\
& 0 & 1 & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right]
$$

Matlab command: jordan
$N \in \mathbb{R}^{n \times n}$ is Nilpotent, so $N^{n}=0$.

Lecture 03

Linear Algebra Review: Matrix Decompositions

jordan requires symbolic math toolbox and is not reliable.

Linear Algebra Review: Matrix Decompositions

Theorem 1 (Jordan Normal Form). For any $P \in \mathbb{R}^{n \times n}$, there exist Jordan blocks, J_{c} (each with associated eigervalue λ). and an imertible $T \in \mathbb{R}^{* \times n}$ such that

Matlab command: jordas $\quad N \in \mathbb{R}^{11 \times n}$ is N Nipotent, so $N^{n}=0$.

Linear Algebra Review: Symmetric and Unitary Matrices

Definition 2.

A square matrix $P \in \mathbb{R}^{n \times n}$ is Symmetric, denoted $P \in \mathbb{S}^{n}$ if $P=P^{T}$.

$$
P=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \quad P=\left[\begin{array}{ccc}
1 & 2 & 3 \\
*^{T} & 4 & 5 \\
*^{T} & *^{T} & 6
\end{array}\right]
$$

- Symmetric Matrices have Real Eigenvalues: $\left\{\lambda: P x=\lambda x, x \in \mathbb{R}^{n}\right\} \subset \mathbb{R}$

Definition 3.

A matrix U is Unitary (orthogonal) if $U^{-1}=U^{T}$.
Unitary Matrices have the pleasant property that $\|U x\|=\|x\|$ for any $x \in \mathbb{R}^{n}$.

- e.g. Rotation Matrices $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.

Symmetric Matrices can be diagonalized by a Unitary matrix.

$$
P=U \Lambda U^{T} \quad \text { or } \quad U^{T} P U=\Lambda \quad \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right] \quad \text { (} \lambda_{i} \text { are eigenvalues) }
$$

Linear Algebra Review: Singular Value Decomposition

For ANY non-symmetric matrices, $P=U \Sigma V^{T}$, with U, V unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ diagonal, positive.

- This is called the Singular Value Decomposition (SVD).
- $\sigma_{i} \geq 0$ (Singular Values) are the square roots of the eigenvalues of $P^{T} P$.
- The maximum σ_{i} is denoted $\bar{\sigma}(P)$. Note that $\bar{\sigma}(P)=\max _{x} \frac{\|P x\|}{\|x\|}$.

Matlab Code: > [U,S,V]=svd([1 2 3;2 4 5;3 5 6]);

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-.33 & -.74 & -.59 \\
-.59 & -.33 & .74 \\
-.74 & .59 & -.33
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}
11.34 & 0 & 0 \\
0 & .52 & 0 \\
0 & 0 & .17
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{ccc}
-.33 & .74 & -.59 \\
-.59 & .33 & .74 \\
-.74 & -.59 & -.33
\end{array}\right]^{T}}_{V^{T}}
$$

NOTE: This is not quite the same as Diagonalization! Unless....
Matlab Code: > [U,S]=schur([1 2 3;2 4 5;3 5 6]);
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]=\underbrace{\left[\begin{array}{ccc}-.33 & -.74 & -.59 \\ -.59 & -.33 & .74 \\ -.74 & .59 & -.33\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}11.34 & 0 & 0 \\ 0 & -.52 & 0 \\ 0 & 0 & .17\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{ccc}-.33 & -.74 & -.59 \\ -.59 & -.33 & .74 \\ -.74 & .59 & -.33\end{array}\right]^{T}}_{U^{T}}$

Linear Algebra Review: More Matrix Decompositions

Lemma 4 (QR Decomposition).

For any matrix $P \in \mathbb{R}^{n \times m}$, there exists a matrix Q where $Q^{T} Q=I$ and upper triangular matrix, R such that $P=Q R$.

Lemma 5 (Schur Decomposition).

For any square matrix $P \in \mathbb{R}^{n \times n}$, there exists a unitary matrix U and upper triangular matrix, U such that $P=V U V^{T}$.

Lemma 6 (LU Decomposition).

For any nonsingular square matrix $P \in \mathbb{R}^{n \times n}$, there exist a permutation matrix, T; lower triangular matrix, L; and upper triangular matrix, U such that

$$
T P=L U
$$

Lemma 7 (Cholesky Decomposition).

Suppose $P \in \mathbb{S}^{n \times n}$ has all strictly positive eigenvalues. Then there exist a lower triangular matrix, L such that

$$
P=L L^{T}
$$

Matrix Positivity - Definition

Try not to define positivity using eigenvalues. (Eigenvalues don't add)
Definition 8.
A symmetric matrix $P \in \mathbb{S}^{n}$ is Positive Semidefinite, denoted $P \geq 0$ if

$$
x^{T} P x \geq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

Definition 9.

A symmetric matrix $P \in \mathbb{S}^{n}$ is Positive Definite, denoted $P>0$ if

$$
x^{T} P x>0 \quad \text { for all } x \neq 0
$$

- P is Negative Semidefinite if $-P \geq 0$
- P is Negative Definite if $-P>0$
- A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.

How to Tell if a Matrix is Positive?

Lemma 10.

$P \in \mathbb{S}^{n}$ is positive definite if and only if all its eigenvalues are positive. In this case, the SVD and Unitary (Schur) Diagonalization are the same.

$$
\left[\begin{array}{lll}
4 & 1 & 2 \\
1 & 5 & 3 \\
2 & 3 & 6
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-.37 & .82 & -.44 \\
-.58 & -.58 & -.58 \\
-.73 & .04 & .69
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}
9.4 & 0 & 0 \\
0 & 3.4 & 0 \\
0 & 0 & 2.2
\end{array}\right]}_{\Lambda=\Sigma} \underbrace{\left[\begin{array}{ccc}
-.37 & .82 & -.44 \\
-.58 & -.58 & -.58 \\
-.73 & .04 & .69
\end{array}\right]^{T}}_{U^{T}=V^{T}}
$$

Lemma 11 (Sylvester's Criterion).

$P \in \mathbb{S}^{n}$ is positive definite iff all its leading principal minors are positive.

Lemma 12 (Diagonal Dominance).

If $P_{i i} \geq \sum_{j \neq i}\left|P_{i j}\right|$ for all i, then P is positive semidefinite.
Diagonal dominance is sufficient, but not necessary. e.g.

$$
\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]>0
$$

Lecture 03

Use Sylvester's Criterion to determine for which x, y

$$
\left[\begin{array}{ccc}
3-x & -(x+y) & 1 \\
-(x+y) & 4-y & 0 \\
1 & 0 & -x
\end{array}\right] \geq 0
$$

The leading principal minors are
$\operatorname{det}(3-x) \geq 0 \quad \operatorname{det}\left[\begin{array}{cc}3-x & -(x+y) \\ -(x+y) & 4-y\end{array}\right] \geq 0 \quad \operatorname{det}\left[\begin{array}{ccc}3-x & -(x+y) & 1 \\ -(x+y) & 4-y & 0 \\ 1 & 0 & -x\end{array}\right] \geq 0$
Which gives the following inequalities

$$
\begin{array}{r}
f_{1}(x, y)=3-x \geq 0 \quad f_{2}(x, y)=(3-x)(4-y)-(x+y)^{2} \geq 0 \\
f_{3}(x, y)=-x\left((3-x)(4-y)-(x+y)^{2}\right)-(4-y) \geq 0
\end{array}
$$

Although f_{3} is not convex, the feasible set is convex, as expected.

Facts about Positive Matrices

Fact: If T is invertible, then $P>0$ is equivalent to $T^{T} P T>0$.

- $P>0 \rightarrow(T x)^{T} P(T x)=x^{T} T^{T} P T x>0$
- $T^{T} P T>0 \rightarrow\left(T^{-1} x\right)^{T} T^{T} P T\left(T^{-1} x\right)=x^{T} P x>0$

Fact: A Positive Definite matrix is invertible: $P^{-1}=U \Sigma^{-1} U^{T}$.
Fact: The inverse of a positive definite matrix is positive definite: $\Sigma^{-1}>0$ Fact: For any $P>0$, there exists a positive square root, $P^{\frac{1}{2}}>0$ where $P=P^{\frac{1}{2}} P^{\frac{1}{2}}$.
$P^{\frac{1}{2}}=U \Sigma^{\frac{1}{2}} U^{T}>0 \quad P^{\frac{1}{2}} P^{\frac{1}{2}}=U \Sigma^{\frac{1}{2}} U^{T} U \Sigma^{\frac{1}{2}} U^{T}=U \Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}} U^{T}=U \Sigma U^{T}=P$

Building Linear Matrix Inequalities

Fact: $\left[\begin{array}{cc}X & Y \\ Y^{T} & Z\end{array}\right]>0$, implies both $X>0$ and $Z>0$.
Proof: True since $\left[\begin{array}{l}0 \\ z\end{array}\right]^{T}\left[\begin{array}{cc}X & Y \\ Y^{T} & Z\end{array}\right]\left[\begin{array}{l}0 \\ z\end{array}\right]>0$ and $\left[\begin{array}{l}x \\ 0\end{array}\right]^{T}\left[\begin{array}{cc}X & Y \\ Y^{T} & Z\end{array}\right]\left[\begin{array}{l}x \\ 0\end{array}\right]>0$
Fact: $X>0$ and $Z>0$ is equivalent to $\left[\begin{array}{cc}X & 0 \\ 0 & Z\end{array}\right]>0$.
Proof: True since $x^{T} X x>0$ and $z^{T} Z z>0$ implies
$\left[\begin{array}{l}x \\ z\end{array}\right]^{T}\left[\begin{array}{cc}X & 0 \\ 0 & Z\end{array}\right]\left[\begin{array}{l}x \\ z\end{array}\right]=x^{T} X x+z^{T} Z z>0$.

Theorem 13 (Schur Complement).

$$
\left[\begin{array}{cc}
X & Y \\
Y^{T} & Z
\end{array}\right]>0 \Leftrightarrow\left[\begin{array}{cc}
X & 0 \\
0 & Z-Y^{T} X^{-1} Y
\end{array}\right]>0 \Leftrightarrow\left[\begin{array}{cc}
X-Y Z^{-1} Y^{T} & 0 \\
0 & Z
\end{array}\right]>0
$$

Diagonal Dominance: If X and Z are big enough, Y doesn't matter.

Leftover Factoids on Positive Matrices

Things which are true:

- $P>0$ and $Q>0$ implies $P+Q>0$.
- $P>0$ implies $\mu P>0$ for any positive scalar $\mu>0$.
- $M^{T} M \geq 0$ for any matrix, M.
- $P>0$ implies $M^{T} P M>0$ if nullspace of M is empty.

Things which are NOT TRUE (Fallacies):

1. A has positive eigenvalues implies $A+A^{T}>0$.
2. A has positive eigenvalues implies $x^{T} A x>0$ for all $x \neq 0$.
3. $P>0$ implies $T P T^{-1}>0$.
4. $P>0$ and $Q>0$ implies $P Q>0$.
5. If $P>0$ and T has positive eigenvalues, then $T^{T} P+P T>0$
6. If $P>0, Q>0$, and $R>0$, then $\left[\begin{array}{ll}P & Q \\ Q & R\end{array}\right]>0$.

Semidefinite Programming - Dual Form

```
    minimize trace CX
subject to trace F}\mp@subsup{F}{i}{}X=-\mp@subsup{c}{i}{}\quad\mathrm{ for all }
X\succeq0
```

- The variable X is a symmetric matrix
- $X \succeq 0$ is another way to say X is positive semidefinite
- The feasible set is the intersection of an affine set with the positive semidefinite cone

$$
\left\{X \in \mathbb{S}^{n} \mid X \succeq 0\right\}
$$

Recall trace $C X=\sum_{i, j} C_{i, j} X_{j, i}$.

SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & C+x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n} \preceq 0
\end{aligned}
$$

where $F_{0}, F_{1}, \ldots, F_{n}$ are symmetric matrices.

The inequality constraint is called a Linear Matrix Inequality (LMI); e.g.,

$$
\left[\begin{array}{ccc}
x_{1}-3 & x_{1}+x_{2} & -1 \\
x_{1}+x_{2} & x_{2}-4 & 0 \\
-1 & 0 & x_{1}
\end{array}\right] \preceq 0
$$

which is equivalent to

$$
\left[\begin{array}{ccc}
-3 & 0 & -1 \\
0 & -4 & 0 \\
-1 & 0 & 0
\end{array}\right]+x_{1}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]+x_{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \preceq 0
$$

Linear Matrix Inequalities

Linear Matrix Inequalities are often a Simpler way to solve control problems.
Common Form:

$$
\begin{aligned}
& \text { Find } X: \\
& \sum_{i} A_{i} X B_{i}+Q>0
\end{aligned}
$$

There are several very efficient LMI/SDP Solvers which interface with YALMIP:

- SeDuMi
- Fast, but somewhat unreliable.
- Link: http://sedumi.ie.lehigh.edu/
- LMI Lab (Part of Matlab's Robust Control Toolbox)
- Universally disliked, but you already have it.
- Link: http://www.mathworks.com/help/robust/lmis.html
- MOSEK (commercial, but free academic licenses available)
- Probably the most reliable
- Link: https://www.mosek.com/resources/academic-license

