LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 09: An LMI for H_{∞}-Optimal Full-State Feedback Control

Recall: Linear Fractional Transformation

Plant:

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right] \quad \text { where } \quad P=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right]
$$

Controller:

$$
u=K y \quad \text { where } \quad K=\left[\begin{array}{l|l}
A_{K} & B_{K} \\
\hline C_{K} & D_{K}
\end{array}\right]
$$

Optimal Control

Choose K to minimize

$$
\left\|P_{11}+P_{12}\left(I-K P_{22}\right)^{-1} K P_{21}\right\|
$$

Equivalently choose $\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$ to minimize

$$
\left.\left.\left.\|\left[\begin{array}{cc}
A & 0 \\
0 & A_{K}
\end{array}\right]+\left[\begin{array}{cc}
B_{2} & 0 \\
0 & B_{K}
\end{array}\right]\left[\begin{array}{cc}
I & -D_{K} \\
-D_{22} & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & C_{K} \\
C_{2} & 0
\end{array}\right] \right\rvert\, \begin{array}{c}
B_{1}+B_{2} D_{K} Q D_{21} \\
B_{K} Q D_{21}
\end{array}\right] \|_{\left[\begin{array}{ll}
C_{1} & 0
\end{array}\right]+\left[\begin{array}{ll}
D_{12} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -D_{K} \\
-D_{22} & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & C_{K} \\
C_{2} & 0
\end{array}\right]}^{D_{11}+D_{12} D_{K} Q D_{21}}\right] \|_{H_{\infty}}
$$

where $Q=\left(I-D_{22} D_{K}\right)^{-1}$.

Optimal Full-State Feedback Control

For the full-state feedback case, we consider a controller of the form

$$
u(t)=F x(t)
$$

Controller:

$$
u=K y \quad \text { where } \quad K=\left[\begin{array}{l|l}
0 & 0 \\
\hline 0 & F
\end{array}\right]
$$

Plant:

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right] \quad \text { where } \quad P=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
I & 0 & 0
\end{array}\right]
$$

Optimal Full-State Feedback Control

Thus the closed-loop state-space representation is

$$
\underline{\mathrm{S}}(\hat{P}, \hat{K})=\left[\begin{array}{c|c}
A+B_{2} F & B_{1} \\
\hline C_{1}+D_{12} F & D_{11}
\end{array}\right]
$$

By the KYP lemma, $\|\underline{\mathrm{S}}(\hat{P}, \hat{K})\|_{H_{\infty}}<\gamma$ if and only if there exists some $X>0$ such that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\left(A+B_{2} F\right)^{T} X+X\left(A+B_{2} F\right) & X B_{1} \\
B_{1}^{T} X & -\gamma I
\end{array}\right]} \\
& \quad+\frac{1}{\gamma}\left[\begin{array}{cc}
\left(C_{1}+D_{12} F\right)^{T} \\
D_{11}^{T}
\end{array}\right]\left[\left(C_{1}+D_{12} F\right)\right. \\
& \left.D_{11}\right]<0
\end{aligned}
$$

This is a matrix inequality, but is nonlinear

- Quadratic (Not Bilinear)
- May NOT apply variable substitution trick.

Lecture 09

-Optimal Full-State Feedback Control

Optimal Full-State Feedback Control

Recall the KYP Lemma

Lemma 1.

Suppose

$$
\hat{G}(s)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] .
$$

Then the following are equivalent.

- $\|\hat{G}\|_{H_{\infty}} \leq \gamma$.
- There exists a $X>0$ such that

$$
\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\gamma I
\end{array}\right]+\frac{1}{\gamma}\left[\begin{array}{c}
C^{T} \\
D^{T}
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]<0
$$

Schur Complement

The KYP condition is

$$
\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\gamma I
\end{array}\right]+\frac{1}{\gamma}\left[\begin{array}{l}
C^{T} \\
D^{T}
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]<0
$$

Recall the Schur Complement

Theorem 2 (Schur Complement).

For any $S \in \mathbb{S}^{n}, Q \in \mathbb{S}^{m}$ and $R \in \mathbb{R}^{n \times m}$, the following are equivalent.

1. $\left[\begin{array}{cc}M & R \\ R^{T} & Q\end{array}\right]<0$
2. $Q<0$ and $M-R Q^{-1} R^{T}<0$

In this case, let $Q=-\frac{1}{\gamma} I<0$,

$$
M=\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\gamma I
\end{array}\right] \quad R=\left[\begin{array}{ll}
C & D
\end{array}\right]^{T}
$$

Note we are making the LMI Larger.

Schur Complement

The Schur Complement says that

$$
\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\gamma I
\end{array}\right]+\frac{1}{\gamma}\left[\begin{array}{l}
C^{T} \\
D^{T}
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]<0
$$

if and only if

$$
\left[\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right]<0
$$

This leads to the

Full-State Feedback Condition

$$
\left[\begin{array}{ccc}
\left(A+B_{2} F\right)^{T} X+X\left(A+B_{2} F\right) & X B_{1} & \left(C_{1}+D_{12} F\right)^{T} \\
B_{1}^{T} X & -\gamma I & D_{11}^{T} \\
\left(C_{1}+D_{12} F\right) & D_{11} & -\gamma I
\end{array}\right]<0
$$

which is now bilinear in X and F.

Lecture 09

Statement of the Dilated KYP Lemma

Lemma 3.

Suppose

$$
\hat{G}(s)=\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] .
$$

Then the following are equivalent.

- $\|\hat{G}\|_{H_{\infty}} \leq \gamma$.
- There exists a $X>0$ such that

$$
\left[\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right]<0
$$

Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of this LMI.

Lemma 4 (KYP Dual).

Suppose

$$
\hat{G}(s)=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right] .
$$

Then the following are equivalent.

- $\|G\|_{H_{\infty}} \leq \gamma$.
- There exists a $Y>0$ such that

$$
\left[\begin{array}{ccc}
Y A^{T}+A Y & B & Y C^{T} \\
B^{T} & -\gamma I & D^{T} \\
C Y & D & -\gamma I
\end{array}\right]<0
$$

Dual KYP Lemma

Proof.

Let $X=Y^{-1}$. Then

$$
\left[\begin{array}{ccc}
Y A^{T}+A Y & B & Y C^{T} \\
B^{T} & -\gamma I & D^{T} \\
C Y & D & -\gamma I
\end{array}\right]<0 \quad \text { and } \quad Y>0
$$

if and only if $X>0$ and

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y^{-1} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{ccc}
Y A^{T}+A Y & B & Y C^{T} \\
B^{T} & -\gamma I & D^{T} \\
C Y & D & -\gamma I
\end{array}\right]\left[\begin{array}{ccc}
Y^{-1} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right]<0 .
\end{aligned}
$$

By the Schur complement this is equivalent to

$$
\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\gamma I
\end{array}\right]+\frac{1}{\gamma}\left[\begin{array}{l}
C^{T} \\
D^{T}
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]<0
$$

By the KYP lemma, this is equivalent to $\|G\|_{H_{\infty}} \leq \gamma$.

Full-State Feedback Optimal Control

We can now apply this result to the state-feedback problem.

Theorem 5.

The following are equivalent:

- There exists an F such that

$$
\left\|\underline{S}\left(\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
I & 0 & 0
\end{array}\right],\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & F
\end{array}\right]\right)\right\|_{H_{\infty}} \leq \gamma .
$$

- There exist $Y>0$ and Z such that

$$
\left[\begin{array}{ccc}
Y A^{T}+A Y+Z^{T} B_{2}^{T}+B_{2} Z & B_{1} & Y C_{1}^{T}+Z^{T} D_{12}^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} Z & D_{11} & -\gamma I
\end{array}\right]<0
$$

Then $F=Z Y^{-1}$.

Full-State Feedback Optimal Control

Proof.

Suppose there exists an F such that $\|\underline{\mathrm{S}}(P, K(0,0,0, F))\|_{H_{\infty}} \leq \gamma$. By the Dual KYP lemma, this implies there exists a $Y>0$ such that

$$
\left[\begin{array}{ccc}
Y\left(A+B_{2} F\right)^{T}+\left(A+B_{2} F\right) Y & B_{1} & Y\left(C_{1}+D_{12} F\right)^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
\left(C_{1}+D_{12} F\right) Y & D_{11} & -\gamma I
\end{array}\right]<0
$$

Let $Z=F Y$. Then

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
Y A^{T}+Z^{T} B_{2}^{T}+A Y+B_{2} Z & B_{1} & \left.Y C_{1}^{T}+Z^{T} D_{12}^{T}\right)^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} Z & D_{11} & -\gamma I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
Y A^{T}+Y F^{T} B_{2}^{T}+A Y+B_{2} F Y & B_{1} & \left.Y C_{1}^{T}+Y F^{T} D_{12}^{T}\right)^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} F Y & D_{11} & -\gamma I
\end{array}\right] \\
& =\left[\begin{array}{ccc}
Y\left(A+B_{2} F\right)^{T}+\left(A+B_{2} F\right) Y & B_{1} & Y\left(C_{1}+D_{12} F\right)^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
\left(C_{1}+D_{12} F\right) Y & D_{11} & -\gamma I
\end{array}\right]<0 .
\end{aligned}
$$

For convenience, we use

$$
\underline{\mathrm{S}}(P, K(0,0,0, F))=\underline{\mathrm{S}}\left(\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
I & 0 & 0
\end{array}\right],\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & F
\end{array}\right]\right)
$$

Full-State Feedback Optimal Control

Proof.

Now suppose there exists a $Y>0$ and Z such that

$$
\left[\begin{array}{ccc}
Y A^{T}+Z^{T} B_{2}^{T}+A Y+B_{2} Z & B_{1} & Y C_{1}^{T}+Z^{T} D_{12}^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} Z & D_{11} & -\gamma I
\end{array}\right]<0 .
$$

Let $F=Z Y^{-1}$. Then

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y\left(A+B_{2} F\right)^{T}+\left(A+B_{2} F\right) Y & B_{1} & Y\left(C_{1}+D_{12} F\right)^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
\left(C_{1}+D_{12} F\right) Y & D_{11} & -\gamma I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
Y A^{T}+Y F^{T} B_{2}^{T}+A Y+B_{2} F Y & B_{1} & Y C_{1}^{T}+Y F^{T} D_{12}^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} F Y & D_{11} & -\gamma I
\end{array}\right] \\
& =\left[\begin{array}{ccc}
Y A^{T}+Z^{T} B_{2}^{T}+A Y+B_{2} Z & B_{1} & Y C_{1}^{T}+Z^{T} D_{12}^{T} \\
B_{1}^{T} & -\gamma I & D_{11}^{T} \\
C_{1} Y+D_{12} Z & D_{11} & -\gamma I
\end{array}\right]<0 .
\end{aligned}
$$

Full-State Feedback Optimal Control

Therefore the following optimization problems are equivalent Form A

$$
\min _{F}\left\|\underline{S}\left(\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
I & 0 & 0
\end{array}\right],\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & F
\end{array}\right]\right)\right\|_{H_{\infty}}
$$

Form B

$$
\begin{aligned}
& \min _{\gamma, Y, Z} \gamma: \\
& {\left[\begin{array}{cccc}
-Y & 0 & 0 & 0 \\
0 & Y A^{T}+A Y+Z^{T} B_{2}^{T}+B_{2} Z & B_{1} & Y C_{1}^{T}+Z^{T} D_{12}^{T} \\
0 & B_{1}^{T} & -\gamma I & D_{11}^{T} \\
0 & C_{1} Y+D_{12} Z & D_{11} & -\gamma I
\end{array}\right]<0}
\end{aligned}
$$

The optimal controller is given by $F=Z Y^{-1}$.

Optimal Estimation

Objective: Design

$$
\left[\begin{array}{l}
\dot{\hat{x}}(t) \\
\hat{z}(t)
\end{array}\right]=\left[\begin{array}{l|l}
A_{L} & B_{L} \\
\hline C_{L} & D_{L}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
$$

Initially, we want $\hat{z}(t) \rightarrow x(t)$ where $x(t)$ is the state of the plant

- The exogenous input is the disturbances, w
- The controlled input is the estimate of the state, $\hat{z}(t)$.
- The observed output, obviously, is the output from the plant, $y(t)$
- The regulated output is the error, $e(t)=\hat{x}(t)-x(t)$.

We thus obtain the 9 -matrix representation of the optimal control problem given by

$$
\left[\begin{array}{c}
\dot{x}(t) \\
z(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c|c|c}
A & B & 0 \\
\hline \hline-I & 0 & I \\
\hline C & D & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
w(t) \\
u(t)
\end{array}\right] .
$$

Optimal Filtering

Objective: Design

$$
\left[\begin{array}{l}
\dot{\hat{x}}(t) \\
\hat{z}(t)
\end{array}\right]=\left[\begin{array}{c|c}
A_{L} & B_{L} \\
\hline C_{L} & D_{L}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
$$

This time, however, we want $\hat{z}(t) \rightarrow z(t)$

- The exogenous input is the disturbances, w
- The controlled input is the estimate of $z(t)$ - i.e. $\hat{z}(t)$.
- The observed output is still the output from the plant, $y(t)$
- The regulated output is the error, $e_{z}(t)=\hat{z}(t)-z(t)$.

The main difference here is that the estimator is trying to reject the effect of the disturbance, w, on the regulated output. However, in this case, w is not sensor noise since it affects the regulated output.
The 9-matrix representation of the optimal control problem given by

$$
\left[\begin{array}{c}
\dot{x}(t) \\
z(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c|c|c}
A & B & 0 \\
\hline \hline-C_{1} & D_{11} & I \\
\hline C & D & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
w(t) \\
u(t)
\end{array}\right]
$$

The filtering problem is harder than the estimation problem in that we cannot assume Luenberger structure in all cases.

Luenberger Observer Structure

For the estimation problem, we may assume

$$
\dot{\hat{x}}(t)=A \hat{x}(t)+L(C \hat{x}(t)-y(t))
$$

Which yields the optimization problem

$$
\min _{L \in \mathbb{R}^{n_{x} \times n_{y}}}\left\|\underline{S}\left(\left[\begin{array}{c|c|c}
A & B & 0 \\
\hline \hline-C_{1} & -D_{11} & I \\
\hline C & D & 0
\end{array}\right],\left[\begin{array}{c|c}
A+L C & -L \\
\hline I & 0
\end{array}\right]\right)\right\|_{H_{\infty}} .
$$

Now, applying the LFT in Subsec. ??, we have the closed-loop dynamics are given by

$$
\left[\begin{array}{c}
\dot{\dot{x}}(t) \\
\dot{\hat{x}}(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{cc|c}
A & 0 & B \\
-L C & A+L C & -L D \\
\hline-C_{1} & I & D_{11}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
\hat{x}(t) \\
w(t)
\end{array}\right],
$$

Duality and Optimal Observers

Actually, the optimal observer problem can be reduced to the optimal state-feedback problem by noticing that

$$
\begin{aligned}
& \underline{\mathbf{s}}\left(\left[\begin{array}{c||c|c}
A & B & 0 \\
\hline \hline-C_{1} & -D_{11} & C_{1} \\
\hline C & D & 0
\end{array}\right],\left[\begin{array}{c|c}
A+L C & -L \\
\hline I & 0
\end{array}\right]\right)=\left[\begin{array}{c|c}
A+L C & -(B+L D) \\
\hline C_{1} & -D_{11}
\end{array}\right] \\
& =\left[\begin{array}{c|c}
A^{T}+C^{T} L^{T} & C_{1}^{T} \\
\hline-\left(B^{T}+D^{T} L^{T}\right) & -D_{11}^{T}
\end{array}\right]^{T}=\underline{\mathrm{s}}\left(\left[\begin{array}{c|c|c}
A^{T} & C_{1}^{T} & C^{T} \\
\hline-B^{T} & -D_{11}^{T} & -D^{T} \\
I & 0 & 0
\end{array}\right],\left[\begin{array}{c|c}
0 & 0 \\
\hline 0 & L^{T}
\end{array}\right]\right)^{T}
\end{aligned}
$$

and hence

So, just solve the optimal state-feedback problem and use $L=K^{T}$.

