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Lecture 07

� We now begin to cover subjects not covered in 506. This rather long
section of the course covers lectures 7-11. Lecture 10 is the culmination
and describes the H∞-optimal output feedback problem. Lecture 11 is
brief and extends this to the H2-optimal output feedback problem.

� This lecture covers the mathematical machinery which will then be used
in Lectures 8-11.

� The essence of the lecture is to take what you learned about transfer
functions and block diagrams as an undergrad and make them
mathematically rigorous.



Signal Spaces
Normed Spaces and Lp norms

Definition 1.

A Norm on a vector space, V , is a function ∥·∥ : V → R+ such that

1. ∥x∥ = 0 if and only if x = 0

2. ∥αx∥ = |α|∥x∥ for all x ∈ V and α ∈ R
3. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ V (Pythagorean Inequality)

Definition 2.

A vector space with an associated norm is called a Normed Space.

On infinite sequences g : N → R
• ∥g∥ℓ1 =

∑∞
i=1 |gi|

• ∥g∥ℓ2 =
√∑∞

i=1 g
2
i

• ∥g∥ℓp = p
√∑∞

i=1 g
p
i

• ∥g∥ℓ∞ = maxi=1,...,∞ |gi|

On functions f : [0,∞) → R
• ∥f∥L1

=
∫∞
0

|f(s)|ds

• ∥f∥L2
=

√∫∞
0

f(s)2ds

• ∥f∥Lp = p

√∫∞
0

f(s)pds

• ∥f∥L∞ = sups∈[0,∞) |f(s)|
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Lecture 07

Signal Spaces

� In this lecture, we define new spaces of signals and new spaces of systems.

� As an aid, think of signals as a generalization of vectors and systems as a
generalization of matrices.

� Think of the Laplace transform as a Unitary coordinate transformation.

There is a distinction between system behaviour and system representation.

� State space A,B,C,D or the transfer function is a representation of a system. These
formats uses matrices or complex-valued functions (a signal) to parameterize the
representation. However, the system is NOT a set of matrices, nor a transfer function. The
system is a set of behaviours. When we talk about system norms, we talk about properties
of these behaviours and not properties of A,B,C,D or the transfer function. Yet, when we
do optimal control, we must be able to use the representation to infer properties of the
system behaviour. H∞ and H2, thus are both signal norms and measure the size of the
transfer function in a certain sense. However, they are not obviously system norms. The
only norm we have for systems is the induced norm, for which systems form an algebra. It is
necessary for systems to form an algebra, otherwise the standard use of block-diagram
algebra is invalid. It turns out the H∞ norm is equal to the induced norm of the system.
Thus if all systems have finite H∞ norm, block diagram algebra is valid. However, finite H2

norm does not necessarily imply finite H∞ norm. Thus, if we want to interconnect
subsystems, we must add finite H∞ norm as a constraint on each connected component.
For optimal H2 control, we must always add a finite H∞ norm constraint to the problem.
This is true for both LQR and Kalman filtering/LQG problems.



Signal Spaces - Inner Products
L2 is a Hilbert space

Only L2 has an Inner Product, ⟨·, ·⟩. Like the dot product, an Inner product
defines a measure of angle.

⟨x, y⟩ = ∥x∥∥y∥ cos θ
So x and y are ⊥ if ⟨x, y⟩ = 0

Theorem 3 (Cauchy Schwartz).

If ∥x∥2 = ⟨x, x⟩, then
|⟨x, y⟩| ≤ ∥x∥∥y∥

Likewise ∥x+ y∥2 = ∥x∥2 + ∥y∥2 iff ⟨x, y⟩ = 0 (Pythagorean Theorem).

Definition 4.

L2[0,∞) is the Hilbert space of functions f : R+ → Rn with inner product

⟨u, y⟩L2
=

1

2π

∫ ∞

0

u(t)T y(t)dt, ∥u∥2L2
= ⟨u, u⟩L2

=

∫ ∞

0

∥u(t)∥2dt
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Lecture 07

Signal Spaces - Inner Products

� Don’t confuse the Cauchy-Schwartz inequality ⟨x, y⟩ ≤ ∥x∥∥y∥ defined on
inner product spaces (e.g. signals) with the submultiplicative inequality
∥AB∥ ≤ ∥A∥∥B∥ defined for algebras (e.g. Matrices and Systems).



Operator Theory: Linear Operators

A Banach Space is a normed space which is complete (Any Lp or ℓp space)
A Hilbert Space is an inner product space which is complete (Only L2)

Definition 5 (The Space of Systems).

The normed space of bounded linear operators from X to Y is denoted
L(X,Y) with norm

∥P∥L(X,Y ) := sup
x∈X
x ̸=0

∥Px∥Y
∥x∥X

= K

• Satisfies the properties of a norm
• This type of norm is called an “induced” norm
• Notation: L(X) := L(X,X)
• If X is a Banach space, then L(X,Y ) is a Banach space

Properties: Suppose G1 ∈ L(X,Y ) and G2 ∈ L(Y, Z)
• Then G2 ⊙G1 ∈ L(X,Z).
• ∥G2 ⊙G1∥L(X,Z) ≤ ∥G2∥L(Y,Z)∥G1∥L(X,Y ).
• Composition forms an algebra.
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Lecture 07

Operator Theory: Linear Operators

� An algebra is a Normed Vector space with a multiplication operation
G2 ⊙G1 and an identity element (e.g. Matrices and Systems (Linear
Operators, more generally)). The algebra depends on which norm you
pick.

� Linear Operators act like matrices, except on signals (not vectors)

– “Linear Algebra” can refer to both operators and matrices

� The induced norm changes with the norms defined on X and Y .

� Recall σ̄(X) = maxx
∥Px∥2
∥x∥2

, which is the norm induced by the Euclidean
norm on vectors.

� Frobenius norm on Matrices

∥P∥F =

√∑
ij

P 2
ij

is not induced by any norm, so does not represent properties of the Matrix
as an operator. However, it does allow us to define the inner product on a
matrix.



Laplace Transform

Definition 6.

Given u ∈ L2[0,∞), the Laplace Transform of u is û = Λu, where

û(s) = (Λu)(s) = lim
T→∞

∫ T

0

u(t)e−stdt

if this limit exists.

Λ is a bounded linear operator - Λ ∈ L(L2, H2).

• Λ : L2 → H2.

• The norm ∥Λ∥L(L2,H2) is

∥Λ∥ = sup
u∈L2

∥Λu∥H2

∥u∥L2

=???

WAIT! What is H2?
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H2 - A Space of Integrable Analytic Functions

Definition 7.

A complex function is analytic if it is continuous and bounded.

A function is analytic if the Taylor series converges everywhere in the domain.

Definition 8.

A function û : C̄+ → Cn is in H2 if

1. û(s) is analytic on the Open RHP (denoted C+)

2. For almost every real ω,

lim
σ→0+

û(σ + ıω) = û(ıω)

▶ Which means continuous up to the imaginary axis

3. ∫ ∞

−∞
sup
σ≥0

∥û(σ + ıω)∥22 < ∞

▶ Which means integrable on every vertical line.
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Lecture 07

H2 - A Space of Integrable Analytic Functions

A rational function û(s) is analytic in the RHP if it has no poles in the RHP.



Equivalence Between H2 and L2

Theorem 9 (Maximum Modulus).

An analytic function cannot obtain its extrema in the interior of the domain.

Hence if û satisfies 1) and 2), then∫ ∞

−∞
sup
σ≥0

∥û(σ + ıω)∥22 =

∫ ∞

−∞
∥û(ıω)∥22dω

We equip H2 with a norm and inner product

∥û∥H2 =

∫ ∞

−∞
∥û(ıω)∥22dω, ⟨û, ŷ⟩H2 =

1

2π

∫ ∞

−∞
û(ıω)∗v̂(ıω)dω

Theorem 10 (Paley-Wiener).

1. If u ∈ L2[0,∞), then Λu ∈ H2.

2. If û ∈ H2, then there exists a u ∈ L2[0,∞) such that û = Λu (Onto).

• Shows that H2 is exactly the image of Λ on L2[0,∞)
• Shows the map is invertible
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Paley-Wiener

Lemma 11.

⟨Λu,Λy⟩H2
= ⟨u, y⟩L2

• Thus Λ is unitary.

• L2[0,∞) and H2 are isomorphic.

Definition 12.

The inverse of the Laplace transform, Λ−1 : H2 → L2[0,∞) is

u(t) = (Λ−1û)(t) =
1

2π

∫ ∞

−∞
eσt · eıωtû(σ + ıω)dω

where σ can be any real number.

∥Λ∥ = sup
u∈L2

∥Λu∥H2

∥u∥L2

=???
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H∞ - A Space of Bounded Analytic Functions

Definition 13.

A function Ĝ : C̄+ → Cn×m is in H∞ if

1. Ĝ(s) is analytic on the CRHP, C+.

2. lim
σ→0+

Ĝ(σ + ıω) = Ĝ(ıω)

3. sup
s∈C+

σ̄(Ĝ(s)) < ∞

• H∞ is a Banach Space with norm

∥Ĝ∥H∞ = ess sup
ω∈R

σ̄(Ĝ(ıω))
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H∞ (A Signal Space) and Multiplier Operators

Every element of H∞ defines a multiplication operator.

Definition 14.

Given Ĝ ∈ H∞, define MĜ ∈ L(H∞) by

(MĜû)(s) = Ĝ(s)û(s)

for û ∈ H2.

Functions vs. Operators

• Ĝ is a function.

• MĜ is an operator .

For any analytic functions, û and Ĝ, the function

ŷ(s) = Ĝ(s)û(s)
is analytic.

• Thus MĜ : H2 → H2.

• Thus Λ−1MĜΛ maps L2[0,∞) → L2[0,∞).

Theorem 15.

G is a Causal, Linear, Time-Invariant Operator on L2 if and only if there exists
some Ĝ ∈ H∞ such that G = Λ−1MĜΛ.

(ΛGu)(ıω) = Ĝ(ıω)û(ıω)

H∞ is the space of transfer functions for linear time-invariant systems.
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• Thus MĜ : H2 → H2.
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Lecture 07

H∞ (A Signal Space) and Multiplier Operators

We have said Nothing about the structure or parameterization of G.

� This result is NOT limited to state-space systems

� Also applies to PDEs, Delay systems, fractional systems, et c.



H∞ - The space of “Transfer Functions”

From Paley-Wiener, if G = Λ−1MĜΛ

Theorem 16.

∥G∥L(L2) = ∥MĜ∥L(H2) = ∥Ĝ∥H∞

The Gain of the system G can be calculated as ∥Ĝ∥H∞

• This is the motivation for H∞ control

• minimize supu
∥Gu∥L2

∥u∥L2
.

▶ minimize maximum energy of the output.

Conclusion: H∞ provides a complete parametrization of the space of causal
bounded linear time-invariant operators.

M. Peet Lecture 07: 11 / 27



Rational Transfer Functions (RH∞)

The space of bounded analytic functions, H∞ is infinite-dimensional.

• this makes it hard to design optimal controllers.

We usually restrict ourselves to state-space systems and state-space controllers.

Definition 17.

The space of rational functions is defined as

R :=

{
p(s)

q(s)
: p, q are polynomials

}

We define the following rational subspaces.

RH2 = R ∩H2

RH∞ = R ∩H∞

Note that RH2 and RH∞ are not complete(Banach) spaces.
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Lecture 07

Rational Transfer Functions (RH∞)

All proper, rational transfer functions have a state-space representation.

� The implication is that the limit of a sequence of state-space systems may
not be a state-space system.

� For example, the sequence of rational Padé functions converges to eτs.

� The limit of a set of state-space systems here is a delayed system.



Rational Transfer Functions (RH∞)

RH∞ is the set of proper rational functions with no poles in the closed right
half-plane (CRHP).

Definition 18.

• A rational function r(s) = p(s)
q(s) is Proper if the degree of p is less than or

equal to the degree of q.

• A rational function r(s) = p(s)
q(s) is Strictly Proper if the degree of p is less

than the degree of q.

Proposition 1.

1. Ĝ ∈ RH∞ if and only if Ĝ is proper with no poles on the closed right
half-plane.
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State-Space Systems

Define a State-Space System G : L2 → L2 by y = Gu if

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).

Theorem 19.
• For any stable state-space system, G, there exists some Ĝ ∈ RH∞ such
that

G = Λ−1MĜΛ

• For any Ĝ ∈ RH∞, the operator G = Λ−1MĜΛ can be represented in
state-space for some A,B,C and D where A is Hurwitz.

For state-space system, (A,B,C,D),

Ĝ(s) = C(sI −A)−1B +D

State-Space is NOT Unique. For any invertible T ,
• Ĝ = C(sI −A)−1B +D = CT−1(sI − TAT−1)−1TB +D.

▶ (A,B,C,D) and (TAT−1, TB,CT−1, D) both represent the system G.
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The KYP Lemma (AKA: The Bounded Real Lemma)

The most important theorem in this class.

Lemma 20.

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ∥Ĝ∥H∞ ≤ γ.

• There exists a X > 0 such that[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

Can be used to calculate the H∞-norm of a system
• Originally used to solve LMI’s using graphs. (Before Computers)
• Now used directly instead of graphical methods like Bode.

The feasibility constraints are linear
• Can be combined with other methods.
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The KYP Lemma

Proof.

We will only show that ii) implies i). The other direction requires the
Hamiltonian, which we have not discussed.

• We will show that if y = Gu, then ∥y∥L2 ≤ γ∥u∥L2 .

• From the 1 x 1 block of the LMI, we know that ATX +XA < 0, which
means A is Hurwitz.

• Because the inequality is strict, there exists some ϵ > 0 such that[
ATX +XA XB

BTX −(γ − ϵ)I

]
+

1

γ

[
CT

DT

] [
C D

]
=

[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
+

[
0 0
0 ϵI

]
< 0

• Let y = Gu. Then the state-space representation is

y(t) = Cx(t) +Du(t)

ẋ(t) = Ax(t) +Bu(t) x(0) = 0
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The KYP Lemma

Proof.
• Let V (x) = xTXx. Then the LMI implies[

x(t)
u(t)

]T [[
ATX +XA XB

BTX −(γ − ϵ)I

]
+

1

γ

[
CT

DT

] [
C D

]] [
x(t)
u(t)

]

=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ϵ)I

] [
x
u

]
+

1

γ

[
x
u

]T [
CT

DT

] [
C D

] [x
u

]
=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ϵ)I

] [
x
u

]
+

1

γ
yT y

= xT (ATX +XA)x+ xTXBu+ uTBTXx− (γ − ϵ)uTu+
1

γ
yT y

= (Ax+Bu)TXx+ xTX(Ax+Bu)− (γ − ϵ)uTu+
1

γ
yT y

= ẋ(t)TXx(t) + x(t)TXẋ(t)− (γ − ϵ)∥u(t)∥2 + 1

γ
∥y(t)∥2

= V̇ (x(t))− (γ − ϵ)∥u(t)∥2 + 1

γ
∥y(t)∥2 ≤ 0
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The KYP Lemma

Proof.

• Now we have V̇ (x(t))− (γ − ϵ)∥u(t)∥2 + 1

γ
∥y(t)∥2 ≤ 0

• Integrating in time, we get∫ T

0

(
V̇ (x(t))− (γ − ϵ)∥u(t)∥2 + 1

γ
∥y(t)∥2

)
dt

= V (x(T ))− V (x(0))− (γ − ϵ)

∫ T

0

∥u(t)∥2dt+ 1

γ

∫ T

0

∥y(t)∥2
)
dt ≤ 0

• Because A is Hurwitz, limt→∞ x(t) = 0.

• Hence limt→∞ V (x(t)) = 0.

• Likewise, because x(0) = 0, we have V (x(0)) = 0.
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The KYP Lemma

Proof.

• Since V (x(0)) = V (x(∞)) = 0,

lim
T→∞

[
V̇ (x(T ))− V̇ (x(0))− (γ − ϵ)

∫ T

0

∥u(t)∥2dt+ 1

γ

∫ T

0

∥y(t)∥2dt
]

= 0− 0− (γ − ϵ)

∫ ∞

0

∥u(t)∥2dt+ 1

γ

∫ ∞

0

∥y(t)∥2dt

= −(γ − ϵ)∥u∥2L2
+

1

γ
∥y∥2L2

≤ 0

• Thus
∥y∥2L2

≤ (γ2 − ϵγ)∥u∥2L2

• By definition, this means ∥Ĝ∥2H∞
= ∥G∥2L(L2)

≤ (γ2 − ϵγ) < γ2 or

∥Ĝ∥H∞ < γ
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The Positive Real Lemma
A Passivity Condition

A Variation on the KYP lemma is the positive-real lemma

Lemma 21.

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• G is passive. i.e. (⟨u,Gu⟩L2 ≥ 0).

• There exists a P > 0 such that[
ATP + PA PB − CT

BTP − C −DT −D

]
≤ 0
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The Positive Real Lemma

G is Passive (Positive Real) if

Ĝ(s) + Ĝ(s)∗ > 0

Or, equivalently ∠G(s) ∈ [−90◦,+90◦]

� Can be read off the Bode plot

� Phase lead or lag less than 90◦



H2-optimal control

Theorem 22.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ∥P̂∥2H2
< γ.

2. There exists some X > 0 such that

traceCXCT < γ

AX +XAT +BBT < 0
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Lecture 07

H2-optimal control

� The H2 norm of a transfer function is conceptually identical to the
Frobenius norm on a matrix.

� Minimizing the H2-norm using full-state feedback is the LQR problem.

� However, minimizing the H2 norm reflects a view of the system based on
representation and not operation. That is, the controller minimizes the
size of the representation of the system as opposed to the performance of
the system.

– Like judging a book based on how many words it has.

� H2-Control will require 2 applications of the Schur Complement.

� Note that a system can have finite H2 norm and still be unstable!



H2-optimal control

Proof.

Suppose A is Hurwitz and ∥P̂∥H2
< γ. Then the Controllability Grammian is

defined as

Xc =

∫ ∞

0

eAtBBT eA
T tdt

Now recall the Laplace transform

(
ΛeAt

)
(s) =

∫ ∞

0

eAte−tsdt

=

∫ ∞

0

e−(sI−A)tdt

= −(sI −A)−1e−(sI−A)tdt

∣∣∣∣t=−∞

t=0

= (sI −A)−1

Hence
(
ΛCeAtB

)
(s) = C(sI −A)−1B.

Note the implicit assumption on stability.
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H2-optimal control

Proof.(
ΛCeAtB

)
(s) = C(sI −A)−1B implies

∥P̂∥2H2
= ∥C(sI −A)−1B∥2H2

=
1

2π

∫ ∞

−∞
Trace((C(ıωI −A)−1B)∗(C(ıωI −A)−1B))dω

=
1

2π

∫ ∞

−∞
Trace((C(ıωI −A)−1B)(C(ıωI −A)−1B)∗)dω

= Trace

∫ ∞

0

CeAtBBT eA
T tCT dt

= TraceCXcC
T

Thus Xc ≥ 0 and TraceCXcC
T = ∥P̂∥2H2

< γ.

Third Equality uses linearity of the trace.
Fourth Equality holds by Plancherel Theorem
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H2-optimal control

Proof.

Likewise TraceBTXoB = ∥P̂∥2H2
. To show that we can make the inequality

strict X > 0, we simply let

X =

∫ ∞

0

eAt
(
BBT + ϵI

)
eA

T

dt

for sufficiently small ϵ > 0. Furthermore, we already know the controllability
grammian Xc and thus Xϵ satisfies the Lyapunov inequality.

ATXϵ +XϵA+BBT < 0

These steps can be reversed to obtain necessity.
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System Interconnections

Interconnected Systems (G,K):

y1 = G(u1 − y2)

y2 = K(u2 − y1)

Is the interconnection stable?

• If u1, u2 ∈ L2, are y1, y2 ∈ L2?

G
u
1

u
2

y
1

y
2 K

-

-

+

+

[
y1
y2

]
=

[
0 −G

−K 0

] [
y1
y2

]
+

[
G 0
0 K

] [
u1

u2

]
, or

[
I G
K I

] [
y1
y2

]
=

[
G 0
0 K

] [
u1

u2

]
The Matrix Inversion Formula:[
A11 A12

A21 A22

]−1

=

[
Q1 −A−1

11 A12Q2

−A−1
22 A21Q1 Q2

]
=

[
Q1 −Q1A12A

−1
22

−Q2A21A
−1
11 Q2

]
Q1 = (A11 −A12A

−1
22 A21)

−1 Q2 = (A22 −A21A
−1
11 A12)

−1[
y1
y2

]
=

[
I G
K I

]−1 [
G 0
0 K

] [
u1

u2

]
=

[
(I −GK)−1G −G(I −KG)−1K

−K(I −GK)−1G (I −KG)−1K

] [
u1

u2

]
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Lecture 07

System Interconnections

Note how we use the algebraic nature of systems to solve for signals.



The Small Gain Theorem[
y1
y2

]
=

[
(I −GK)−1G −G(I −KG)−1K

−K(I −GK)−1G (I −KG)−1K

] [
u1

u2

]
If (I −GK)−1 is well-behaved, then the
interconnection is stable.

• What do we mean by well-behaved?

• ∥(I −GK)−1∥ ≤ ∞?

G
u
1

u
2

y
1

y
2 K

-

-

+

+

Theorem 23 (Small Gain Theorem).

Suppose B is a Banach Algebra and Q ∈ B. If ∥Q∥ < 1, then (I −Q)−1 exists
and furthermore

(I −Q)−1 =

∞∑
k=0

Qk

A generalization of the power-series expansion:
∞∑
k=0

rk =
1

1− r
= (1− r)−1
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Lecture 07

The Small Gain Theorem

Note the norm here is the one associated to the Banach Algebra

� Systems are only a Banach Algebra under the induced norm, which is
equivalent to the H∞-norm of the transfer function.

� Induced Norms: supu
∥GKu∥Y
∥u∥X

� Therefore: H∞ norm

� Does the H2 norm work?????



The Passivity Theorem[
y1
y2

]
=

[
(I −GK)−1G −G(I −KG)−1K

−K(I −GK)−1G (I −KG)−1K

] [
u1

u2

]
Recall that we say a system G is passive if
⟨u,Gu⟩ ≥ 0

• Equivalent to positivity.

G
u
1

u
2

y
1

y
2 K

-

-

+

+

Theorem 24 (Passivity Theorem).

If ⟨u,Gu⟩ ≥ 0 (passive), and −⟨u,Ku⟩ ≥ ϵ∥u∥ (−K strictly passive), then

(I −GK)−1G

exists and is passive.

Obvious extensions exist for the other 3 maps:[
(I −GK)−1G −G(I −KG)−1K

−K(I −GK)−1G (I −KG)−1K

]
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