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Lecture 4

Previous lectures focused on optimization and optimization algorithms per se.

Now, we consider the problem of Optimization of Systems. Specifically, prop-
erties of the system. There are many ways to view this problem.

� Systems can be defined by differential equations

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

� We can view the system as a set of constraints on variables x(t), y(t).

� We can view the system as a map from x(0) → x(·) or u(·) → y(·).
� Sometimes, we will optimize properties of the matrices A,B,C,D (e.g.

Eigenvalues)

– Sometimes, matrix properties tell us about system performance.
– Properties such as stability and step-response

We start the lecture by examining the relationship between eigenvalues and sys-
tem properties.

� We then show how LMIs can be used to constrain the eigenvalues of a
system.



Solving the Equations
Find the output given the input

State-Space:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0
State-Space

System

u y

Input Output

Basic Question: Given an input function, u(t), what is the output?

Definition 1.

Define the Matrix Exponential:

eA = I +A+
1

2
A2 +

1

6
A3 + · · ·+ 1

k!
Ak + · · ·
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Lecture 4
State-Space Theory

Solving the Equations

The series expansion of the matrix exponential is not an approximation

� This is its definition

� It can be shown that the series converges for any matrix, A.



Properties of the Matrix Exponential

The matrix exponential is similar to the scalar exponential with important
differences.

• e0 = I

e0 = I + 0 +
1

2
02 +

1

6
03 + · · · = I

• eM
T

=
(
eM

)T
eM

T

= I +MT +
1

2
(MT )2 +

1

6
(MT )3 + · · ·+ 1

k!
(MT )k + · · ·

• d
dte

At = AeAt

d

dt
eAt =

d

dt

(
I + (At) +

1

2
(At)2 + · · ·+ 1

k!
(At)k + · · ·

)
= A

(
I + (At) +

1

2
(At)2 + · · ·+ 1

(k − 1)!
(At)k−1 + · · ·

)
• However, eM+N ̸= eMeN unless, MN = NM .
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State-Space Solutions and Jordan Blocks

The equation ẋ(t) = Ax(t), x(0) = x0

has solution
x(t) = eAtx0

Proof.

Let x(t) = eAtx0, then

• ẋ(t) = AeAtx0 = Ax(t).

• x(0) = e0x0 = x0

Question: So what does eAt look like? Let λi be eigenvalues of A

Definition 2.

A Jordan Block, Ji is a matrix which looks like

Ji = λiI +N =

λi

. . .

λi


︸ ︷︷ ︸

λiI

+


0 1

0 1
. . .

. . .

0 1
0


︸ ︷︷ ︸

N
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Lecture 4
State-Space Theory

State-Space Solutions and Jordan Blocks

� Therefore, the system

ẋ(t) = Ax(t), x(0) = x0

defines a map from x0 → x(·).
� Stability properties of the system are defined using this map.

� How to relate properties of the matrix, A, to properties of the map
x0 → x(·)???

� Lets look at the eigenvalues of A.

The Jordan Blocks are the almost diagonal matrices

The matrix N ∈ Rk is Nilpotent. This means Nd = 0 for d ≥ k.



Thing to Know: the Jordan Decomposition

Theorem 3.

For any A ∈ Rn×n, there exists an invertible T such that

A = TJT−1, J =

J1 . . .

Jn

 where Ji are Jordan Blocks

• Ak = TJkT−1. Hence

eAt = TeJtT−1 = T

e
J1t

. . .

eJnt

T−1 = T

e
(λ1I+N)t

. . .

e(λnI+N)t

T−1

• λiI and N commute, hence eλiI+N = eλiIeN . Further Nd = 0 for d ≥ k.

eJit =

e
λit

. . .

eλit

[
1 +Nt+

1

2
N2t2 + · · ·+ 1

(k − 1)!
Nk−1tk−1

]

• limt→∞ tieλt = 0 if and only if Reλ < 0

M. Peet Lecture 4: State-Space Theory 5 / 24



Thing to Know: the Jordan Decomposition

Theorem 3.

For any A ∈ Rn×n, there exists an invertible T such that

A = TJT−1, J =

J1 . . .

Jn

 where Ji are Jordan Blocks

• Ak = TJkT−1. Hence

eAt = TeJtT−1 = T

e
J1t

. . .

eJnt

T−1 = T

e
(λ1I+N)t

. . .

e(λnI+N)t

T−1

• λiI and N commute, hence eλiI+N = eλiIeN . Further Nd = 0 for d ≥ k.

eJit =

e
λit

. . .

eλit

[
1 +Nt+

1

2
N2t2 + · · ·+ 1

(k − 1)!
Nk−1tk−1

]

• limt→∞ tieλt = 0 if and only if Reλ < 0

2
0
2
2
-0
6
-0
7

Lecture 4
State-Space Theory

Thing to Know: the Jordan Decomposition

Not all matrices are diagonalizable.

� All matrices have a Jordan decomposition.

We have shown that every element of eAt has the form tdeλi(A)t, where λi(A)
are the eigenvalues of A

� Shows that the system map x0 7→ eAtx0 is stable if and only if all the
eigenvalues of A have negative real part.



Stability of Continuous and Discrete-Time Systems

Definition 4.

A is Hurwitz if Reλi(A) < 0 for all i.

Theorem 5.

ẋ(t) = Ax(t) is stable if and only if A is Hurwitz.

For Discrete-Time Systems: xk+1 = Axk,

xk = Akx0

Definition 6.

A is Schur if |λi(A)| < 1 for all i.

Theorem 7.

xk+1 = Axk is stable if and only if A is Schur.
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Lecture 4
State-Space Theory

Stability of Continuous and Discrete-Time Systems

We have shown that the system property of stability can be characterized by the
eigenvalues of A.

� But eigenvalues are difficult to compute, much less optimize.

� How to use LMIs to characterize the eigenvalues of A???



Thing to Know: Lyapunov Functions Prove Global Stability

ẋ(t) = f(x(t))

Theorem 8 (Lyapunov).

V is a Lyapunov Function if V (0) = 0 and V (x) > 0 for x ̸= 0 and
lim∥x∥→∞ V (x) = ∞. If

d

dt
V (x(t)) < 0 for ẋ(t) = f(x(t)) x(t) ̸= 0.

Then for any x(0) ∈ R the system ẋ(t) = f(x(t)) has a unique solution which is
stable in the sense of Lyapunov.
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Lecture 4
State-Space Theory

Thing to Know: Lyapunov Functions Prove Global
Stability

Lyapunov functions generalize the notion of energy of a system.

� Sometimes, we think of kinetic and potential energy

– This is misleading. Better to think of Lyapunov functions as the map
from state x0 to some property of the solution x(t) = eAtx0.

– Typically, The property we are interested in is the square integral of
x(t).

V (x0) =

∫ ∞

0

∥x(t)∥2dt =
∫ ∞

0

∥eAtx0∥2dt

� More on this later.



Lyapunov Functions: They Also Prove LOCAL Stability

ẋ(t) = f(x(t))

Theorem 9 (Lyapunov Stability).

Suppose there exists a continuous V and α, β, γ > 0 where

β∥x∥2 ≤ V (x) ≤ α∥x∥2

V̇ (x(t)) = ∇V (x(t))T f(x(t)) ≤ −γ∥x(t)∥2

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.
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Examples of Lyapunov Functions

Mass-Spring: Pendulum:

ẍ = − c

m
ẋ− k

m
x

V (x) =
1

2
mẋ2 +

1

2
kx2

V̇ (x) = ẋ(−cẋ− kx) + kxẋ

= −cẋ2 − kẋx+ kxẋ

= −cẋ2 ≤ 0

ẋ2 = −g

l
sinx1 ẋ1 = x2

V (x) = (1− cosx1)gl +
1

2
l2x2

2

V̇ (x) = glx2 sinx1 − glx2 sinx1

= 0
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Lecture 4
State-Space Theory

Examples of Lyapunov Functions

Note that in both these cases, the Lyapunov function is the combined “potential”
and “kinetic” energy

� As mentioned, this is not a good way to think about Lyapunov functions.

� Only works for mechanical problems solely under the influence of a
conservative field.

� This is rarely the case.

� Provides the wrong intuition.



An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
This is feasible with

V (x) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+ 0.61188y3 + 0.47537x4 − 0.052424x3y + 0.44289x2y2 + 0.090723y4
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The Lyapunov Inequality (Our First LMI)

Lemma 10 (An LMI for Hurwitz Stability).

A is Hurwitz if and only if there exists a P > 0 such that

ATP + PA < 0

Proof.

Suppose there exists a P > 0 such that ATP + PA < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x ̸= 0 and V (0) = 0.

• Furthermore,

V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)TATPx(t) + x(t)TPAx(t)

= x(t)T
(
ATP + PA

)
x(t)

• Hence V̇ (x(t)) < 0 for all x ̸= 0. Thus the system is globally stable.

• Global stability implies A is Hurwitz.
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V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TPẋ(t)
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The Lyapunov Inequality (Our First LMI)

� Although all problems can be posed as optimization problems, not all optimization problems are solvable. In particular, the
problem must be convex; the constraints typically should be in the form of a convex cone or inequality. Unfortunately, the
constraint that the eigenvalues of a matrix lie in the left half-plane is not easy to enforce directly. The eigenvalues of a matrix are
a complex function of the elements of the matrix and, in addition, are quite sensitive to errors in those elements. For this reason,
we seek to reformulate the constraint that a matrix be Hurwitz.

� Unlike eigenvalues, the set of Lyapunov functions is a convex cone. This means it is by definition an inequality and therefore
well-suited to numerical optimization. Furthermore, the restriction to quadratic Lyapunov functions is likewise a cone constraint
and finally, there is a 1-1 relationship between positive matrices and positive Lyapunov functions. This is because the definition of
positivity we defined for matrices is identical to the definition of positivity we defined for Lyapunov functions.

� Our first LMI provides the kernel by which we will transmute problems which involve the placement of eigenvalues into problems
on the feasibility of certain LMIs. We will use variations of this proof throughout the course, with perhaps the culmination being
the KYP Lemma.



The Lyapunov Inequality

Proof.

For the other direction, if A is Hurwitz, for any Q > 0, let

P =

∫ ∞

0

eA
T sQeAsds

• Converges because A is Hurwitz.

• Furthermore
PA =

∫ ∞

0

eA
T sQeAsAds

=

∫ ∞

0

eA
T sQAeAsds =

∫ ∞

0

eA
T sQ

d

ds

(
eAs

)
ds

=

[
eA

T sQeAs

]∞
0

−
∫ ∞

0

d

ds
eA

T sQeAs

= −Q−
∫ ∞

0

AT eA
T sQeAs = −Q−ATP

• Thus PA+ATP = −Q < 0.
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Lecture 4
State-Space Theory

The Lyapunov Inequality

� Obviously, eAsA = AeAs

� Second line uses integration by parts.

� Third line uses lims→∞ eAs = 0

� Sufficiency is easy. Obviously P defines a Lyapunov function in the
obvious way. Now simply expand the V̇ and we are done.

� Necessity is not as obvious. It comes from the fact that one interpretation
of a Lyapunov function is that it represents the magnitude of the
forward-time solution starting from a point x. Since x(t) = eAtx0, we
then have

V (x0) =

∫ ∞

0

x(s)Tx(s)ds =

∫ ∞

0

xT
0 e

AT seAsx0ds = xT
0 Px0



Discrete-Time Lyapunov Functions

xk+1 = f(xk)

Theorem 11 (Lyapunov).

V is a Lyapunov Function if V (0) = 0 and V (x) > 0 for x ̸= 0 and
lim∥x∥→∞ V (x) = ∞. If

V (xk+1) < V (xk) whenever xk+1 = f(xk) xk ̸= 0,

then for any x0 ∈ Rn the system xk+1 = f(xk) is stable in the sense of
Lyapunov.
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Discrete-Time Lyapunov Functions

Lemma 12 (An LMI for Schur Stability).

A is Schur if and only if there exists a P > 0 such that

ATPA− P < 0

Proof.

Suppose there exists a P > 0 such that ATPA− P < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x ̸= 0 and V (0) = 0.

• Furthermore,

V (xk+1) = xT
k+1Pxk+1

= xT
kA

TPAxk

< xT
k Pxk = V (xk)

• Hence V (xk+1) < V (xk) for all k ≥ 0. Thus the system is Stable.

• Stability implies A is Schur.
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Lyapunov Functions

Proof.

For the other direction, if A is Hurwitz, for any Q > 0, let

P =

∞∑
k=0

(AT )kQAk

ATPA− P =

∞∑
k=1

(AT )kQAk −
∞∑
k=0

(AT )kQAk

= −(AT )0QA0 = −Q < 0

• Thus ATPA− P < 0.

YALMIP Code:
> P = sdpvar(n); eta=.1;

> F=[P>=eta*eye(n)];

> F=[F; A’ P A - P<=0];

> optimize(F);
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Lyapunov Functions

� Necessity in the discrete-time case is similar to the continuous-time case.
Now, however, the solution is a sequence and its size is defined in the ℓ2
sense. xk = Akx0, we then have

V (x0) = ∥x∥ℓ2 =

∞∑
i=0

xT
0 (A

T )iAix0

� Note the nonlinearity in A. This will be a problem which will require
fixing. For now, however, A is fixed, so the matrix inequality is linear.



Pole Locations AKA D-stability

Some people still care about pole locations.

• For these people, we have D-stability.

To begin, you have to define the acceptable region of the complex plane using
inequality constraints.

• Rise Time: ωn ≤ 1.8
tr

• Settling Time: σ ≤ − 4.6
ts

• Percent Overshoot: σ ≤ − lnMp

π |ωd|
Recall that if z is the complex pole location:

• ω2
n = ∥z∥2 = z∗z

• ωd = Im z = (z − z∗)/2

• σ = Re z = (z + z∗)/2
Which yields

• Rise Time: z∗z − 1.82

t2r
≤ 0

• Settling Time: z+z∗

2 + 4.6
ts

≤ 0

• Percent Overshoot: z − z∗ + π
lnMp

|z + z∗| ≤ 0
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Pole Locations AKA D-stability

� Now its time to start introducing lots of LMIs and ways to define them.
Up to now, we have been very theory-oriented. This was the minimal
amount of theory needed to allow you to understand the next few pages.
The next few pages are more practical. Still hard, however.

� The goal, again, is to translate constraints on the eigenvalues of A (which
are horribly nonlinear and non-convex functions of the elements of A) to
the feasibility of matrix inequalities which are linear in A.

� Note that none of these approximations are valid unless the system is
composed of only 2 poles and no zeros.

� See, e.g. Franklin, Powell, Enami for derivations.



An LMI for Pole Locations

Gutman proposed a nice LMI for D-stability with a single constraint

Theorem 13 (Gutman).

The eigenvalues of A satisfy

λi(A) ∈

z ∈ C :
∑
k,l

cklz
k(z∗)l < 0


if and only if there exists some P > 0 such that∑

k,l

cklA
kP (AT )l < 0

But this has some disadvantages

• There can only be one constraint.

• The LMI is not linear in A (But IS linear in P ).
▶ So controller synthesis is not an LMI.
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An LMI for Pole Locations

� Simply replace z with A and put a P in the middle!

� Region need not be convex!

� ANY polynomial constraint on z can be represented in this way.



An LMI for Convex Regions of the Complex Plane

To get around the limitations of Gutman’s result, we introduce the concept of
LMI regions.

• These are regions which can be represented using LMIs in the z and z∗

variables

Definition 14.

An LMI Region of the complex plane has the form

{z ∈ C : F0 + zF1 + z∗F2 < 0}

Such regions are hard to visualize, but

• Are convex
▶ e.g. Minimum rise time is not allowed!

• Can intersect multiple convex regions
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0
2
2
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An LMI for Convex Regions of the Complex Plane

� Remember multiple LMI constraints can be concatenated on the diagonal
to obtain a single larger LMI constraint.

� Recall the feasible set of an LMI is called the spectahedron!

Never Forget.... the Schur Complement!

Theorem 15 (Schur Complement).[
X Y
Y T Z

]
> 0 ⇔

[
X 0
0 Z − Y TX−1Y

]
> 0 ⇔

[
X − Y Z−1Y T 0

0 Z

]
> 0



An LMI for Convex Regions of the Complex Plane
Examples

Rise Time: z∗z − 1.82

t2r︸︷︷︸
r2

≤ 0

[
−r z
z∗ −r

]
=

[
−r 0
0 −r

]
︸ ︷︷ ︸

F0

+

[
0 1
0 0

]
︸ ︷︷ ︸

F1

z +

[
0 0
1 0

]
︸ ︷︷ ︸

F2

z∗ < 0

Which by the Schur complement is equivalent to r − z∗r−1z > 0.

Settling Time: 4.6
ts

+ z+z∗

2 ≤ 0

Percent Overshoot: |z − z∗|+ π
lnMp

(z + z∗) ≤ 0[
π(z + z∗) lnMp(z − z∗)

lnMp(z − z∗)∗ π(z + z∗)

]
=

[
0 0
0 0

]
︸ ︷︷ ︸

F0

+

[
π lnMp

− lnMp π

]
︸ ︷︷ ︸

F1

z+

[
π − lnMp

lnMp π

]
︸ ︷︷ ︸

F2

z∗ < 0

Which by the Schur complement is equivalent to z + z∗ < 0 and
(z − z∗)2 − ( π

lnMp
)2|z + z∗|2 > 0.
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An LMI for Convex Regions of the Complex Plane
Examples
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An LMI for Convex Regions of the Complex Plane

� For rise time r − z∗r−1z > 0 is equivalent to r2 − z∗z > 0

� For PO, recall a > b is equivalent to a2 > b2 if a, b > 0 as the square is
monotonic increasing[

−π(z + z∗) − lnMp(z − z∗)
− lnMp(z − z∗)∗ −π(z + z∗)

]
≥ 0 (− π(z + z∗) > 0)

−π(z + z∗)− (lnMp)
2(z − z∗)∗(z − z∗)

1

−π(z + z∗)
≥ 0

π2(z + z∗)2 − (lnMp)
2(z − z∗)∗(z − z∗) ≥ 0 (since z + z∗ < 0)

−π2(z + z∗)2 + (lnMp)
2(z − z∗)∗(z − z∗) ≤ 0

−
(

π

lnMp

)2

(z + z∗)2 + |z − z∗|2 ≤ 0

|z − z∗|2 ≤
(

π

lnMp

)2

(|z + z∗|)2(
π

lnMp

)
|z + z∗| ≥ |z − z∗|



An LMI for Convex Regions of the Complex Plane

Theorem 16 (Chilali + Gahinet).

The pole locations, z ∈ C of A satisfy

z ∈ {z ∈ C : F0 + zF1 + z∗F2 < 0}

if and only if there exists some P > 0 such that

F0 ⊗ P + F1 ⊗ (AP ) + F2 ⊗ (AP )T < 0

The notation F ⊗ P is Kronecker notation and means for each element of Fz,
replace the scalar z with the matrix P . So, e.g.[

f11 f12
f12 f22

]
︸ ︷︷ ︸

F0

⊗P :=

[
f11P f12P
f12P f22P

]
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An LMI for Sector Regions of the Complex Plane

Rise Time: [
−r z
z∗ −r

]
=

[
−r 0
0 −r

]
︸ ︷︷ ︸

F0

+

[
0 1
0 0

]
︸ ︷︷ ︸

F1

z +

[
0 0
1 0

]
︸ ︷︷ ︸

F2

z∗ < 0

becomes

Lemma 17.

The pole locations, z ∈ C of A satisfy z∗z ≤ r2 if and only if there exists some
P > 0 such that [

−rP AP
(AP )T −rP

]
< 0

Settling Time: 4.6
ts

+ z + z∗ ≤ 0
becomes

Lemma 18.

The pole locations, z ∈ C of A satisfy 2Rex ≤ −α if and only if there exists
some P > 0 such that

AP + (AP )T + αP < 0
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An LMI for Sector Regions of the Complex Plane

Percent Overshoot: z + z∗ ≤ − lnMp

π |z − z∗|

Lemma 19.

The pole locations, z ∈ C of A satisfy z + z∗ ≤ − lnMp

π |z − z∗| if and only if
there exists some P > 0 such that[

π(AP + (AP )T ) lnMp(AP − (AP )T )
lnMp(AP − (AP )T )T π(AP + (AP )T )

]
< 0
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A Combined LMI for D-stability

Theorem 20.

The pole locations, z ∈ C of A satisfy z∗z ≤ r2, Rex ≤ −α and
z + z∗ ≤ − lnMp

π |z − z∗| if and only if there exists some P > 0 such that[
−rP AP
(AP )T −rP

]
< 0,

AP + (AP )T + 2αP < 0, and[
π(AP + (AP )T ) lnMp(AP − (AP )T )

lnMp(AP − (AP )T )T π(AP + (AP )T )

]
< 0
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Discrete-Time Lyapunov Functions

Next Time: LMIs for Controllability and Observability

Discussion Question: Can we do D-stability for discrete-time systems???

• Unfortunately, it is not so easy to translate properties of the transient to
eigenvalue locations for discrete time systems.

• Possible Course Project or Wikibooks addition?
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