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Recall: Stability and Solutions of the Lyapunov Equation

Lemma 1.

A is Hurwitz if and only if for any Q > 0, there exists a P > 0 such that

ATP + PA = −Q < 0

One such solution is:

P =

∫ ∞

0

eA
T sQeAsds

Lemma 2.

A is Schur if and only if for any Q > 0, there exists a P > 0 such that

ATPA− P = −Q < 0

One Such solution is:

P =

∞∑

k=0

(AT )kQAk
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Lecture 5
State-Space Theory

Recall: Stability and Solutions of the Lyapunov
Equation

Consider the system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

In the previous lecture, we focused on properties of the map

x0 7→ x(t) = eAtx0

in terms of the eigenvalues of A.

� We proposed LMIs to constrain the eigenvalues of A.

In this lecture we look at the effect of the input, u(·), on the state, x(t) and on
the output, y(t).

u(·) 7→ y(·)
and

u(·) 7→ x(·)
In this case, the map is more complicated. However, we will attempt to charac-
terize its properties in terms of properties of the matrices (A,B,C)



Find the output given the input
Solution for State-Space

State-Space System:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0

State-Space

System

u y

Input Output

Input-Output Map:

x(t) =

∫ t

0

eA(t−s)Bu(s)ds

y(t) = Cx(t) +Du(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)

Can we get to any desired state, x(t), by using u(t)?

• How fast can we get there?

• What about if we use feedback: u(t) = Kx(t)?
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Lecture 5
State-Space Theory

Find the output given the input

For a discrete-time system

xk+1 = Axk +Buk

yk = Cxk +Duk x0 = 0

The solution is

xk = Akx0 +

k−1∑
i=0

Ak−i−1Bui

yk = CAkx0 +

k−1∑
i=0

CAk−i−1Bui +Duk

Where, again, we usually take x0 = 0.



Controllability

Definition 3.

For a given continuous-time system (A,B), the state xf is Reachable if for
any fixed Tf , there exists a u(t) such that

xf =

∫ Tf

0

eA(Tf−s)Bu(s)ds

Definition 4.

The continuous-time system (A,B) is reachable if any point xf ∈ Rn is
reachable.

Definition 5.

The continuous-time system (A,B) is controllable if for any Tf and any
initial point x0 ∈ Rn, there exists a u(t) such that x(Tf ) = 0.

The reachable set and controllable set are Subspaces.
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Lecture 5
Controllability

Controllability

� The difference between controllability and reachability and stabilizability is subtle. The difference from stabilizability is the
finite-time question. The difference between reachability and controllability is away from origin vs. to origin. For a linear system,
we can move the origin (introducing a bias in the input), which implies there is no difference at all for these systems.

The reachable set is defined by the map from input to solution at time T

u(·) 7→ x(T )

The reachable set is the image space of this map, ΓT : u 7→ x, where

x(T ) =

∫ T

0
e
A(T−s)

Bu(s)ds︸ ︷︷ ︸
ΓT



Review: Subspaces, Image, and Kernel

Definition 6.

A set, C, is a Vector Space if it is closed under addition and scalar
multiplication.

1. α(u+ v) = αu+ αv ∈ C for all α ∈ R and u, v ∈ C. (vector distributivity)

2. (α+ β)u = αu+ βu ∈ C for all α, β ∈ R and u ∈ C. (scalar distributivity)

Definition 7.

A subspace is a subset of a vector space which is also a vector space using the
same definitions of addition and multiplication.

For right now, the most important subspaces are the image and kernel of a
matrix (M ∈ Rn×m)/function/operator.

Definition 8 (Image and Kernel of a Matrix, M).

ImM := {x ∈ Rn : x = My for some y ∈ Rm}
kerM := {x ∈ Rm : Mx = 0}
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Controllability

For a fixed t, the set of reachable states is defined as

Rt := {x : x =

∫ t

0

eA(t−s)Bu(s)ds for some function u.}
Note: The mapping Γt : u 7→ x(t) is linear.

• Hence Rt = ImΓt is a subspace of Rn

Definition 9.

For a given system (A,B), the Controllability Matrix is

C(A,B) :=
[
B AB A2B · · · An−1B

]

where A ∈ Rn×n and B ∈ Rn×m.

Definition 10.

For a given (A,B), the Controllable Subspace is

CAB = Image
[
B AB A2B · · · An−1B

]

Fact: The system (A,B) is Controllable if CAB = ImC(A,B) = Rn.
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Lecture 5
Controllability

Controllability

C(A,B) is a matrix and CAB is the image of this matrix.
Controllability is a property of the system

� Thus we characterize a property of the system map u(·) 7→ x(·) using
properties of the matrices B and A.

There is a more physical interpretation:

� B is the set of states input u affects directly. AB is the set of states u
affects by affecting one state and then that state affects another. etc.
until we achieve n− 1 degrees of separation, which by Cayley-Hamilton,
means we can stop looking.



Controllability

Definition 11.

The finite-time Controllability Grammian of pair (A,B) is

Wt :=

∫ t

0

eAsBBT eA
T sds

Wt is a positive semidefinite matrix.
The following relates these three concepts of controllability

Theorem 12.

For any t ≥ 0,
Rt = CAB = Image (Wt)

or
Image Γt = Image C(A,B) = Image (Wt)

Wt is positive Definite if and only if (A,B) is controllable.
Note the reachable set does not depend on t!
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Lecture 5
Controllability

Controllability

This result connects

1. Existence of positive matrix (not yet an LMI, however)

2. Properties of A,B

3. Properties of the map u 7→ x



Controllability: Im(Wt) ⊂ Rt

Proposition 1.

Im(Wt) ⊂ Rt

Proof.

First, suppose that x ∈ Im(Wt) for some t > 0. Then x = Wtz for some z.

• Now let u(s) = BT eA
T (t−s)z. Then

Γtu =

∫ t

0

eA(t−s)Bu(s)ds

=

∫ t

0

eA(t−s)BBT eA
T (t−s)zds = Wtz = x

• Thus x ∈ Im(Γt) = Rt. Hence Im(Wt) ⊂ Rt.

This proof is useful, since for any xd ∈ RTf
, it gives us the input

• Let u(t) = BT eA
T (Tf−t)W−1

Tf
xd.

• Then for ẋ(t) = Ax(t) +B(t), x(0) = 0, we have x(Tf ) = xd.
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Lecture 5
Controllability

Controllability: Im(Wt) ⊂ Rt

This tells us a specific u(·) where

u(·) 7→ x(Tf ) = xd



Numerical Example
8 - 5 Controllability S. Lall, Stanford 2007.11.06.01

example: mass-spring system

m1 m2 m3

k1 k2 k3

b1 b2 b3

masses mi = 1, spring constants k = 1, damping constants b = 0.8

ẋ(t) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−2 1 0 −1.6 0.8 0
1 −2 1 0.8 −1.6 0.8
0 1 −1 0 0.8 −0.8



x(t) +




0
0
0
1
0
0



u(t)

u(t) is force applied to mass 1

xdes =
[
1 2 3 0 0 0

]T
at time step T = 80.
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Numerical Example

8 - 6 Controllability S. Lall, Stanford 2007.11.06.01

example: control of spring-mass system

0 20 40 60 80
−10

−8

−6

−4

−2

0

2

4

6

8

time step

in
p

u
t

0 20 40 60 80
−3

−2

−1

0

1

2

3

4

time step
s
ta

te

sampling period h = 0.1, optimal input achieves desired state

x(80) = xdes =
[
1 2 3 0 0 0

]T
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The Controllability Gramian and Ellipsoid

Minimum Energy Ellipsoid: The set of states reachable in time T

with an input u of size ∥u∥2L2
=

∫ T

0
∥u(t)∥2dt = 1 is

{x ∈ Rn : xTW−1
T x ≤ 1}

• Ellipsoid with semiaxis lengths λi(WT )
• Ellipsoid with semiaxis directions given by eigenvectors of WT

√
λ1

√
λ2

9 - 4 Controllability and Observability 2001.10.30.01

Alternate representation of ellipsoids, continued

Suppose U is a Hilbert space, M : U → Rn, and image(M) = Rn. Define Z = MM ∗.
Then the following sets are the same ellipsoid.

• E1 =
{
x ∈ Rn ; x∗Z−1x ≤ 1

}

• E2 =
{
Z

1
2y ; y ∈ Rn, ‖y‖2 ≤ 1

}

• E3 =
{
Mu ; u ∈ U , ‖u‖2 ≤ 1

}

Proof continued

• Conversely, we show E1 ⊂ E3. Suppose x ∈ E1, so x∗Z−1x ≤ 1. Let

u = M ∗(MM ∗)−1x

Then
Mu = MM ∗(MM ∗)−1x = x

and
‖u‖2 = 〈u, u〉 == 〈x, (MM ∗)−1MM ∗(MM ∗)−1x〉 = x∗Z−1x ≤ 1

so x ∈ E3.

• Aside: image(P ) = (ker(M))⊥ for the projection P = M∗(MM ∗)−1M .

Extend this to infinite time:

Definition 13.

The Controllability Gramian of pair (A,B) is

W :=

∫ ∞

0

eAsBBT eA
T sds

The Controllability Gramian tells us which directions are easily controllable.

Lemma 14 (An LMI for the Controllability Gramian).

If (A,B) is controllable, then W > 0 is the unique solution to

AW +WAT +BBT = 0

Of course, one could also solve this as a set of linear equations.
Also, it doesn’t give us the controller.M. Peet Lecture 5: Controllability 11 / 1
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Controllability

The Controllability Gramian and Ellipsoid

� To get from x(0) = 0 to x(Tf ) = xd we may use

u(t) = BT eA
T (Tf−t)W−1

Tf
xd

� We can see that the input u which achieves xd has magnitude

∥u∥2L2
=

∫ t

0

∥u(s)∥2ds =

∫ t

0

xT
d W

−1
Tf

eA(Tf−s)BBT eA
T (Tf−s)W−1

Tf
xdds

= xT
d W

−1
Tf

(∫ t

0

eA(Tf−s)BBT eA
T (Tf−s)ds

)
W−1

Tf
xd

= xT
d W

−1
Tf

WTfW
−1
Tf

xd = xT
d W

−1
Tf

xd

Hence if xTW−1
t x ≤ 1, x is reachable at time t with input of size ∥u∥ ≤ 1.

� The u defined in this way is actually optimal.

� Eigenvalues and SVD are the same here: Wt = UΣUT so
W−1

t = UTΣ−1U . Hence if xd is a unit eigenvector/singular vector vi

with eigenvalue/singular value σi, ∥u∥L2 =
√

σ−1
i .



Stabilizability

Stabilizability is weaker than controllability

Definition 15.

The pair (A,B) is stabilizable if for any x(0) = x0, there exists a u(t) such that
x(t) = Γtu satisfies

lim
t→∞

x(t) = 0

• Again, no restriction on u(t).
• Weaker than controllability

▶ Controllability: Can we drive the system to x(Tf ) = 0?
▶ Stabilizability: Only need to Approach x = 0.

• Stabilizable if uncontrollable subspace is naturally stable.

Lemma 16.

(A,B) is stabilizable if and only if there exists a X > 0, γ > 0 such that

AX +XAT − γBBT < 0

where the stabilizing controller is u(t) = − 1
2B

TX−1x(t)
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Stabilizability

� Note that feasibility of the stabilizability LMI does NOT require A to be
stable.

AX +XAT < γBBT

means that AX +XAT < 0 only for those x in the perp of the image
space of B.

� The stabilizing controller is a feedback gain!

For this LMI, the solution used in the proof is

X = Ŵt = γ

∫ t

0

e−AsBBT e−AT sds

The reverse-time controllability grammian...



Eigenvalue Assignment
Static Full-State Feedback

Recall our result on Reachability:

• To reach x(Tf ) = zf
▶ u(t) = BT eA(Tf−t)W−1

T zf
▶ This controller is open-loop

• It assumes perfect knowledge of system and state.

Problems

• Prone to Errors, Disturbances, Errors in the Model

Solution

• Use continuous measurements of state to generate control

Static Full-State Feedback Assumes:

• We can directly and continuously measure the state x(t)

• Controller is a static linear function of the measurement

u(t) = Kx(t), K ∈ Rm×n
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Eigenvalue Assignment

Previously the problem was Analysis:

� Determine properties of the maps x0 7→ x(·) and u(·) 7→ x(t)

Now the problem becomes Synthesis:

� Alter the dynamics

� Change the matrix, A, so that it has desired properties

Synthesis is always a two-part, non-convex (typically bilinear) problem:

� Modify A 7→ A+BK

� Ensure A+BK has desired properties

These must be done simultaneously !



Eigenvalue Assignment
Static Full-State Feedback

State Equations: u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +BKx(t)

= (A+BK)x(t)

Stabilization: Find a matrix K ∈ Rm×n such that

A+BK

is Hurwitz.

Eigenvalue Assignment: Given {λ1, · · · , λn}, find K ∈ Rm×n such that

λi ∈ eig(A+BK) for i = 1, · · · , n.

Note: A solution to the eigenvalue assignment problem can also solve the
stabilization problem.

Question: Is eigenvalue assignment actually harder?
M. Peet Lecture 5: Controllability 14 / 1



Eigenvalue Assignment
Single-Input Case

Theorem 17.

Suppose B ∈ Rn×1. Eigenvalues of A+BK are freely assignable if and only if
(A,B) is controllable.

Use place to assign eigenvalues.
But this is a course on LMIs, so we take a different approach.
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The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 18.

The Static State-Feedback Problem is to find a feedback matrix K such that

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t)

is stable

• Find K such that A+BK is Hurwitz.

Can also be put in LMI format:

Find X > 0, K :

X(A+BK) + (A+BK)TX < 0

Problem: Bilinear in K and X.
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ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t)

is stable

• Find K such that A+BK is Hurwitz.

Can also be put in LMI format:

Find X > 0, K :

X(A+BK) + (A+BK)TX < 0

Problem: Bilinear in K and X.

2
0
2
2
-0
6
-0
7

Lecture 5
Controllability

The Static State-Feedback Problem

State-feedback refers to the fact that u(t) = Kx(t) is a function of all the states,
which we assume are all individually measurable. Static refers to the fact that
the linear function Kx does not vary in time.

� Resolving this bilinearity is a quintessential step in the controller synthesis
process.

� Carries over throughout the course in various generalizations

� The resolution is quite simple and elegant.



An Equivalent LMI for Static State-Feedback

• The bilinear problem in K and X is a common paradigm.
• Bilinear optimization is not convex.
• To convexify the problem, we use a change of variables.

Problem 1:

Find X > 0,K :

X(A+BK) + (A+BK)TX < 0

Problem 2:

Find P > 0, Z :

AP +BZ + PAT + ZTBT < 0

Definition 19.

Two optimization problems are equivalent if a solution to one will provide a
solution to the other.

Theorem 20.

Problem 1 is equivalent to Problem 2.
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The Dual Lyapunov LMI

Problem 1:

Find X > 0, :

XA+ATX < 0

Problem 2:

Find Y > 0, :

Y AT +AY < 0

Lemma 21.

Problem 1 is equivalent to problem 2.

Proof.

First we show 1) solves 2). Suppose X > 0 is a solution to Problem 1. Let
Y = X−1 > 0.

• If XA+ATX < 0, then

X−1(XA+ATX)X−1 < 0

• Hence

X−1(XA+ATX)X−1 = AX−1 +X−1AT = AY + Y AT < 0

• Therefore, Problem 2 is feasible with solution Y = X−1.
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The Dual Lyapunov LMI
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Proof.

Now we show 2) solves 1) in a similar manner. Suppose Y > 0 is a solution to
Problem 1. Let X = Y −1 > 0.

• Then

XA+ATX = X(AX−1 +X−1AT )X

= X(AY + Y AT )X < 0

Conclusion: If V (x) = xTPx proves stability of ẋ = Ax,

• Then V (x) = xTP−1x proves stability of ẋ = ATx.
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A Stabilization LMI using the Variable Substitution Trick

Thus we rephrase Problem 1

Problem 1:

Find P > 0,K :

(A+BK)P + P (A+BK)T < 0

Problem 2:

Find X > 0, Z :

AX +BZ +XAT + ZTBT < 0

Theorem 22.

Problem 1 is equivalent to Problem 2.

Proof.

We will show that 2) Solves 1). Suppose X > 0, Z solves 2). Let P = X > 0
and K = ZP−1. Then

(A+BK)P + P (A+BK)T = AP + PAT +BKP + PKTBT

= AP + PAT +BZ + ZTBT < 0

Now suppose that P > 0 and K solve 1). Let X = P > 0 and Z = KP . Then

AP + PAT +BZ + ZTBT = (A+BK)P + P (A+BK)T < 0
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The Stabilization Problem

The result can be summarized more succinctly

Theorem 23.

(A,B) is static-state-feedback stabilizable if and only if there exists some P > 0
and Z such that

AP + PAT +BZ + ZTBT < 0

with u(t) = ZP−1x(t).
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Controllers for D-stability

Recall the LMI for D-stability where we add in the controller u = Kx.

Theorem 24.

The pole locations, z ∈ C of A+BK satisfy |z| ≤ r, Rex ≤ −α and
z + z∗ ≤ −c|z − z∗| if and only if there exists some P > 0 such that

[
−rP (A+BK)P

((A+BK)P )T −rP

]
< 0,

(A+BK)P + ((A+BK)P )T + 2αP < 0, and
[

(A+BK)P + ((A+BK)P )T c((A+BK)P − ((A+BK)P )T )
c(((A+BK)P )T − (A+BK)P ) (A+BK)P + ((A+BK)P )T

]
< 0
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Lecture 5
Controllability

Controllers for D-stability

Note the D-stability LMI already appears in “Dual” Form

� LMIs are particularly useful in that they allow one to directly and
sequentially impose constraints on the variables by combining different
LMI constraints into a single LMI.

� So we can add closed-loop eigenvalue constraints.

� Or robustness constraints.

� However, this is limited by the variable substitution process Z = KQ and
P = Q−1.

� Old variables K, P must not appear anywhere in the LMI.



Controllers for D-stability

Then we have an LMI which gives us a controller for D-stabilization

Lemma 25 (An LMI for D-Stabilization).

Suppose there exists X > 0 and Z such that[
−rP AP +BZ

(AP +BZ)T −rP

]
< 0,

AP +BZ + (AP +BZ)T + 2αP < 0, and
[

AP +BZ + (AP +BZ)T c(AP +BZ − (AP +BZ)T )
c((AP +BZ)T − (AP +BZ)) AP +BZ + (AP +BZ)T

]
< 0

Then if K = ZP−1, the pole locations, z ∈ C of A+BK satisfy |x| ≤ r,
Rex ≤ −α and z + z∗ ≤ −c|z − z∗|.
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The Discrete-Time Case

Now consider the discrete-time system:

xk+1 = Axk +Buk

For discrete-time, controllability and reachability are not equivalent!
• Consider xk+1 = 0. Controllable, but not reachable.
• Lets ignore these pathological cases

Definition 26.

The Discrete-Time Controllability Gramian of pair (A,B) is

W :=

∞∑

0

AkBBT (AT )k

Lemma 27 (An LMI for the Controllability Gramian).

If (A,B) is controllable, then W > 0 is the unique solution to

ATWA−W = −BBT

M. Peet Lecture 5: Controllability 24 / 1



The Discrete-Time Stabilization Problem

Again, we seek a feedback controller uk = Kxk for which the closed-loop is
Schur.
State Equations: uk = Kxk

xk+1 = Axk +Buk

= Axk +BKxk

= (A+BK)xk

Stabilization: Find a matrix F ∈ Rm×n such that

A+BK

is Schur. Recall that A+BK is Schur if and only if there exists a P > 0 such
that (A+BK)TP (A+BK)− P < 0. Hence the following non-LMI problem

Find P > 0, K :

(A+BK)TP (A+BK)− P < 0
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The Discrete-Time Stabilization Problem

Now consider the Schur Stability condition:

(A+BK)TP (A+BK)− P < 0

Pre- and Post-multiplying by P−1 shows this matrix inequality is equivalent to

P−1 − P−1(A+BK)TP (A+BK)P−1 > 0

Applying the Schur Complement, this matrix inequality is equivalent to

[
P−1 (A+BK)P−1

P−1(A+BK)T P−1

]
> 0
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The Discrete-Time Stabilization Problem

We now have the following two equivalent problems:

Problem 1:
Find P > 0, K such that

P − (A+BK)TP (A+BK) > 0

Problem 2:
Find X > 0, K such that

[
X (A+BK)X

X(A+BK)T X

]
> 0

Taking Problem 2 and using the change of variables Z = KX, we get an LMI:

Lemma 28.

Suppose there exists some X > 0 and Z such that

[
X AX +BZ

(AX +BZ)T X

]
> 0

then if K = ZX−1, the closed-loop system matrix (A+BK) is Schur.
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The Discrete-Time Stabilization Problem

Final Note: An Alternative LMI condition for stabilizability is as follows

Lemma 29.

The pair (A,B) is discrete-time stabilizable if and only if there there exists some
P > 0 such that

APAT − P < BBT .
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