LMI Methods in Optimal and Robust Control

Matthew M. Peet (Also contributions from Sanjay Lall)

Arizona State University

Lecture 5: LMIs for Controllability and Feedback Stabilization



Recall: Stability and Solutions of the Lyapunov Equation

Lemma 1.
A is Hurwitz if and only if for any QQ > 0, there exists a P > 0 such that

ATP+PA=-Q<0

One such solution is:

> T
P:/ et *QeMds
)

Lemma 2.
A is Schur if and only if for any @ > 0, there exists a P > 0 such that

ATPA-P=-Q<0

One Such solution is: -
P =Y (AT)kQa*
k=0
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d Solutions of the Lyapunov Equa

tion

L Recall: Stability and Solutions of the Lyapunov
Equation

Consider the system
z(t) = Az (t) + Bu(t), y(t) = Cx(t) + Du(t)

In the previous lecture, we focused on properties of the map

A

zo— xz(t) =e ‘2o

in terms of the eigenvalues of A.
e We proposed LMIs to constrain the eigenvalues of A.

In this lecture we look at the effect of the input, u(-), on the state, z(¢) and on
the output, y(t).

u(-) = y(-)
and

u(-) = ()
In this case, the map is more complicated. However, we will attempt to charac-
terize its properties in terms of properties of the matrices (A, B, C)



Find the output given the input

Solution for State-Space

State-Space System:
&(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Input-Output Map:
t
x(t):/ et=%) Bu(s)ds
0

Input

State-Space

| System

y(t) = Cz(t) + Du(t) = /0 CeA'=%) Bu(s)ds 4+ Du(t)

Can we get to any desired state, x(¢), by using u(t)?

® How fast can we get there?

® What about if we use feedback: u(t) =
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I—Find the output given the input

For a discrete-time system

Th4+1 = Az + Buyg
yr = Cxp + Dug xo =0

The solution is

k—1
T = Akxo + Z AkiiilB’uﬂ;
=0
k—1 )
yx = CA*zo + ) CA*"""'Bu; + Duy,
=0

Where, again, we usually take 2o = 0.

Find the output given the input




Controllability

Definition 3.

For a given continuous-time system (A, B), the state z; is Reachable if for
any fixed T, there exists a u(t) such that

Ty
mf:/ eAT5=9) Bu(s)ds
0

Definition 4.

The continuous-time system (A, B) is reachable if any point 2 € R™ is
reachable.

Definition 5.

The continuous-time system (A, B) is controllable if for any 7 and any
initial point zo € R™, there exists a u(t) such that z(T}) = 0.

The reachable set and controllable set are
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Controllabilt
Lecture 5 i
Controllability O e e 2 e L

o /' AT Bu(s)ds
L Controllability s

reschable.
Definition 5.

“The continuous-time system (4, ) is contralabl i fo any T) and any.
inital poin o € R, ther & (0 soch that «(Ty)

The reachabe st and controlsble

® The difference between controllability and reachability and stabilizability is subtle. The difference from stabilizability is the
finite-time question. The difference between reachability and controllability is away from origin vs. to origin. For a linear system,
we can move the origin (introducing a bias in the input), which implies there is no difference at all for these systems.

The reachable set is defined by the map from input to solution at time T°
u(:) = =(T)
The reachable set is the image space of this map, ' : u +— @, where
T T—_s
=(T) = / eAT=9) Byu(s)ds
J0O

-
r'p



Review: Subspaces, Image, and Kernel

Definition 6.

A set, C, is a Vector Space if it is closed under addition and scalar
multiplication.

1. a(u+v) =au+av € C for all « € R and u,v € C. (vector distributivity)
2. (a¢+B)u=au+ pue C forall a, 8 € R and u € C. (scalar distributivity)

Definition 7.

A subspace is a subset of a vector space which is also a vector space using the
same definitions of addition and multiplication.

For right now, the most important subspaces are the image and kernel of a
matrix (M € R™*™)/function/operator.

Definition 8 (Image and Kernel of a Matrix, M).
ImM :={z eR" : x =My for some y € R™}
ker M := {z € R™ : Mz =0}
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Controllability

For a fixed ¢, the set of reachable states is defined as
it
Ry:={x:z= / eA=%) Bu(s)ds for some function u.}
0
Note: The mapping I'; : u +— x(¢) is linear.

® Hence R; = ImTY is a subspace of R"

Definition 9.

For a given system (A, B), the Controllability Matrix is
C(A,B) = [B AB A’B ... A"le]
where A € R"*" and B € R"*™,

Definition 10.

For a given (A, B), the Controllable Subspace is
Cap =Image[B AB A’B ... A""'B|

Fact: The system (A, B) is if Cap =ImC(A, B) =R".
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LControllability

C(A, B) is a matrix and C 4 is the image of this matrix.
Controllability is a property of the system

e Thus we characterize a property of the system map u(:) — z(-) using
properties of the matrices B and A.

There is a more physical interpretation:

e B is the set of states input u affects directly. AB is the set of states u
affects by affecting one state and then that state affects another. etc.
until we achieve n — 1 degrees of separation, which by Cayley-Hamilton,
means we can stop looking.



Controllability

Definition 11.
The finite-time Controllability Grammian of pair (A, B) is

t
W, ::/ eAsBBTeA 3 s
0

Wy is a positive semidefinite matrix.
The following relates these three concepts of controllability

Theorem 12.

For any t > 0,
R, = Cap = Image (W)

or
Image I't = Image C(A4, B) = Image (W)

W, is positive Definite if and only if (A, B) is controllable.
Note the reachable set does not depend on t!
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L Controllability

This result connects
1. Existence of positive matrix (not yet an LMI, however)
2. Properties of A, B

3. Properties of the map u — x

Controllability




Controllability: Im(W;) C Ry
Proposition 1.

IITI(Wt) C Ry

Proof.
First, suppose that = € Im(W;) for some t > 0. Then x = W,z for some z.

o Now let u(s) = BTeA (t=9); Then

t
Ftu:/ e Bu(s)ds
0

t
= / A=) pBT A" (t=9) 15 — Wiz ==
0

® Thus z € Im(T't) = R;. Hence Im(W;) C R;. O
This proof is useful, since for any z4 € Rr,, it gives us the input
e Let u(t) = BTeAT(Tf’t)WT_flmd.

® Then for (t) = Ax(t) + B(t), z(0) = 0, we have z(T}) = zq4.
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L Controllability: Im(W;) C Rq

This tells us a specific u(-) where

u(:) = z(Ty) = zq

Controllability: Im(W;) C R

Proposition 1.

ImiW) € e



Numerical Example

k’l k‘2 k73
iy ~AANA o ~AANANA ms
=5 "o " e
by by b3

masses m; = 1, spring constants k = 1, damping constants b = 0.8

000 1 0 0 0
000 0 1 0 0
. o0 0 0 o0 1 0
=1 _5 1 0-16 o8 ofl*@+]|
1-2 1 08 —16 08 0
0 1-1 0 08-08 0

u(t) is force applied to mass 1

Taes = [123 00 0] at time step 7' = 80.
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Numerical Example

input
state

-2

-4

-6

-10 -3
0

20 40 60 80 0 20 40 60 80
time step time step
sampling period h = 0.1, optimal input achieves desired state

2(80) = Tges = [1 23 0 0 0]"
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The Controllability Gramian and Ellipsoid

Minimum Energy Ellipsoid: The set of states reachable in time T’
with an input u of size ||ull7, = fOT||u(t)||2dt =1is ,
{zeR" : 2TW;lz <1}

¢ Ellipsoid with semiaxis lengths \; (W)

® Ellipsoid with semiaxis directions given by eigenvectors of W
Extend this to infinite time:

Definition 13.
The Controllability Gramian of pair (A, B) is

W::/ eAsBBTeA 3 ds
0

The Controllability Gramian tells us which directions are easily controllable.
Lemma 14 (An LMI for the Controllability Gramian).
If (A, B) is controllable, then W > 0 is the unique solution to

AW +WA" + BBT =0

Of course, one could also solve this as a set of linear equations.
M. Peet Lecture 5: Controllability 1 /1
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l—The Controllability Gramian and Ellipsoid

e To get from z(0) = 0 to z(Tf) = xq we may use
u(t) = BTeAT(Tf*t)WTfflwd

e We can see that the input u which achieves x4 has magnitude

t t
-1 A —s AT —s —
||u\|22:/ \|u(s)\|2ds:/ wq Wi e T BT et T I Wt ,ds
0 0

t
le"W;fl (/ eA(Tf—s)BBTeAT(Tf—s>dS) WT—flxd

0
= xdTWT;lWTf W;flxd = xdTW;flxd

Hence if zTW, 'z < 1,  is reachable at time ¢ with input of size |ju|| < 1.
e The u defined in this way is actually optimal.

e Eigenvalues and SVD are the same here: W; = USU? so
W, =UTS7'U. Hence if x4 is a unit eigenvector/singular vector v;
—1

with eigenvalue/singular value oy, ||ul|z, = 1/ 0;



Stabilizability

Stabilizability is weaker than controllability

Definition 15.

The pair (A, B) is stabilizable if for any z(0) = xq, there exists a u(t) such that
x(t) = T'yu satisfies
lim z(t) =0

t—o0

® Again, no restriction on u(t).
® Weaker than controllability
» Controllability: Can we drive the system to x(Ty) = 07
> Stabilizability: Only need to Approach = = 0.
® Stabilizable if uncontrollable subspace is naturally stable.
Lemma 16.

(A, B) is stabilizable if and only if there exists a X > 0, v > 0 such that
AX + XAT —4BBT <0

where the stabilizing controller is u(t) = —3 BT X ~1x(t)
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L Stabilizability

e Note that feasibility of the stabilizability LMI does NOT require A to be
stable.
AX + XAT < vBBT

means that AX + X AT < 0 only for those z in the perp of the image
space of B.

e The stabilizing controller is a feedback gain!

For this LMI, the solution used in the proof is
~ t T
X=W;= 'y/ e **BBTe ™ “ds
0

The reverse-time controllability grammian...



Eigenvalue Assignment
Static Full-State Feedback

Recall our result on Reachability:
® To reach z(Ty) = zy
> u(t) = BTeATr Wtz
» This controller is open-loop

® |t assumes perfect knowledge of system and state.
Problems

® Prone to Errors, Disturbances, Errors in the Model
Solution

® Use continuous measurements of state to generate control
Static Full-State Feedback Assumes:

® We can directly and continuously measure the state z(t)

® Controller is a static linear function of the measurement

u(t) = Kz(t), K e R™*"
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- Eigenvalue Assignment

Previously the problem was Analysis:
e Determine properties of the maps zo — x(:) and u(:) — z(¥)
Now the problem becomes Synthesis:
e Alter the dynamics
e Change the matrix, A, so that it has desired properties
Synthesis is always a two-part, non-convex (typically bilinear) problem:
e Modify A— A+ BK
e Ensure A+ BK has desired properties

These must be done simultaneously!



Eigenvalue Assignment
Static Full-State Feedback

State Equations: u(t) = Kxz(t)

&(t) = Ax(t) + Bu(t)
= Axz(t) + BKx(t)
= (A+ BK)z(t)

Stabilization: Find a matrix K € R™*™ such that
A+ BK
is Hurwitz.
Eigenvalue Assignment: Given {\1,--- ,\,}, find K € R™*" such that
\; € eig(A+ BK) fori=1,---,n.
Note: A solution to the eigenvalue assignment problem can also solve the

stabilization problem.

Question: Is eigenvalue assignment actually harder?

M. Peet Lecture 5: Controllability
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Eigenvalue Assignment
Single-Input Case

Theorem 17.

Suppose B € R"*!. Eigenvalues of A+ BK are freely assignable if and only if
(A, B) is controllable.

Use place to assign eigenvalues.
But this is a course on LMIs, so we take a different approach.
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The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 18.

The Static State-Feedback Problem is to find a feedback matrix K such that

is stable
® Find K such that A+ BK is Hurwitz.

Can also be put in LMI format:

Find X >0, K :
X(A+BK)+ (A+BK)"X <0

Problem: Bilinear in K and X.

M. Peet Lecture 5: Controllability
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Problem: Biineat in

State-feedback refers to the fact that u(t) = Kx(t) is a function of all the states,
which we assume are all individually measurable. Static refers to the fact that
the linear function Kz does not vary in time.

e Resolving this bilinearity is a quintessential step in the controller synthesis
process.

o Carries over throughout the course in various generalizations

e The resolution is quite simple and elegant.



An Equivalent LMI for Static State-Feedback

® The bilinear problem in K and X is a common paradigm.

® Bilinear optimization is not convex.

® To convexify the problem, we use a change of variables.
Problem 1:

Find X >0, K :
X(A+BK)+ (A+BK)"X <0
Problem 2:
Find P> 0,7 :
AP+ BZ+ PAT + ZTBT <0

Definition 19.

Two optimization problems are equivalent if a solution to one will provide a
solution to the other.

Theorem 20.
Problem 1 is equivalent to Problem 2.
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The Dual Lyapunov LMI

Problem 1: Problem 2:
Find X >0, : FindY >0, :
XA+ATX <0 YAT + AY <0
Lemma 21.

Problem 1 is equivalent to problem 2.

Proof.

First we show 1) solves 2). Suppose X > 0 is a solution to Problem 1. Let
Y=X"1>0

° If XA+ ATX <0, then
X UXA+ATX)X 1 <0
® Hence
XM XA+ ATX)X 1 =AX 4+ X AT =AY +YAT <0

® Therefore, Problem 2 is feasible with solution ¥ = X L.
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The Dual Lyapunov LMI

Problem 1: Problem 2:
Find X >0, : FindY >0, :
XA+ ATX <0 YAT + AY <0

Proof.

Now we show 2) solves 1) in a similar manner. Suppose Y > 0 is a solution to
Problem 1. Let X =Y~ > 0.

® Then

XA+ ATX = X(AX 1+ X1AT)X
=XAY +YAT)X <0

Conclusion: If V(z) = 2T Pz proves stability of # = Az,
® Then V(z) = 27 P~z proves stability of & = ATz
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A Stabilization LMI using the Variable Substitution Trick

Thus we rephrase Problem 1

Problem 1: Problem 2:
Find P >0, K : Find X > 0,7 :
(A+BK)P + P(A+ BK)" <0 AX+BZ+XAT +zTBT <0
Theorem 22.
Problem 1 is equivalent to Problem 2.
Proof.

We will show that 2) Solves 1). Suppose X > 0, Z solves 2). Let P=X >0
and K = ZP~!. Then
(A+ BK)P + P(A+ BK)T = AP + PAT + BKP + PKTBT
=AP+PA" +BZ+Z"B" <0

Now suppose that P > 0 and K solve 1). Let X = P >0 and Z = KP. Then
AP+ PAT + BZ+Z"BT = (A+ BK)P+ P(A+ BK)T <0

M. Peet Lecture 5: Controllability 20 /1



The Stabilization Problem

The result can be summarized more succinctly

Theorem 23.

(A, B) is static-state-feedback stabilizable if and only if there exists some P > 0
and Z such that

AP+ PAT + BZ+ ZT"BT <0
with u(t) = ZP~1a(t).
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Controllers for D-stability

Recall the LMI for D-stability where we add in the controller u = Kx.

Theorem 24.

The pole locations, z € C of A+ BK satisfy |z| <r, Rex < —« and
z + z* < —c|z — z*| if and only if there exists some P > 0 such that

(A+BE)P)T  —pp | <0

(A+ BK)P + ((A+ BK)P)T +2aP <0, and
[ (A+ BEK)P + ((A + BK)P)T ¢((A+ BK)P — ((A+ BK)P)T) iy

[ —rP (A+ BK)P

((A+ BK)P)T — (A+ BK)P) (A+ BK)P + ((A+ BK)P)T
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Controllers for D-stability

Recall the LI for D-tabi
Theorem 24,
Th

LControllers for D-stability

Note the D-stability LMI already appears in “Dual” Form

LMls are particularly useful in that they allow one to directly and
sequentially impose constraints on the variables by combining different
LMI constraints into a single LMI.

So we can add closed-loop eigenvalue constraints.
Or robustness constraints.

However, this is limited by the variable substitution process Z = K@ and
P=Q "
Old variables K, P must not appear anywhere in the LMI.




Controllers for D-stability

Then we have an LMI which gives us a controller for D-stabilization
Lemma 25 (An LMI for D-Stabilization).

Suppose there exists X > 0 and Z such that
—rP AP+ BZ
(AP + B2)T —rP

AP+ BZ + (AP + BZ)T +2aP <0, and

AP+ BZ + (AP + BZ)T c¢(AP+ BZ — (AP + BZ)T) <0
c((AP+ BZ)T — (AP + BZ)) AP+ BZ + (AP + BZ)T

<0,

Then if K = ZP~1, the pole locations, z € C of A+ BK satisfy |x| <,
Rex < —a and z + z* < —c|z — 7.
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The Discrete-Time Case

Now consider the discrete-time system:
Tpy1 = Awxy + Buy

For discrete-time, controllability and reachability are not equivalent!
® Consider ;11 = 0. Controllable, but not reachable.
® |ets ignore these pathological cases

Definition 26.
The Discrete-Time Controllability Gramian of pair (A, B) is

W =Y A*BBT(A")
0

Lemma 27 (An LMI for the Controllability Gramian).

If (A, B) is controllable, then W > 0 is the unique solution to

ATWA-W = —BBT

M. Peet Lecture 5: Controllability

2 /1



The Discrete-Time Stabilization Problem

Again, we seek a feedback controller uy = Kxj for which the closed-loop is
Schur.
State Equations: u; = Ky

Tpy1 = Az, + Buy,
= Az + BKxy
= (A + B[()l‘}C

Stabilization: Find a matrix F' € R™*" such that
A+ BK
is Schur. Recall that A 4+ BK is Schur if and only if there exists a P > 0 such

that (A+ BK)TP(A+ BK) — P < 0. Hence the following non-LMI problem

Find P >0, K :
(A+ BK)TP(A+BK)—P <0
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The Discrete-Time Stabilization Problem

Now consider the Schur Stability condition:
(A+BK)'P(A+ BK)-P <0
Pre- and Post-multiplying by P~! shows this matrix inequality is equivalent to
P! - P YA+ BK)TP(A+BK)P™' >0
Applying the Schur Complement, this matrix inequality is equivalent to

P! (A+ BK)P~!

P~Y(A+ BK)T p-1 >0
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The Discrete-Time Stabilization Problem

We now have the following two equivalent problems:

Problem 1: Problem 2:
Find P > 0, K such that Find X > 0, K such that
P—(A+BEK)TP(A+ BK) >0 X (A+BE)X| _
X(A+ BK)T X

Taking Problem 2 and using the change of variables Z = K X, we get an LMI:

Lemma 28.
Suppose there exists some X > 0 and Z such that

X AX +BZ

Ax+B2)T x|

then if K = ZX 1, the closed-loop system matrix (A + BK) is Schur.
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The Discrete-Time Stabilization Problem

Final Note: An Alternative LMI condition for stabilizability is as follows

Lemma 29.
The pair (A, B) is discrete-time stabilizable if and only if there there exists some

P > 0 such that
APAT — P < BBT.
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