LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 10: An LMI for H_{∞}-Optimal Output Feedback Control

Optimal Output Feedback

Recall: Linear Fractional Transformation

Plant:

$$
\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
w \\
u
\end{array}\right] \quad \text { where } \quad P=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right]
$$

Controller:

$$
u=K y \quad \text { where } \quad K=\left[\begin{array}{c|c}
A_{K} & B_{K} \\
\hline C_{K} & D_{K}
\end{array}\right]
$$

Defining the System Variables

Choose K to minimize

$$
\left\|P_{11}+P_{12}\left(I-K P_{22}\right)^{-1} K P_{21}\right\|
$$

Equivalently choose $\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$ to minimize
$\left.\left.\left.\|\left[\begin{array}{cc}A & 0 \\ 0 & A_{K}\end{array}\right]+\left[\begin{array}{cc}B_{2} & 0 \\ 0 & B_{K}\end{array}\right]\left[\begin{array}{cc}I & -D_{K} \\ -D_{22} & I\end{array}\right]^{-1}\left[\begin{array}{cc}0 & C_{K} \\ C_{2} & 0\end{array}\right] \right\rvert\, \begin{array}{c}B_{1}+B_{2} D_{K} Q D_{21} \\ B_{K} Q D_{21}\end{array}\right] \|_{\left[\begin{array}{ll}C_{1} & 0\end{array}\right]+\left[\begin{array}{ll}D_{12} & 0\end{array}\right]\left[\begin{array}{cc}I & -D_{K} \\ -D_{22} & I\end{array}\right]^{-1}\left[\begin{array}{cc}0 & C_{K} \\ C_{2} & 0\end{array}\right]}^{D_{11}+D_{12} D_{K} Q D_{21}}\right] \|_{H_{\infty}}$
where $Q=\left(I-D_{22} D_{K}\right)^{-1}$.

Representing the Closed-Loop System

Recall the Matrix Inversion Lemma:
Lemma 1.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right]
\end{aligned}
$$

Closed Loop System is Nonlinear Function of

 $A_{K}, B_{K}, C_{K}, D_{K}$.Recall that

$$
\left[\begin{array}{cc}
I & -D_{K} \\
-D_{22} & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I+D_{K} Q D_{22} & D_{K} Q \\
Q D_{22} & Q
\end{array}\right]
$$

where $Q=\left(I-D_{22} D_{K}\right)^{-1}$. Then

$$
\begin{aligned}
A_{c l} & :=\left[\begin{array}{cc}
A & 0 \\
0 & A_{K}
\end{array}\right]+\left[\begin{array}{cc}
B_{2} & 0 \\
0 & B_{K}
\end{array}\right]\left[\begin{array}{cc}
I & -D_{K} \\
-D_{22} & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & C_{K} \\
C_{2} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
A & 0 \\
0 & A_{K}
\end{array}\right]+\left[\begin{array}{cc}
B_{2} & 0 \\
0 & B_{K}
\end{array}\right]\left[\begin{array}{cc}
I+D_{K} Q D_{22} & D_{K} Q \\
Q D_{22} & Q
\end{array}\right]\left[\begin{array}{cc}
0 & C_{K} \\
C_{2} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
A+B_{2} D_{K} Q C_{2} & B_{2}\left(I+D_{K} Q D_{22}\right) C_{K} \\
B_{K} Q C_{2} & A_{K}+B_{K} Q D_{22} C_{K}
\end{array}\right]
\end{aligned}
$$

Likewise

$$
\begin{aligned}
& C_{c l}:=\left[\begin{array}{ll}
C_{1} & 0
\end{array}\right]+\left[\begin{array}{ll}
D_{12} & 0
\end{array}\right]\left[\begin{array}{cc}
I+D_{K} Q D_{22} & D_{K} Q \\
Q D_{22} & Q
\end{array}\right]\left[\begin{array}{cc}
0 & C_{K} \\
C_{2} & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
C_{1}+D_{12} D_{K} Q C_{2} & D_{12}\left(I+D_{K} Q D_{22}\right) C_{K}
\end{array}\right] \\
& \text { м. Peet }
\end{aligned}
$$

A New Set of Decision Variables

Thus we have

$$
\left[\begin{array}{cc|c}
A+B_{2} D_{K} Q C_{2} & B_{2}\left(I+D_{K} Q D_{22}\right) C_{K} & B_{1}+B_{2} D_{K} Q D_{21} \\
B_{K} Q C_{2} & A_{K}+B_{K} Q D_{22} C_{K} & B_{K} Q D_{21} \\
\hline\left[C_{1}+D_{12} D_{K} Q C_{2}\right. & \left.D_{12}\left(I+D_{K} Q D_{22}\right) C_{K}\right] & D_{11}+D_{12} D_{K} Q D_{21}
\end{array}\right]
$$

where $Q=\left(I-D_{22} D_{K}\right)^{-1}$.

- This is nonlinear in $\left(A_{K}, B_{K}, C_{K}, D_{K}\right)$.
- Hence we make a change of variables (First of several).

$$
\begin{aligned}
& A_{K 2}=A_{K}+B_{K} Q D_{22} C_{K} \\
& B_{K 2}=B_{K} Q \\
& C_{K 2}=\left(I+D_{K} Q D_{22}\right) C_{K} \\
& D_{K 2}=D_{K} Q
\end{aligned}
$$

A New parametrization of the closed-loop system.

This yields the system

$$
\left.\left[\begin{array}{cc}
{\left[\begin{array}{cc}
A+B_{2} D_{K 2} C_{2} & B_{2} C_{K 2} \\
B_{K 2} C_{2} & A_{K 2}
\end{array}\right]} & B_{1}+B_{2} D_{K 2} D_{21} \\
B_{K 2} D_{21} \\
\hline\left[C_{1}+D_{12} D_{K 2} C_{2}\right. & D_{12} C_{K 2}
\end{array}\right], D_{11}+D_{12} D_{K 2} D_{21}\right]
$$

Which is affine in $\left[\begin{array}{l|l}A_{K 2} & B_{K 2} \\ \hline C_{K 2} & D_{K 2}\end{array}\right]$.

Inverting the Variable Substitution

Recovering D_{K}

Hence we can optimize over our new variables.

- System is linear in new variables and eliminates original variables.
- However, the change of variables must be invertible.

Now suppose we have $D_{K 2}$. Then

$$
D_{K 2}=D_{K} Q=D_{K}\left(I-D_{22} D_{K}\right)^{-1}
$$

implies that

$$
D_{K}=D_{K 2}\left(I-D_{22} D_{K}\right)=D_{K 2}-D_{K 2} D_{22} D_{K}
$$

or

$$
\left(I+D_{K 2} D_{22}\right) D_{K}=D_{K 2}
$$

which can be inverted to get

$$
D_{K}=\left(I+D_{K 2} D_{22}\right)^{-1} D_{K 2}
$$

Inverting the Variable Substitution

Recovering C_{K}

If we recall that

$$
(I-Q M)^{-1}=I+Q(I-M Q)^{-1} M
$$

then we get

$$
I+D_{K} Q D_{22}=I+D_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22}=\left(I-D_{K} D_{22}\right)^{-1}
$$

Examine the variable $C_{K 2}$

$$
\begin{aligned}
C_{K 2} & =\left(I+D_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22}\right) C_{K} \\
& =\left(I-D_{K} D_{22}\right)^{-1} C_{K}
\end{aligned}
$$

Hence, given D_{K} and $C_{K 2}$, we can recover C_{K} as

$$
C_{K}=\left(I-D_{K} D_{22}\right) C_{K 2}
$$

Inverting the Variable Substitution

Once we have C_{K} and D_{K}, the other variables are easily recovered as

$$
\begin{aligned}
& B_{K}=B_{K 2} Q^{-1}=B_{K 2}\left(I-D_{22} D_{K}\right) \\
& A_{K}=A_{K 2}-B_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22} C_{K}
\end{aligned}
$$

To summarize, the original variables can be recovered as

$$
\begin{aligned}
& D_{K}=\left(I+D_{K 2} D_{22}\right)^{-1} D_{K 2} \\
& B_{K}=B_{K 2}\left(I-D_{22} D_{K}\right) \\
& C_{K}=\left(I-D_{K} D_{22}\right) C_{K 2} \\
& A_{K}=A_{K 2}-B_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22} C_{K}
\end{aligned}
$$

Closed Loop System Parameters

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{c|c}
A_{c l} & B_{c l} \\
\hline C_{c l} & D_{c l}
\end{array}\right]:=\left[\begin{array}{cc}
A+B_{2} D_{K 2} C_{2} & B_{2} C_{K 2} \\
B_{K 2} C_{2} & A_{K 2}
\end{array}\right]}
\end{array} \begin{array}{c}
B_{1}+B_{2} D_{K 2} D_{21} \\
B_{K 2} D_{21} \\
\hline\left[C_{1}+D_{12} D_{K 2} C_{2}\right. \\
D_{12} C_{K 2}
\end{array}\right] \begin{array}{l}
D_{11}+D_{12} D_{K 2} D_{21}
\end{array}\right] .
$$

Or

$$
\begin{aligned}
A_{c l} & =\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & B_{2} \\
I & 0
\end{array}\right]\left[\begin{array}{ll}
A_{K 2} & B_{K 2} \\
C_{K 2} & D_{K 2}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
C_{2} & 0
\end{array}\right] \\
B_{c l} & =\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & B_{2} \\
I & 0
\end{array}\right]\left[\begin{array}{ll}
A_{K 2} & B_{K 2} \\
C_{K 2} & D_{K 2}
\end{array}\right]\left[\begin{array}{c}
0 \\
D_{21}
\end{array}\right] \\
C_{c l} & =\left[\begin{array}{ll}
C_{1} & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & D_{12}
\end{array}\right]\left[\begin{array}{ll}
A_{K 2} & B_{K 2} \\
C_{K 2} & D_{K 2}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
C_{2} & 0
\end{array}\right] \\
D_{c l} & =\left[D_{11}\right]+\left[\begin{array}{ll}
0 & D_{12}
\end{array}\right]\left[\begin{array}{ll}
A_{K 2} & B_{K 2} \\
C_{K 2} & D_{K 2}
\end{array}\right]\left[\begin{array}{c}
0 \\
D_{21}
\end{array}\right]
\end{aligned}
$$

Optimal Output Feedback Control

However, if we apply the KYP Lemma, the result is bilinear in X and $A_{K}, B_{K}, C_{K}, D_{K}$

- Dual KYP Lemma is used for Controller Synthesis
- Primal KYP Lemma is used for observer Synthesis
- For Observer-Based Controller Synthesis, we need both Primal AND Dual forms....

Lemma 2 (Transformation Lemma).

Suppose that

$$
\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]>0
$$

Then there exist $X_{2}, X_{3}, Y_{2}, Y_{3}$ such that

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{2}^{T} & X_{3}
\end{array}\right]=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{2}^{T} & Y_{3}
\end{array}\right]^{-1}=Y^{-1}>0
$$

where $Y_{h}=\left[\begin{array}{rr}Y_{1} & I \\ Y_{2}^{T} & 0\end{array}\right]$ has full rank.

Lecture 10

Optimal Output Feedback Control

The primal variable is

$$
\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{2}^{T} & X_{3}
\end{array}\right]
$$

The dual variable is

$$
\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{2}^{T} & Y_{3}
\end{array}\right]
$$

Optimal Output Feedback Control

Proof.

- Since

$$
\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]>0
$$

by the Schur complement $X_{1}>0$ and $X_{1}^{-1}-Y_{1}<0$. Since $I-X_{1} Y_{1}=X_{1}\left(X_{1}^{-1}-Y_{1}\right)$, we conclude that $I-X_{1} Y_{1}$ is invertible.

- Choose any two square invertible matrices X_{2} and Y_{2} such that

$$
X_{2} Y_{2}^{T}=I-X_{1} Y_{1}
$$

- Because X_{2} and Y_{2} are invertible,

$$
Y_{h}^{T}=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
I & 0
\end{array}\right] \text { and } X_{h}=\left[\begin{array}{cc}
I & 0 \\
X_{1} & X_{2}
\end{array}\right]
$$

are also non-singular.

Optimal Output Feedback Control

$$
\left[\begin{array}{ccc}
Y_{h}^{T} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]
$$

will be the half-dual transformation.

- Y_{h}^{T} contains the top half of the dual Lyapunov variable.
- X_{h} contains the bottom half of the primal Lyapunov variable.

Optimal Output Feedback Control

Proof.

- Now define X and Y as

$$
X=Y_{h}^{-T} X_{h} \quad \text { and } \quad Y=X_{h}^{-1} Y_{h}^{T} .
$$

Then

$$
X Y=Y_{h}^{-1} X_{h} X_{h}^{-1} Y_{h}=I
$$

Are X_{2}, Y_{2} actually the completion of their respective matrices and what are X_{3}, Y_{3} ? If X_{2}, Y_{2} are square, then
$X_{h}^{-1}=\left[\begin{array}{cc}I & 0 \\ X_{1} & X_{2}\end{array}\right]^{-1}=\left[\begin{array}{cc}I & 0 \\ -X_{2}^{-1} X_{1} & X_{2}^{-1}\end{array}\right] \quad Y_{h}^{-T}=\left[\begin{array}{cc}Y_{1} & Y_{2} \\ I & 0\end{array}\right]^{-1}=\left[\begin{array}{cc}0 & I \\ Y_{2}^{-1} & -Y_{2}^{-1} Y_{1}\end{array}\right]$
So, since $X_{2} Y_{2}^{T}=I-X_{1} Y_{1}$, we have $X_{3}=-Y_{2}^{-1} Y_{1} X_{2}$ since

$$
X=Y_{h}^{-T} X_{h}=\left[\begin{array}{cc}
X_{1} & X_{2} \\
Y_{2}^{-1}-Y_{2}^{-1} Y_{1} X_{1} & -Y_{2}^{-1} Y_{1} X_{2}
\end{array}\right]=\left[\begin{array}{cc}
X_{1} & X_{2} \\
X_{2}^{T} & -Y_{2}^{-1} Y_{1} X_{2}
\end{array}\right]
$$

and $Y_{3}=-X_{2}^{-1} X_{1} Y_{2}$ since

$$
Y=X_{h}^{-1} Y_{h}^{T}=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
X_{2}^{-1}-X_{2}^{-1} X_{1} Y_{1} & -X_{2}^{-1} X_{1} Y_{2}
\end{array}\right]=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{2}^{T} & -X_{2}^{-1} X_{1} Y_{2}
\end{array}\right]
$$

We will be applying the half-dual transformation

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y_{h}^{T} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right] \overbrace{\left[\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right]}^{\text {primal KYP lemma }}\left[\begin{array}{ccc}
Y_{h} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
Y_{h}^{T} A^{T} X Y_{h}+Y_{h}^{T} X A Y_{h} & Y_{h}^{T} X B & Y_{h}^{T} C^{T} \\
B^{T} X Y_{h} & -\gamma I & D^{T} \\
C Y_{h} & D & -\gamma I
\end{array}\right] \\
& =\left[\begin{array}{ccc}
Y_{h}^{T} A^{T} X_{h}^{T}+X_{h} A Y_{h} & X_{h} B & Y_{h}^{T} C^{T} \\
B^{T} X_{h}^{T} & -\gamma I & D^{T} \\
C Y_{h} & D & -\gamma I
\end{array}\right]
\end{aligned}
$$

Since

$$
Y_{h}^{T}=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
I & 0
\end{array}\right] \text { and } X_{h}=\left[\begin{array}{cc}
I & 0 \\
X_{1} & X_{2}
\end{array}\right] \text {, }
$$

this will only work if Y_{2} and X_{2} are somehow eliminated from the expression.

Optimal Output Feedback Control

Lemma 3 (Converse Transformation Lemma).

Given $X=\left[\begin{array}{cc}X_{1} & X_{2} \\ X_{2}^{T} & X_{3}\end{array}\right]>0$ where X_{2} has full column rank. Let

$$
X^{-1}=Y=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{2}^{T} & Y_{3}
\end{array}\right]
$$

then

$$
\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]>0
$$

and $Y_{h}=\left[\begin{array}{rr}Y_{1} & I \\ Y_{2}^{T} & 0\end{array}\right]$ has full column rank.
This result shows the Transformation Lemma is not conservative.

Optimal Output Feedback Control

Proof.

Since X_{2} is full rank, $X_{h}=\left[\begin{array}{cc}I & 0 \\ X_{1} & X_{2}\end{array}\right]$ also has full column rank. Note that $Y X=I$ implies

$$
Y_{h}^{T} X=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
I & 0
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{2}^{T} & X_{3}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X_{1} & X_{2}
\end{array}\right]=X_{h} .
$$

Hence

$$
Y_{h}^{T}=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
I & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X_{1} & X_{2}
\end{array}\right] Y=X_{h} Y
$$

has full column rank. Now, since $X Y=I$ implies $X_{1} Y_{1}+X_{2} Y_{2}^{T}=I$, we have

$$
X_{h} Y_{h}=\left[\begin{array}{cc}
I & 0 \\
X_{1} & X_{2}
\end{array}\right]\left[\begin{array}{cc}
Y_{1} & I \\
Y_{2}^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
Y_{1} & I \\
X_{1} Y_{1}+X_{2} Y_{2}^{T} & X_{1}
\end{array}\right]=\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]
$$

Furthermore, because Y_{h} has full rank,

$$
\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]=X_{h} Y_{h}=X_{h} Y X_{h}^{T}=Y_{h}^{T} X Y_{h}>0
$$

Lecture 10

-Optimal Output Feedback Control

Note the relationship:

$$
\left[\begin{array}{cc}
Y_{1} & I \\
I & X_{1}
\end{array}\right]=X_{h} Y_{h}
$$

Note how both X_{2} and Y_{2} vanish?

H_{∞}-optimal Dynamic Output Feedback Control

Theorem 1.

The following are equivalent.

1. There exists a $K=\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$ such that $\|\underline{S}(K, P)\|_{H_{\infty}}<\gamma$.
2. $\exists X, Y \in \mathbb{S}^{n_{s}}$ and $K_{3} \in \mathbb{R}^{n_{c}+n_{s} \times n_{m}+n_{s}}$ such that $\left[\begin{array}{cc}Y & I \\ I & X\end{array}\right]>0$ and
$\left[\begin{array}{cccc}A Y+Y A^{T} & A & B_{1} & Y C_{1}^{T} \\ A^{T} & X A+A^{T} X & X B_{1} & C_{1}^{T} \\ B_{1}^{T} & B_{1}^{T} X & -\gamma I & D_{11}^{T} \\ C_{1} Y & C_{1} & D_{11} & -\gamma I\end{array}\right]$

$$
+\left[\begin{array}{cc}
B_{2} & 0 \tag{1}\\
0 & I \\
0 & 0 \\
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{cccc}
0 & C_{2} & D_{21} & 0 \\
I & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
C_{2}^{T} & 0 \\
D_{21}^{T} & 0 \\
0 & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{cccc}
B_{2}^{T} & 0 & 0 & D_{12}^{T} \\
0 & I & 0 & 0
\end{array}\right]<0
$$

Moreover, if X, Y, K_{3} satisfy 2), then $D_{K}=\left(I+D_{K 2} D_{22}\right)^{-1} D_{K 2}$,
$B_{K}=B_{K 2}\left(I-D_{22} D_{K}\right), C_{K}=\left(I-D_{K} D_{22}\right) C_{K 2}$,
$A_{K}=A_{K 2}-B_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22} C_{K}$ where

$$
\left[\begin{array}{cc}
D_{K 2} & C_{K 2} \\
B_{K 2} & A_{K 2}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X B_{2} & X_{2}
\end{array}\right]^{-1}\left(K_{3}-\left[\begin{array}{cc}
0 & 0 \\
0 & X A Y
\end{array}\right]\right)\left[\begin{array}{cc}
I & C_{2} Y \\
0 & Y_{2}^{T}
\end{array}\right]^{-1}
$$

for any full-rank X_{2} and Y_{2} such that $X_{2} Y_{2}^{T}=I-X Y$.

The first step in the proof is to use the KYP lemma to show that $\|\underline{\mathrm{S}}(P, K)\|_{H_{\infty}}=\left\|\left[\begin{array}{l|l}A_{c l} & B_{c l} \\ \hline C_{c l} & D_{c l}\end{array}\right]\right\|_{H_{\infty}}<\gamma$ is equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y_{h}^{T} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{ccc}
A_{c l}^{T} X+X A_{c l} & X B_{c l} & C_{c l}^{T} \\
B_{c l}^{T} X_{h} & -\gamma I & D_{c l}^{T} \\
C_{c l} & D_{c l} & -\gamma I
\end{array}\right]\left[\begin{array}{ccc}
Y_{h} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
Y_{h}^{T} A_{c l}^{T} X_{h}^{T}+X_{h} A_{c l} Y_{h} & X_{h} B_{c l} & Y_{h}^{T} C_{c l}^{T} \\
B_{c l}^{T} X_{h}^{T} & -\gamma I & D_{c l}^{T} \\
C_{c l} Y_{h} & D_{c l} & -\gamma I
\end{array}\right]<0
\end{aligned}
$$

The next, and key step in the proof is
$\left[\begin{array}{ccc}X_{h} A_{c l} Y_{h} & X_{h} B_{c l} & 0 \\ 0 & 0 & 0 \\ C_{c l} Y_{h} & D_{c l} & 0\end{array}\right]=\left[\begin{array}{cc}X_{h} & 0 \\ 0 & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{cc}A_{c l} & B_{c l} \\ C_{c l} & D_{c l}\end{array}\right]\left[\begin{array}{ccc}Y_{h} & 0 & 0 \\ 0 & I & 0\end{array}\right]$
$=\left[\begin{array}{ccc}I & 0 & 0 \\ X & X_{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I\end{array}\right]\left(\left[\begin{array}{ccc}A & 0 & B_{1} \\ 0 & 0 & 0 \\ C_{1} & 0 & D_{11}\end{array}\right]+\left[\begin{array}{cc}B_{2} & 0 \\ 0 & I \\ D_{12} & 0\end{array}\right] K_{2}\left[\begin{array}{ccc}C_{2} & 0 & D_{21} \\ 0 & I & 0\end{array}\right]\right)\left[\begin{array}{cccc}Y_{1} & I & 0 & 0 \\ Y_{2}^{T} & 0 & 0 & 0 \\ 0 & 0 & I & 0\end{array}\right]$
$=\left[\begin{array}{cccc}A Y & A & B_{1} & 0 \\ X A Y & X A & X B_{1} & 0 \\ 0 & 0 & 0 & 0 \\ C_{1} Y & C_{1} & D_{11} & 0\end{array}\right]+\left[\begin{array}{cc}B_{2} & 0 \\ 0 & I \\ 0 & 0 \\ D_{12} & 0\end{array}\right]\left(\left[\begin{array}{cc}I & 0 \\ X B_{2} & X_{2}\end{array}\right] K_{2}\left[\begin{array}{cc}I & C_{2} Y \\ 0 & Y_{2}^{T}\end{array}\right]\right)\left[\begin{array}{cccc}0 & C_{2} & D_{21} & 0 \\ I & 0 & 0 & 0\end{array}\right]$
$=\left[\begin{array}{cccc}A Y & A & B_{1} & 0 \\ 0 & X A & X B_{1} & 0 \\ 0 & 0 & 0 & 0 \\ C_{1} Y & C_{1} & D_{11} & 0\end{array}\right]+\left[\begin{array}{cc}B_{2} & 0 \\ 0 & I \\ 0 & 0 \\ D_{12} & 0\end{array}\right] \underbrace{\left(\left[\begin{array}{cc}0 & 0 \\ 0 & X A Y\end{array}\right]+\left[\begin{array}{cc}I & 0 \\ X B_{2} & X_{2}\end{array}\right] K_{2}\left[\begin{array}{cc}I & C_{2} Y \\ 0 & Y_{2}^{T}\end{array}\right]\right)}_{K_{3}}\left[\begin{array}{c}0 \\ I\end{array}\right.$
$=\left[\begin{array}{cccc}A Y & A & B_{1} & 0 \\ 0 & X A & X B_{1} & 0 \\ 0 & 0 & 0 & 0 \\ C_{1} Y & C_{1} & D_{11} & 0\end{array}\right]+\left[\begin{array}{cc}B_{2} & 0 \\ 0 & I \\ 0 & 0 \\ D_{12} & 0\end{array}\right] K_{3}\left[\begin{array}{cccc}0 & C_{2} & D_{21} & 0 \\ I & 0 & 0 & 0\end{array}\right]$.

Then we are done, since

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Y_{h}^{T} A_{c l}^{T} X_{h}^{T}+X_{h} A_{c l} Y_{h} & X_{h} B_{c l} & Y_{h}^{T} C_{c l}^{T} \\
B_{c l}^{T} X_{h}^{T} & -\gamma I & D_{c l}^{T} \\
C_{c l} Y_{h} & D_{c l} & -\gamma I
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
X_{h} A_{c l} Y_{h} & X_{h} B_{c l} & 0 \\
0 & 0 & 0 \\
C_{c l} Y_{h} & D_{c l} & 0
\end{array}\right]+\left[\begin{array}{ccc}
X_{h} A_{c l} Y_{h} & X_{h} B_{c l} & 0 \\
0 & 0 & 0 \\
C_{c l} Y_{h} & D_{c l} & 0
\end{array}\right]^{T}+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\gamma I & 0 \\
0 & 0 & -\gamma I
\end{array}\right]
\end{aligned}
$$

Conclusion

The H_{∞}-optimal controller is a dynamic system.

- Transfer Function $\hat{K}(s)=\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$

Minimizes the effect of external input (w) on external output (z).

$$
\|z\|_{L_{2}} \leq\|\underline{\mathrm{S}}(P, K)\|_{H_{\infty}}\|w\|_{L_{2}}
$$

- Minimum Energy Gain

H_{2}-optimal dynamic output feedback control

Theorem 2.

The following are equivalent.

1. There exists a $\hat{K}=\left[\begin{array}{c|c}A_{K} & B_{K} \\ \hline C_{K} & D_{K}\end{array}\right]$ such that $\|S(K, P)\|_{H_{2}}<\gamma$.
2. There exist X_{1}, Y_{1}, Z, K_{3} such that

$$
\begin{gathered}
{\left[\begin{array}{ccc}
A Y+Y A^{T} & A & B_{1} \\
A^{T} & X A+A^{T} X & X B_{1} \\
B_{1}^{T} & B_{1}^{T} X & -\gamma I
\end{array}\right]+\left[\begin{array}{cc}
B_{2} & 0 \\
0 & I \\
0 & 0
\end{array}\right] K_{3}\left[\begin{array}{ccc}
0 & C_{2} & D_{21} \\
I & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
C_{2}^{T} & 0 \\
D_{21}^{T} & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{ccc}
B_{2}^{T} & 0 & 0 \\
0 & I & 0
\end{array}\right]<0,} \\
{\left[\begin{array}{ccc}
Y & I & Y C_{1}^{T} \\
I & X & C_{1}^{T} \\
C_{1} Y & C_{1} & W
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{ccc}
0 & C_{2} & 0 \\
I & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
C_{2}^{T} & 0 \\
0 & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{ccc}
0 & 0 & D_{12}^{T} \\
0 & 0 & 0
\end{array}\right]>0,} \\
D_{11}+\left[\begin{array}{lll}
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{c}
D_{21} \\
0
\end{array}\right]=0, \quad \operatorname{trace}(Z)<\gamma
\end{gathered}
$$

Moreover, $D_{K}=\left(I+D_{K 2} D_{22}\right)^{-1} D_{K 2}, B_{K}=B_{K 2}\left(I-D_{22} D_{K}\right)$,
$C_{K}=\left(I-D_{K} D_{22}\right) C_{K 2}, A_{K}=A_{K 2}-B_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22} C_{K}$ where

$$
\left[\begin{array}{cc}
D_{K 2} & C_{K 2} \\
B_{K 2} & A_{K 2}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X B_{2} & X_{2}
\end{array}\right]^{-1}\left(K_{3}-\left[\begin{array}{cc}
0 & 0 \\
0 & X A Y
\end{array}\right]\right)\left[\begin{array}{cc}
I & C_{2} Y \\
0 & Y_{2}^{T}
\end{array}\right]^{-1}
$$

for any full-rank X_{2} and Y_{2} such that $X_{2} Y_{2}^{T}=I-X Y$.

Mixed H_{2} / H_{∞}-optimal dynamic output feedback control

Theorem 3.

suppose there exist X, Y, K_{3} such that

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
A Y+Y A^{T} & A & B_{1} & Y C^{T} \\
A^{T} & X A+A^{T} X & X B_{1} & C_{1}^{T} \\
B_{T}^{T} & B_{1}^{T} X & -\gamma_{1 I} & D_{11}^{11} \\
C_{1} Y & C_{1} & C_{1} & D_{11} \\
\hline & -\gamma_{1} I
\end{array}\right]} \\
& +\left[\begin{array}{cc}
B_{2}{ }^{C_{1}} & 0 \\
0 & I \\
0 & 0 \\
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{cccc}
D_{11} & C_{2} & D_{21} & 0 \\
I & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
C_{2}^{T} & 0 \\
D_{21}^{T} & 0 \\
0 & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{cccc}
B_{2}^{T} & 0 & 0 & D_{12}^{T} \\
0 & I & 0 & 0
\end{array}\right]<0 \\
& {\left[\begin{array}{ccc}
A Y+Y A^{T} & A & B_{1} \\
A_{1}^{T} & X A+A^{T} X & X B_{1} \\
B_{1}^{T} & B_{1}^{T} X & -\gamma I
\end{array}\right]+\left[\begin{array}{cc}
B_{2} & 0 \\
0 & I \\
0 & 0
\end{array}\right] K_{3}\left[\begin{array}{ccc}
0 & C_{2} & D_{21} \\
I & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
C_{2}^{T} & 0 \\
D_{21}^{2} & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{ccc}
B_{2}^{T} & 0 & 0 \\
0 & I & 0
\end{array}\right]<0,} \\
& {\left[\begin{array}{ccc}
Y & I & Y C_{1}^{T} \\
I & X & C_{1}^{T} \\
C_{1} Y & C_{1} & W
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{ccc}
0 & C_{2} & 0 \\
I & 0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I \\
C_{2}^{T} & 0 \\
0 & 0
\end{array}\right] K_{3}^{T}\left[\begin{array}{ccc}
0 & 0 & D_{12}^{T} \\
0 & 0 & 0
\end{array}\right]>0,} \\
& D_{11}+\left[\begin{array}{ll}
D_{12} & 0
\end{array}\right] K_{3}\left[\begin{array}{c}
D_{21} \\
0
\end{array}\right]=0, \quad \operatorname{trace}(Z)<\gamma_{2}
\end{aligned}
$$

Then if $D_{K}=\left(I+D_{K 2} D_{22}\right)^{-1} D_{K 2}, B_{K}=B_{K 2}\left(I-D_{22} D_{K}\right)$,
$C_{K}=\left(I-D_{K} D_{22}\right) C_{K 2}, A_{K}=A_{K 2}-B_{K}\left(I-D_{22} D_{K}\right)^{-1} D_{22} C_{K}$ where

$$
\left[\begin{array}{cc}
D_{K 2} & C_{K 2} \\
B_{K 2} & A_{K 2}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X B_{2} & X_{2}
\end{array}\right]^{-1}\left(K_{3}-\left[\begin{array}{cc}
0 & 0 \\
0 & X A Y
\end{array}\right]\right)\left[\begin{array}{cc}
I & C_{2} Y \\
0 & Y_{2}^{T}
\end{array}\right]^{-1}
$$

for full-rank X_{2} and Y_{2} with $X_{2} Y_{2}^{T}=I-X Y$, we have $\|\underline{S}(P, K)\|_{H_{\infty}}<\gamma_{1}$ and $\|\underline{S}(P, K)\|_{H_{2}}<\gamma_{2}$.

Mixed H_{2} / H_{∞}-optimal dynamic output feedback control Theorem 3.

Mixed H_{2} / H_{∞}-optimal dynamic output feedback control

The systems used for the H_{∞} and H_{2} norms can be different, but must use the same A, B_{2}, C_{2}, D_{22} matrices, since these appear in the variable substitution i.e.

$$
P_{H_{2}}=\left[\begin{array}{c||c|c}
A & B_{1, H_{2}} & B_{2} \\
\hline \hline C_{1, H_{2}} & D_{11, H_{2}} & D_{12, H_{2}} \\
\hline C_{2} & D_{21, H_{2}} & D_{22}
\end{array}\right]
$$

and

$$
P_{H_{\infty}}=\left[\begin{array}{c||c|c}
A & B_{1, H_{\infty}} & B_{2} \\
\hline C_{1, H_{\infty}} & D_{11, H_{\infty}} & D_{12, H_{\infty}} \\
\hline C_{2} & D_{21, H_{\infty}} & D_{22}
\end{array}\right]
$$

This allows us to select different disturbances and regulated outputs for each norm, and add filters to the H_{2} norm, but not the H_{∞} norm.

Example of Mixed $H_{\infty}-H_{2}$ optimal control

Note the predicted gains in Mixed $H_{\infty}-H_{2}$ optimal control are not tight.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 10 & 2 \\
-1 & 1 & 0 \\
0 & 2 & -5
\end{array}\right] \quad B_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] ; C_{2}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \quad D_{22}=0 \\
& B_{1, H_{\infty}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad C_{1, H_{\infty}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad D_{11, H_{\infty}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad D_{12, H_{\infty}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad D_{21, H_{\infty}}=1 \\
& B_{1, H_{2}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad C_{1, H_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad D_{11, H_{2}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad D_{12, H_{2}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad D_{21, H_{2}}=1
\end{aligned}
$$

bound/objective	$\\|\cdot\\|_{H_{\infty}}$	$\\|\cdot\\|_{H_{2}}$	$\\|\cdot\\|_{H_{\infty}}+\\|\cdot\\|_{H_{2}}$
Predicted $\\|S(P, K)\\|_{H_{2}}$	$\mathrm{~N} / \mathrm{A}$	3.816	6.8877
Actual $\\|S(P, K)\\|_{H_{2}}$	∞	3.816	5.1625
Predicted $\\|S(P, K)\\|_{H_{\infty}}$	4.833	$\mathrm{~N} / \mathrm{A}$	6.6551
Actual $\\|S(P, K)\\|_{H_{\infty}}$	4.833	5.138	6.4533

