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2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

We introduce the control framework by separating internal signals from external
signals.
Output Signals:

• z: Output to be controlled/minimized
▶ Regulated output

• y: Output used by the controller
▶ Must be measured in real-time by sensor
▶ May replicate signals from regulated output
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2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

Input Signals:
• w: Disturbance, Tracking Signal, etc.

▶ exogenous input

• u: Output from controller
▶ Input to actuator
▶ Not related to external input
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The Optimal Control Framework

The controller closes the loop from y to u.
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Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

For a linear system P , we have 4 subsystems.
[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]

All Pij are MIMO

P11 : w 7→ z P12 : u 7→ z

P21 : w 7→ y P22 : u 7→ y
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Lecture 08

The Optimal Control Framework

Note that systems, like matrices, are also closed under Concatenation. That is,
we can stack them horizontally or vertically.

Note also the signals move right to left. This makes it easier to read the block
diagram as an equation of the form

LHS = RHS



The Regulator

First Step: Formulate the control problem in the 2-input/2-output framework.

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D
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Example: the regulator

If we define
z2 = u q = w1 + u

z1 = yp y = r + w2
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P
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K + +
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Example: the regulator
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The Regulator

We use a Regulator when we are trying to suppress the effect of disturbances on

outputs of the system.



The Regulator

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is
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Example: the regulator

The reconfigured plant P is given by



z1(t)
z2(t)
y(t)


 =



P0 0 P0

0 0 I
P0 I P0




︸ ︷︷ ︸
P



w1(t)
w2(t)
u(t)




If P0 = (A,B,C,D), then

P =




A B 0 B

C
0
C

D 0 D
0 0 I
D I D
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Example: the regulator

The reconfigured plant P is given by
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The Regulator

Note also that getting from P0 0 P0

0 0 I
P0 I P0


to

P =


A B 0 B

C
0
C

D 0 D
0 0 I
D I D


is not an algebraic operation.

If we were using Transfer Functions, however, we could use the algebraic repre-

sentation.



Diagnostics
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Command inputs and diagnostic outputs

wsystemzsystem

diagnostic outputscommand inputs

ysystem usystem

System

Controller

Formulate the above as

wsystem

wcommands

zsystem

zdiag

ysystem

ycommands

usystem

udiag

System

Plant

Controller
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Command inputs and diagnostic outputs

wsystemzsystem

diagnostic outputscommand inputs

ysystem usystem

System

Controller

Formulate the above as

wsystem

wcommands

zsystem

zdiag

ysystem

ycommands

usystem

udiag

System

Plant

Controller
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Tracking Control
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Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−r = tracking input w2 = nproc w1 = r

e = tracking error w3 = nsensor u = u

nproc = process noise z1 = e y1 = r

nsensor = sensor noise z2 = u y2 = yp
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Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3
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z u2 =

++

−r = tracking input w2 = nproc w1 = r
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nproc = process noise z1 = e y1 = r
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Tracking Control

� When using the Tracing Framework we do not want the output of the
nominal plant to be zero.

� Instead we want the difference between the nominal output and the
reference to be zero.

� In the optimal control framework, we always want the output (z) of the
enlarged plant P to be zero.



Tracking Control
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Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−

P =




I −P0 0 −P0

0 0 0 I
I 0 0 0
0 P0 I P0




z1 = r − P0(nproc + u)

z2 = u

y1 = r

y2 = w3 + P0(nproc + u)

M. Peet Lecture 08: 9 / 21



Tracking Control
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Example: a tracking problem
nproc nsensoru

r
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++
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Tracking Control

Note the treatment of systems as algebraic objects

Figure: Find the 4-system and 9-matrix representations G = (A,B,C,D).
F,M : disturbance; Ȳ , ϕ, u: regulated output



Linear Fractional Transformation

Close the loop
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Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK

CK DK

]
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Linear Fractional Transformation

z = P11w + P12u

y = P21w + P22u

u = Ky

Solving for u,
u = KP21w +KP22u

Thus

(I −KP22)u = KP21w

u = (I −KP22)
−1KP21w

Now we solve for z:

z =
[
P11 + P12(I −KP22)

−1KP21

]
w
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Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P,K), denoted

S(P,K) := P11 + P12(I −KP22)
−1KP21

AKA: Lower Star Product
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Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=
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P11 P12
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] [
w
u

]
where P̂ =
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C2 D21 D22




and

u = Ky where K̂ =
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AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
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wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21
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Other Fractional Transformations

Lower LFT:
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Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

S(P,K) := P11+P12(I−KP22)
−1KP21

Upper LFT:

Lower LFT

S(P,K) = P11+P12K(I−P22K)−1P21

wz

y u
P

K

Upper LFT

S(P,K) = P22+P21Q(I −P11Q)−1P12

wz

y u
P

Q

Star Product

w1

w2

z1

z2

y u

K

P

S(P,K) =[
S(P,K11) P12(I −K11P22)

−1K12

K21(I − P22K11)
−1P21 S(K,P22)

]
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Linear fractional transformations

S̄(P,K) := P22+P21Q(I−P11Q)−1P12
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Other Fractional Transformations

Star Product:Lower LFT

S(P,K) = P11+P12K(I−P22K)−1P21

wz

y u
P

K

Upper LFT

S(P,K) = P22+P21Q(I −P11Q)−1P12

wz

y u
P

Q

Star Product

w1

w2

z1

z2

y u

K

P

S(P,K) =[
S(P,K11) P12(I −K11P22)

−1K12

K21(I − P22K11)
−1P21 S(K,P22)

]
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Linear fractional transformations

S(P,K) :=

[
S(P,K11) P12(I −K11P22)

−1K12

K21(I − P22K11)
−1P21 S̄(K,P22)

]
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Well-Posedness

The interconnection doesn’t always make sense.

Definition 1.

The interconnection S(P,K) is well-posed if for any smooth w and any x(0)
and xK(0), there exist functions x, xK , u, y, z such that

ẋ(t) = Ax(t) +B1w(t) +B2u(t) ẋK(t) = AKxK(t) +BKy(t)

z(t) = C1x(t) +D11w(t) +D12u(t) u(t) = CKxK(t) +DKy(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

Note: The solution does not need to be in L2.

• Says nothing about stability.
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Well-Posedness

� State-space systems always have a solution.

� If there is a state-space representation of the closed-loop system, the
interconnection is well-posed.

� If we were to use the Transfer Function representation, we would be
looking at whether the closed-loop TF is rational and proper

� There exists a system-level version of well-posedness, but requires us to
define the extended space L2e of functions integrable on finite intervals.
(needed for passivity, IQCs, etc.)



Well-Posedness

In state-space format:

[
ẋ(t)
ẋK(t)

]
=

[
A 0
0 AK

] [
x(t)
xK(t)

]
+

[
B2 0
0 BK

] [
u(t)
y(t)

]
+

[
B1

0

]
w(t)

z(t) =
[
C1 0

] [ x(t)
xK(t)

]
+
[
D12 0

] [u(t)
y(t)

]
+D11w(t)

From
u(t) = DKy(t) + CKxK(t)

y(t) = D22u(t) + C2x(t) +D21w(t),

we have [
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK

C2 0

] [
x(t)
xK(t)

]
+

[
0

D21

]
w(t).

Because the rest is state-space, the interconnection is well-posed if and only if

the matrix

[
I −DK

−D22 I

]
is invertible.
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Well-Posedness

Question: When is [
I −DK

−D22 I

]

invertible?
Answer: 2x2 matrices have a closed-form inverse

[
I −DK

−D22 I

]−1

=

[
I +DKQD22 DKQ

QD22 Q

]

where Q = (I −D22DK)−1.

Proposition 1.

The interconnection S(P,K) is well-posed if and only if (I −D22DK) is
invertible.

• Equivalently (I −DKD22) is invertible.

• Sufficient conditions: DK = 0 or D22 = 0.

• To optimize over K, we will need to enforce this constraint somehow.
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Well-Posedness

� The Simplest example of a system which is not well-posed is
interconnection of matrices DK = I and D22 = I.

� This corresponds to audio feedback (Larsen Effect) when a microphone
and speaker are placed next to each other.

We now have the state-space representation of S(P,K).[
ẋ(t)
ẋK(t)

]
=

([
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

])[
x(t)
xK(t)

]

+

[
B1 +B2DKQD21

BKQD21

]
w(t)

z(t) =

([
C1 0

]
+
[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

])[
x(t)
xK(t)

]
+ (D11 +D12DKQD21)w(t)

where Q = (I −D22DK)−1



Optimal Control

Definition 2.

The Optimal H∞-Control Problem is

min
K∈H∞

∥S(P,K)∥H∞ = ∥S(P,K)∥L(L2)

• Also Optimal H∞ dynamic-output-feedback Control Problem

Definition 3.

The Optimal H2-Control Problem is

min
K∈H∞

∥S(P,K)∥H2
such that

S(P,K) ∈ H∞.
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Optimal Control

Choose K to minimize

∥P11 + P12(I −KP22)
−1KP21∥H∞

Equivalently choose

[
AK BK

CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+
[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.

In either case, the problem is Nonlinear.

M. Peet Lecture 08: 19 / 21



Optimal Control

Choose K to minimize

∥P11 + P12(I −KP22)
−1KP21∥H∞

Equivalently choose

[
AK BK

CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+
[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.

In either case, the problem is Nonlinear.

2
0
2
3
-0
9
-2
7

Lecture 08

Optimal Control

There are 3 ways to linearize this problem.

� A change of variables and the Coprime factorization/Youla
parameterization approach (Not discussed, but introduced)

� The special case of static full-state feedback (Also a change of variables).

� A change of variables in the dynamic output feedback case.



Optimal Control

There are several ways to address the problem of nonlinearity.

∥P11 + P12(I −KP22)
−1KP21∥H∞

Variable Substitution: The easiest way to make the problem linear is by
declaring a new variable R := (I −KP22)

−1K

The optimization problem becomes: Choose R to minimize

∥P11 + P12RP21∥H∞
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Realizability
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P12
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+

wz P11

RP12 P21

+
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Optimal Control

We optimize

∥P11 + P12(I −KP22)
−1KP21∥H∞ = ∥P11 + P12RP21∥H∞

Once, we have the optimal R, we can recover the optimal K as

K = R(I +RP22)
−1

Problems:

• how to optimize ∥·∥H∞ .

• Is the controller stable?
▶ Does the inverse (I +RP22)

−1 exist? Yes.
▶ Is it a bounded linear operator?
▶ In which space?

• An important branch of control.
▶ Coprime factorization
▶ Youla parameterization

• We will sidestep this body of work.
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