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Linear Algebra Review: Matrix Decompositions

Definition 1 (Eigenvalue/Eigenvector Decomposition (EED)).

P ∈ Rn×n, is real non-defective (diagonalizable) if there exists invertible
T ∈ Rn×n and a diagonal Λ ∈ Rn×n such that

P = TΛT−1

Not all Matrices have an EED: e.g.

[
1 1
0 1

]
Matlab command: eig

Theorem 1 (Jordan Normal Form).

For any P ∈ Rn×n, there exist Jordan blocks, Ji (each with associated
eigenvalue λi), and an invertible T ∈ Rn×n such that

P = TJT−1, J =



J1

. . .

Jn


 Ji = λiI +N, N =




0 1
0 1

.
.
.

.
.
.

0 1
0




Matlab command: jordan N ∈ Rn×n is Nilpotent, so Nn = 0.
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Lecture 03

Linear Algebra Review: Matrix Decompositions

jordan requires symbolic math toolbox and is not reliable.



Linear Algebra Review: Symmetric and Unitary Matrices

Definition 2.

A square matrix P ∈ Rn×n is Symmetric, denoted P ∈ Sn if P = PT .

P =



1 2 3
2 4 5
3 5 6


 P =



1 2 3
∗T 4 5
∗T ∗T 6




• Symmetric Matrices have Real Eigenvalues: {λ : Px = λx, x ∈ Rn} ⊂ R

Definition 3.

A matrix U is Unitary (orthogonal) if U−1 = UT .

Unitary Matrices have the pleasant property that ∥Ux∥ = ∥x∥ for any x ∈ Rn.

• e.g. Rotation Matrices

[
cos θ sin θ
− sin θ cos θ

]
.

Symmetric Matrices can be diagonalized by a Unitary matrix.

P = UΛUT or UTPU = Λ Λ =



λ1 0 0

0
. . . 0

0 0 λn


 (λi are eigenvalues)

Matlab Code: > [U,S]=schur([1 2 3;2 4 5;3 5 6]);M. Peet Lecture 03: 3 / 13



Linear Algebra Review: Singular Value Decomposition

For ANY non-symmetric matrices, P = UΣV T , with U, V unitary and
Σ = diag(σ1, · · · , σn) diagonal, positive.
• This is called the Singular Value Decomposition (SVD).
• σi ≥ 0 (Singular Values) are the square roots of the eigenvalues of PTP .
• The maximum σi is denoted σ̄(P ). Note that σ̄(P ) = maxx

∥Px∥
∥x∥ .

Matlab Code: > [U,S,V]=svd([1 2 3;2 4 5;3 5 6]);


1 2 3
2 4 5
3 5 6


 =



−.33 −.74 −.59
−.59 −.33 .74
−.74 .59 −.33




︸ ︷︷ ︸
U



11.34 0 0
0 .52 0
0 0 .17




︸ ︷︷ ︸
Σ



−.33 .74 −.59
−.59 .33 .74
−.74 −.59 −.33



T

︸ ︷︷ ︸
V T

NOTE: This is not quite the same as Diagonalization! Unless....

Matlab Code: > [U,S]=schur([1 2 3;2 4 5;3 5 6]);


1 2 3
2 4 5
3 5 6


 =



−.33 −.74 −.59
−.59 −.33 .74
−.74 .59 −.33




︸ ︷︷ ︸
U



11.34 0 0
0 −.52 0
0 0 .17




︸ ︷︷ ︸
Λ



−.33 −.74 −.59
−.59 −.33 .74
−.74 .59 −.33



T

︸ ︷︷ ︸
UT
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Linear Algebra Review: More Matrix Decompositions

Lemma 4 (QR Decomposition).

For any matrix P ∈ Rn×m, there exists a matrix Q where QTQ = I and upper
triangular matrix, R such that P = QR.

Lemma 5 (Schur Decomposition).

For any square matrix P ∈ Rn×n, there exists a unitary matrix U and upper
triangular matrix, U such that P = V UV T .

Lemma 6 (LU Decomposition).

For any nonsingular square matrix P ∈ Rn×n, there exist a permutation matrix,
T ; lower triangular matrix, L; and upper triangular matrix, U such that

TP = LU

Lemma 7 (Cholesky Decomposition).

Suppose P ∈ Sn×n has all strictly positive eigenvalues. Then there exist a lower
triangular matrix, L such that

P = LLT
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Matrix Positivity - Definition

Try not to define positivity using eigenvalues. (Eigenvalues don’t add)

Definition 8.

A symmetric matrix P ∈ Sn is Positive Semidefinite, denoted P ≥ 0 if

xTPx ≥ 0 for all x ∈ Rn

Definition 9.

A symmetric matrix P ∈ Sn is Positive Definite, denoted P > 0 if

xTPx > 0 for all x ̸= 0

• P is Negative Semidefinite if −P ≥ 0

• P is Negative Definite if −P > 0

• A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.

M. Peet Lecture 03: 6 / 13



How to Tell if a Matrix is Positive?

Lemma 10.

P ∈ Sn is positive definite if and only if all its eigenvalues are positive.

In this case, the SVD and Unitary (Schur) Diagonalization are the same.

4 1 2
1 5 3
2 3 6


 =



−.37 .82 −.44
−.58 −.58 −.58
−.73 .04 .69




︸ ︷︷ ︸
U



9.4 0 0
0 3.4 0
0 0 2.2




︸ ︷︷ ︸
Λ=Σ



−.37 .82 −.44
−.58 −.58 −.58
−.73 .04 .69



T

︸ ︷︷ ︸
UT=V T

Lemma 11 (Sylvester’s Criterion).

P ∈ Sn is positive definite iff all its leading principal minors are positive.

Lemma 12 (Diagonal Dominance).

If Pii ≥
∑

j ̸=i |Pij | for all i, then P is positive semidefinite.

Diagonal dominance is sufficient, but not necessary. e.g.[
1 −2
−2 4

]
> 0
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How to Tell if a Matrix is Positive?

Use Sylvester’s Criterion to determine for which x, y 3− x −(x+ y) 1
−(x+ y) 4− y 0

1 0 −x

 ≥ 0.

2 - 18 Convexity and Duality S. Lall, Stanford 2004.08.30.01

The Feasible Set

For example

0 ≺




3− x1 −(x1 + x2) 1
−(x1 + x2) 4− x2 0

1 0 −x1




is equivalent to the polynomial
inequalities

0 < 3− x1

0 < (3− x1)(4− x2)− (x1 + x2)2

0 < −x1((3− x1)(4− x2)− (x1 + x2)2)− (4− x2)

The leading principal minors are

det(3− x) ≥ 0 det
[

3 − x −(x + y)
−(x + y) 4 − y

]
≥ 0 det

[
3 − x −(x + y) 1

−(x + y) 4 − y 0
1 0 −x

]
≥ 0

Which gives the following inequalities

f1(x, y) = 3− x ≥ 0 f2(x, y) = (3− x)(4− y)− (x+ y)2 ≥ 0

f3(x, y) = −x((3− x)(4− y)− (x+ y)2)− (4− y) ≥ 0

Although f3 is not convex, the feasible set is convex, as expected.



Facts about Positive Matrices

Fact: If T is invertible, then P > 0 is equivalent to TTPT > 0.

• P > 0 → (Tx)TP (Tx) = xTTTPTx > 0

• TTPT > 0 → (T−1x)TTTPT (T−1x) = xTPx > 0

Fact: A Positive Definite matrix is invertible: P−1 = UΣ−1UT .
Fact: The inverse of a positive definite matrix is positive definite: Σ−1 > 0
Fact: For any P > 0, there exists a positive square root, P

1
2 > 0 where

P = P
1
2P

1
2 .

P
1
2 = UΣ

1
2UT > 0 P

1
2P

1
2 = UΣ

1
2UTUΣ

1
2UT = UΣ

1
2Σ

1
2UT = UΣUT = P
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Building Linear Matrix Inequalities

Fact:

[
X Y
Y T Z

]
> 0, implies both X > 0 and Z > 0.

Proof: True since

[
0
z

]T [
X Y
Y T Z

] [
0
z

]
> 0 and

[
x
0

]T [
X Y
Y T Z

] [
x
0

]
> 0

Fact: X > 0 and Z > 0 is equivalent to

[
X 0
0 Z

]
> 0.

Proof: True since xTXx > 0 and zTZz > 0 implies[
x
z

]T [
X 0
0 Z

] [
x
z

]
= xTXx+ zTZz > 0.

Theorem 13 (Schur Complement).
[
X Y
Y T Z

]
> 0 ⇔

[
X 0
0 Z − Y TX−1Y

]
> 0 ⇔

[
X − Y Z−1Y T 0

0 Z

]
> 0

Diagonal Dominance: If X and Z are big enough, Y doesn’t matter.
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Leftover Factoids on Positive Matrices

Things which are true:

• P > 0 and Q > 0 implies P +Q > 0.

• P > 0 implies µP > 0 for any positive scalar µ > 0.

• MTM ≥ 0 for any matrix, M .

• P > 0 implies MTPM > 0 if nullspace of M is empty.

Things which are NOT TRUE (Fallacies):

1. A has positive eigenvalues implies A+AT > 0.

2. A has positive eigenvalues implies xTAx > 0 for all x ̸= 0.

3. P > 0 implies TPT−1 > 0.

4. P > 0 and Q > 0 implies PQ > 0.

5. If P > 0 and T has positive eigenvalues, then TTP + PT > 0

6. If P > 0, Q > 0, and R > 0, then

[
P Q
Q R

]
> 0.
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Semidefinite Programming - Dual Form

minimize traceCX

subject to traceFiX = −ci for all i

X ⪰ 0

• The variable X is a symmetric matrix

• X ⪰ 0 is another way to say X is positive semidefinite

• The feasible set is the intersection of an affine set with the positive
semidefinite cone {

X ∈ Sn | X ⪰ 0
}

Recall traceCX =
∑

i,j Ci,jXj,i.
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SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give

minimize cTx

subject to C + x1F1 + x2F2 + · · ·+ xnFn ⪯ 0

where F0, F1, . . . , Fn are symmetric matrices.

The inequality constraint is called a Linear Matrix Inequality (LMI); e.g.,

x1 − 3 x1 + x2 −1
x1 + x2 x2 − 4 0
−1 0 x1


 ⪯ 0

which is equivalent to

−3 0 −1
0 −4 0
−1 0 0


+ x1



1 1 0
1 0 0
0 0 1


+ x2



0 1 0
1 1 0
0 0 0


 ⪯ 0
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Linear Matrix Inequalities

Linear Matrix Inequalities are often a Simpler way to solve control problems.
Common Form:

Find X :
∑

i

AiXBi +Q > 0

There are several very efficient LMI/SDP Solvers which interface with
YALMIP:

• SeDuMi
▶ Fast, but somewhat unreliable.
▶ Link: http://sedumi.ie.lehigh.edu/

• LMI Lab (Part of Matlab’s Robust Control Toolbox)
▶ Universally disliked, but you already have it.
▶ Link: http://www.mathworks.com/help/robust/lmis.html

• MOSEK (commercial, but free academic licenses available)
▶ Probably the most reliable
▶ Link: https://www.mosek.com/resources/academic-license

M. Peet Lecture 03: 13 / 13

http://sedumi.ie.lehigh.edu/
http://www.mathworks.com/help/robust/lmis.html
https://www.mosek.com/resources/academic-license

