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Recall: Linear Fractional Transformation

Z 4 «— W
P
y <t u
> K
Plant:
™ z P P, w A‘ B B,
|:y:| = |:P11 P12:| |:u:| where P = Cl D11 D12
. Cy | D21 Doy

Controller: B | Ak | Bk
u = Ky where K= {TK‘W
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Optimal Control

Choose K to minimize

| Pi1 + Pia(I — K Py2) 'K Py ||

Equivalently choose [ él,i g; } to minimize

A 0 B, 0 I —Dg] '[0 Ck]| Bi+ B2DrQDo

+ BxQD

0 Ax 0 Bgk||-D2x2 I Cy 0 K& D21
[

I —Dxk] '[0 Ck
—D22 I

0] + [D12 0] { } D11+ D12Dr QD2

C: 0 .

where Q = (I — DQQDK)_l.
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Optimal Full-State Feedback Control

Z «— W

For the full-state feedback case, we consider a controller of the form

u(t) = Fa(t)
Controller: 0] 0
u= Ky where K= {T‘T}
Plant: ‘
A | By By
{Z} - {PH P12} {w] where P=| Ci| D D
Y Py Po |u I 0 0
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Optimal Full-State Feedback Control

Thus the closed-loop state-space representation is

S(P,f():[ A+ BF | B }

C1+ DyoF ‘ Dy

By the KYP lemma, ||S(P, K)| .. <~ if and only if there exists some X > 0
such that

(A+ BoF)T'X + X(A+ BoF) XB
BfX —I

1 [(Cy + Do F)T
+ - {( ! +DT12 ) } [(Ci+ D12F) Dip] <0
v 11

This is a matrix inequality, but is nonlinear
® Quadratic (Not Bilinear)
® May NOT apply variable substitution trick.
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LOptimal Full-State Feedback Control

Recall the KYP Lemma

Lemma 1.
Suppose

co-[245].

Then the following are equivalent.
o 1Glla. <.
e There exists a X > 0 such that
ATX + XA XB 1
T + -
B X —~I v

CT
DT

][o D] <0



Schur Complement

The KYP condition is

[ATX—i—XA XB} 1 [CT

R WDT} (¢ D] <0

Recall the Schur Complement

Theorem 2 (Schur Complement).

For any S € S, @ € S™ and R € R"*™, the following are equivalent.

1 M R
RT Q
2. Q<0and M —RQ'RT <0

<o

In this case, let Q = —%I <0,

ATX + XA XB

T
BTX I R=[C D]

|

Note we are making the LMI
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Schur Complement

The Schur Complement says that

ATX + XA XB 1[cT
BTX —71} 5 [DT [c D] <0
if and only if
ATX +XA XB CT
B'X  —~I DT| <o
C D —I

This leads to the
Full-State Feedback Condition

(A+BoF)T'X + X(A+ ByF) XB; (C1+ DpoF)T

BT X —I DE <0
(Cl + D12F) Dy —~I

which is now bilinear in X and F'.
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LSchur Complement

Statement of the Dilated KYP Lemma

co-[245].

Then the following are equivalent.
o |Gllr. <.
e There exists a X > 0 such that

Lemma 3.
Suppose

ATX + XA XB (7T
BTX —~I DT
C D —I

<0

Schur Compleme




Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of
this LMI.

Lemma 4 (KYP Dual).

Suppose
co-[#/3]

Then the following are equivalent.
* 1Glla. <.
® There exists a Y > 0 such that
YAT+AY B YCT
BT —~I DT | <0
CcY D —~I
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Dual KYP Lemma

Proof.

Let X =Y. Then
YAT +AY B YCT

e —~I DT | <0 and Y >0
oY D I
if and only if X > 0 and
Y=t 0 o] [YAT+AY B YCT|[y~!' 0 0
0 I 0 BT —~I DT 0 I 0
0 0 I cy D Al 0 0 I
ATX + XA XB C7T]
= BTX —I DT| <o.
C D —qI)

By the Schur complement this is equivalent to
ATX +XA XB] K 1[CT
T + = | pT

B X I "~ |D

Mc D] <0

By the KYP lemma, this is equivalent to |G|l g < 7. O
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Full-State Feedback Optimal Control

We can now apply this result to the state-feedback problem.

Theorem 5.
The following are equivalent:

® There exists an F such that

A| Bi B o0
g Ci| D Di2 |, {T‘T} <7
1 0 0

Hoo

® There exist Y > 0 and Z such that

YAT + AY + ZTBY + B,Z By YCT + ZTDi,
= —I DT, <0
CiY + D157 Dy, —I

Then F = ZY 1.
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Full-State Feedback Optimal Control

Proof.
Suppose there exists an F' such that ||S(P, K(0,0,0, F))|lz., <~. By the Dual
KYP lemma, this implies there exists a Y > 0 such that
Y(A+ BoF)T +(A+ ByF)Y By Y(Cp+ DppF)T
BT —I DT <0.
(Cl +D12F)Y D11 —’yI

Let Z = FY. Then
YAT + ZTBT + AY + BoZ By YCOT +zZTDL)T

Bf I Df,
C1Y + D127 Dy —I
[YAT + YFTBT + AY + BoFY By YCT +YFTDL)T
L 01Y+D12FY D11 7’)/]'
[Y(A+ BoF)T + (A+ BoF)Y By Y(Cyp+ DyoF)T
= BT —I W < 0.
L (Cl aF Dle)Y D11 —’y[

-
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L Full-State Feedback Optimal Control

For convenience, we use

S(P,K(0,0,0,F)) =S

Full-State Feedback Optimal Control

Then
AT ZTB] 4 AY £ Bz B YCT + ZTDR)T
7 g oL,
Y +Duz D,
VAT LYETB] A ¢ BiFY B, YCT 4 YFTDL)
- B a1 of;




Full-State Feedback Optimal Control

Proof.

Now suppose there exists a Y > 0 and Z such that

YAT + ZTBT + AY + BoZ B

BY
CiY + D127

Let F = ZY ! Then

Y(A+ BoF)T + (A+ BoF)Y

M. Peet

B
(C1 + D1y F)Y

[YAT + YFTBY + AY + B,FY B

BY
C1Y + D1oFY

[YAT + ZTBT + AY + ByZ

BY
C1Y + D13Z

YCT + ZT D7,

=1 D1T1
D11 —")/I

By Y(Ci+ DpF)T

< 0.

< 0.

=All D1T1
Dll —")/I
YCF +YFT DY,

-1 D1T1

D11 7’)/1

By YC’lT —|—TZTDf2
-l Dy,
D11 —’)/I
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Full-State Feedback Optimal Control

Therefore the following optimization problems are equivalent
Form A

A ‘ By B ol o
min ||S Ci| D Do |,
I 0 0 0] F
Hoo
Form B
vz
-Y 0 0 0
0 YAT+AY +Z'BY + BsZ By YCT +ZTDE,
0 B{ —~1 DlT1
0 Cly + Dng D11 —’)/I

The optimal controller is given by FF = ZY 1.
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Optimal Estimation

o) = ] [0)

Initially, we want 2(t) — x(t) where x(t) is the state of the plant

Objective: Design

® The exogenous input is the disturbances, w

® The controlled input is the estimate of the state, 2(t).

® The observed output, obviously, is the output from the plant, y(¢)

The regulated output is the error, e(t) = Z(t) — x(t).

We thus obtain the 9-matrix representation of the optimal control problem given

by
i(t) A B0 [z(t)
—Ifo]I w(t)
y(t) C Do

I
—~

~
~—
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Optimal Filtering

Objective: Design

[f(t)} B [ AL | By ] [x(t)}
2t)] | Co| D | |y@)]"
This time, however, we want Z(t) — z(t)
® The exogenous input is the disturbances, w
® The controlled input is the estimate of z(t) —i.e. ().
® The observed output is still the output from the plant, y(t)
® The regulated output is the error, e, (t) = 2(t) — z(¢).
The main difference here is that the estimator is trying to reject the effect of
the disturbance, w, on the regulated output. However, in this case, w is not

sensor noise since it affects the regulated output.
The 9-matrix representation of the optimal control problem given by

(1) A | B 07 [a(t)
z2t)| =| —Cy [ Dy | I w(t)
y(t) C | D [0 ] [ul)

The filtering problem is harder than the estimation problem in that we cannot
assume Luenberger structure in all cases.
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Luenberger Observer Structure

For the estimation problem, we may assume
2(t) = A#(t) + L(Ca(t) — y(t))
Which vyields the optimization problem

A | B |0
A+LC | —-L
—C1 || —D1s 117[ T 0 ])
C D |0 .

min S
LeR e Xny

Now, applying the LFT in Subsec. ??, we have the closed-loop dynamics are
given by

i(t) A 0 B a(t)
[i(t)} =| -LC A+LC|-LD gs(t)] :
2(t) —C I | Du w(t)
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Duality and Optimal Observers

Actually, the optimal observer problem can be reduced to the optimal
state-feedback problem by noticing that

S Al B |0 A+LC | -L _[A+LC | —(B+LD)
= G| =Du | G s I |o - Ci | —Dn
C D 0

{ AT L CTLT | Cf r AT | of cf
= =S -BT | -D}; -DT
_(B +D° L ) —D1y I 0 0

b))

T T T
e
= -B ‘_Dll -D "o | L

I 0 0

So, just solve the optimal state-feedback problem and use L = K.

and hence

. _ A || B |0 A+ LC | —L
B *gl [ D1y [T [ T 0]

D 0

Hoo Hoo
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