
LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 10: An LMI for H∞-Optimal Output Feedback Control



Optimal Output Feedback
Recall: Linear Fractional Transformation

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK

CK DK

]
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Defining the System Variables

Choose K to minimize

∥P11 + P12(I −KP22)
−1KP21∥

Equivalently choose

[
AK BK

CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+

[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.
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Representing the Closed-Loop System

Recall the Matrix Inversion Lemma:

Lemma 1.

[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
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Closed Loop System is Nonlinear Function of
AK , BK , CK , DK .

Recall that [
I −DK

−D22 I

]−1

=

[
I +DKQD22 DKQ

QD22 Q

]

where Q = (I −D22DK)−1. Then

Acl :=

[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

]

=

[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I +DKQD22 DKQ

QD22 Q

] [
0 CK

C2 0

]

=

[
A+B2DKQC2 B2(I +DKQD22)CK

BKQC2 AK +BKQD22CK

]

Likewise

Ccl :=
[
C1 0

]
+
[
D12 0

] [I +DKQD22 DKQ
QD22 Q

] [
0 CK

C2 0

]

=
[
C1 +D12DKQC2 D12(I +DKQD22)CK

]
M. Peet Lecture 10: 5 / 24



A New Set of Decision Variables

Thus we have



A+B2DKQC2 B2(I +DKQD22)CK

BKQC2 AK +BKQD22CK

B1 +B2DKQD21

BKQD21[
C1 +D12DKQC2 D12(I +DKQD22)CK

]
D11 +D12DKQD21




where Q = (I −D22DK)−1.

• This is nonlinear in (AK , BK , CK , DK).

• Hence we make a change of variables (First of several).

AK2 = AK +BKQD22CK

BK2 = BKQ

CK2 = (I +DKQD22)CK

DK2 = DKQ
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A New parametrization of the closed-loop system.

This yields the system




[
A+B2DK2C2 B2CK2

BK2C2 AK2

]
B1 +B2DK2D21

BK2D21[
C1 +D12DK2C2 D12CK2

]
D11 +D12DK2D21




Which is affine in

[
AK2 BK2

CK2 DK2

]
.
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Inverting the Variable Substitution
Recovering DK

Hence we can optimize over our new variables.

• System is linear in new variables and eliminates original variables.

• However, the change of variables must be invertible.

Now suppose we have DK2. Then

DK2 = DKQ = DK(I −D22DK)−1

implies that

DK = DK2(I −D22DK) = DK2 −DK2D22DK

or
(I +DK2D22)DK = DK2

which can be inverted to get

DK = (I +DK2D22)
−1DK2
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Inverting the Variable Substitution
Recovering CK

If we recall that
(I −QM)−1 = I +Q(I −MQ)−1M

then we get

I +DKQD22 = I +DK(I −D22DK)−1D22 = (I −DKD22)
−1

Examine the variable CK2

CK2 = (I +DK(I −D22DK)−1D22)CK

= (I −DKD22)
−1CK

Hence, given DK and CK2, we can recover CK as

CK = (I −DKD22)CK2
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Inverting the Variable Substitution

Once we have CK and DK , the other variables are easily recovered as

BK = BK2Q
−1 = BK2(I −D22DK)

AK = AK2 −BK(I −D22DK)−1D22CK

To summarize, the original variables can be recovered as

DK = (I +DK2D22)
−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK
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Closed Loop System Parameters

[
Acl Bcl

Ccl Dcl

]
:=




[
A+B2DK2C2 B2CK2

BK2C2 AK2

]
B1 +B2DK2D21

BK2D21[
C1 +D12DK2C2 D12CK2

]
D11 +D12DK2D21




[
Acl Bcl

Ccl Dcl

]
=



A 0 B1

0 0 0
C1 0 D11


+



0 B2

I 0
0 D12



[
AK2 BK2

CK2 DK2

] [
0 I 0
C2 0 D21

]

Or

Acl =

[
A 0
0 0

]
+

[
0 B2

I 0

] [
AK2 BK2

CK2 DK2

] [
0 I
C2 0

]

Bcl =

[
B1

0

]
+

[
0 B2

I 0

] [
AK2 BK2

CK2 DK2

] [
0

D21

]

Ccl =
[
C1 0

]
+
[
0 D12

] [AK2 BK2

CK2 DK2

] [
0 I
C2 0

]

Dcl =
[
D11

]
+
[
0 D12

] [AK2 BK2

CK2 DK2

] [
0

D21

]

M. Peet Lecture 10: 11 / 24



Optimal Output Feedback Control

However, if we apply the KYP Lemma, the result is bilinear in X and
AK , BK , CK , DK

• Dual KYP Lemma is used for Controller Synthesis
• Primal KYP Lemma is used for observer Synthesis
• For Observer-Based Controller Synthesis, we need both Primal AND Dual

forms....

Lemma 2 (Transformation Lemma).

Suppose that [
Y1 I
I X1

]
> 0

Then there exist X2, X3, Y2, Y3 such that

X =

[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T
2 Y3

]−1

= Y −1 > 0

where Yh =

[
Y1 I
Y T
2 0

]
has full rank.
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Optimal Output Feedback Control

However, if we apply the KYP Lemma, the result is bilinear in X and
AK , BK , CK , DK

• Dual KYP Lemma is used for Controller Synthesis
• Primal KYP Lemma is used for observer Synthesis
• For Observer-Based Controller Synthesis, we need both Primal AND Dual
forms....

Lemma 2 (Transformation Lemma).

Suppose that [
Y1 I
I X1

]
> 0

Then there exist X2, X3, Y2, Y3 such that

X =

[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T
2 Y3

]−1

= Y −1 > 0

where Yh =

[
Y1 I
Y T
2 0

]
has full rank.

2
0
2
3
-1
0
-1
9

Lecture 10

Optimal Output Feedback Control

The primal variable is [
X1 X2

XT
2 X3

]
The dual variable is [

Y1 Y2

Y T
2 Y3

]



Optimal Output Feedback Control

Proof.

• Since [
Y1 I
I X1

]
> 0,

by the Schur complement X1 > 0 and X−1
1 − Y1 < 0. Since

I −X1Y1 = X1(X
−1
1 − Y1), we conclude that I −X1Y1 is invertible.

• Choose any two square invertible matrices X2 and Y2 such that

X2Y
T
2 = I −X1Y1

• Because X2 and Y2 are invertible,

Y T
h =

[
Y1 Y2

I 0

]
and Xh =

[
I 0
X1 X2

]

are also non-singular.
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Optimal Output Feedback Control

Proof.

• Since [
Y1 I
I X1

]
> 0,

by the Schur complement X1 > 0 and X−1
1 − Y1 < 0. Since

I −X1Y1 = X1(X
−1
1 − Y1), we conclude that I −X1Y1 is invertible.

• Choose any two square invertible matrices X2 and Y2 such that

X2Y
T
2 = I −X1Y1

• Because X2 and Y2 are invertible,

Y T
h =

[
Y1 Y2

I 0

]
and Xh =

[
I 0
X1 X2

]

are also non-singular.2
0
2
3
-1
0
-1
9
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Optimal Output Feedback Control

Y T
h 0 0
0 I 0
0 0 I


will be the half-dual transformation.

� Y T
h contains the top half of the dual Lyapunov variable.

� Xh contains the bottom half of the primal Lyapunov variable.



Optimal Output Feedback Control

Proof.

• Now define X and Y as

X = Y −T
h Xh and Y = X−1

h Y T
h .

Then
XY = Y −1

h XhX
−1
h Yh = I

Are X2, Y2 actually the completion of their respective matrices and what are
X3, Y3? If X2, Y2 are square, then

X−1
h =

[
I 0
X1 X2

]−1

=

[
I 0

−X−1
2 X1 X−1

2

]
Y −T
h =

[
Y1 Y2

I 0

]−1

=

[
0 I

Y −1
2 −Y −1

2 Y1

]
.

So, since X2Y
T
2 = I −X1Y1, we have X3 = −Y −1

2 Y1X2 since

X = Y −T
h Xh =

[
X1 X2

Y −1
2 − Y −1

2 Y1X1 −Y −1
2 Y1X2

]
=

[
X1 X2

XT
2 −Y −1

2 Y1X2

]
and Y3 = −X−1

2 X1Y2 since

Y = X−1
h Y T

h =

[
Y1 Y2

X−1
2 −X−1

2 X1Y1 −X−1
2 X1Y2

]
=

[
Y1 Y2

Y T
2 −X−1

2 X1Y2

]
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Optimal Output Feedback Control

Proof.

• Now define X and Y as

X = Y −T
h Xh and Y = X−1

h Y T
h .

Then
XY = Y −1

h XhX
−1
h Yh = I

Are X2, Y2 actually the completion of their respective matrices and what are
X3, Y3? If X2, Y2 are square, then

X−1
h =

[
I 0
X1 X2

]−1

=

[
I 0

−X−1
2 X1 X−1

2

]
Y −T
h =

[
Y1 Y2

I 0

]−1

=

[
0 I

Y −1
2 −Y −1

2 Y1

]
.

So, since X2Y
T
2 = I −X1Y1, we have X3 = −Y −1

2 Y1X2 since

X = Y −T
h Xh =

[
X1 X2

Y −1
2 − Y −1

2 Y1X1 −Y −1
2 Y1X2

]
=

[
X1 X2

XT
2 −Y −1

2 Y1X2

]
and Y3 = −X−1

2 X1Y2 since

Y = X−1
h Y T

h =

[
Y1 Y2

X−1
2 −X−1

2 X1Y1 −X−1
2 X1Y2

]
=

[
Y1 Y2

Y T
2 −X−1

2 X1Y2

]2
0
2
3
-1
0
-1
9
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Optimal Output Feedback Control

We will be applying the half-dual transformation

Y T
h 0 0
0 I 0
0 0 I


primal KYP lemma︷ ︸︸ ︷ATX +XA XB CT

BTX −γI DT

C D −γI

Yh 0 0
0 I 0
0 0 I


=

Y T
h ATXYh + Y T

h XAYh Y T
h XB Y T

h CT

BTXYh −γI DT

CYh D −γI


=

Y T
h ATXT

h +XhAYh XhB Y T
h CT

BTXT
h −γI DT

CYh D −γI


Since

Y T
h =

[
Y1 Y2

I 0

]
and Xh =

[
I 0
X1 X2

]
,

this will only work if Y2 and X2 are somehow eliminated from the expression.



Optimal Output Feedback Control

Lemma 3 (Converse Transformation Lemma).

Given X =

[
X1 X2

XT
2 X3

]
> 0 where X2 has full column rank. Let

X−1 = Y =

[
Y1 Y2

Y T
2 Y3

]

then [
Y1 I
I X1

]
> 0

and Yh =

[
Y1 I
Y T
2 0

]
has full column rank.

This result shows the Transformation Lemma is not conservative.
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Optimal Output Feedback Control

Proof.

Since X2 is full rank, Xh =

[
I 0
X1 X2

]
also has full column rank. Note that

Y X = I implies

Y T
h X =

[
Y1 Y2

I 0

] [
X1 X2

XT
2 X3

]
=

[
I 0
X1 X2

]
= Xh.

Hence

Y T
h =

[
Y1 Y2

I 0

]
=

[
I 0
X1 X2

]
Y = XhY

has full column rank. Now, since XY = I implies X1Y1 +X2Y
T
2 = I, we have

XhYh =

[
I 0
X1 X2

] [
Y1 I
Y T
2 0

]
=

[
Y1 I

X1Y1 +X2Y
T
2 X1

]
=

[
Y1 I
I X1

]

Furthermore, because Yh has full rank,
[
Y1 I
I X1

]
= XhYh = XhY XT

h = Y T
h XYh > 0
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Optimal Output Feedback Control

Proof.

Since X2 is full rank, Xh =

[
I 0
X1 X2

]
also has full column rank. Note that

Y X = I implies

Y T
h X =

[
Y1 Y2

I 0

] [
X1 X2

XT
2 X3

]
=

[
I 0
X1 X2

]
= Xh.

Hence

Y T
h =

[
Y1 Y2

I 0

]
=

[
I 0
X1 X2

]
Y = XhY

has full column rank. Now, since XY = I implies X1Y1 +X2Y
T
2 = I, we have

XhYh =

[
I 0
X1 X2

] [
Y1 I
Y T
2 0

]
=

[
Y1 I

X1Y1 +X2Y
T
2 X1

]
=

[
Y1 I
I X1

]

Furthermore, because Yh has full rank,
[
Y1 I
I X1

]
= XhYh = XhY XT

h = Y T
h XYh > 0

2
0
2
3
-1
0
-1
9
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Optimal Output Feedback Control

Note the relationship: [
Y1 I
I X1

]
= XhYh

Note how both X2 and Y2 vanish?



H∞-optimal Dynamic Output Feedback Control

Theorem 1.

The following are equivalent.

1. There exists a K =

[
AK BK

CK DK

]
such that ∥S(K,P )∥H∞ < γ.

2. ∃X,Y ∈ Sns and K3 ∈ Rnc+ns×nm+ns such that

[
Y I
I X

]
> 0 and

AY + Y AT A B1 Y CT
1

AT XA+ATX XB1 CT
1

BT
1 BT

1 X −γI DT
11

C1Y C1 D11 −γI

 (1)

+


B2 0
0 I
0 0

D12 0

K3

[
0 C2 D21 0
I 0 0 0

]
+


0 I

CT
2 0

DT
21 0
0 0

KT
3

[
BT

2 0 0 DT
12

0 I 0 0

]
< 0

Moreover, if X,Y,K3 satisfy 2), then DK = (I +DK2D22)
−1DK2,

BK = BK2(I −D22DK), CK = (I −DKD22)CK2,
AK = AK2 −BK(I −D22DK)−1D22CK where[

DK2 CK2

BK2 AK2

]
=

[
I 0

XB2 X2

]−1 (
K3 −

[
0 0
0 XAY

])[
I C2Y
0 Y T

2

]−1

for any full-rank X2 and Y2 such that X2Y
T
2 = I −XY .
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The first step in the proof is to use the KYP lemma to show that

∥S(P,K)∥H∞ = ∥
[

Acl Bcl

Ccl Dcl

]
∥H∞ < γ is equivalent to



Y T
h 0 0
0 I 0
0 0 I





AT

clX +XAcl XBcl CT
cl

BT
clXh −γI DT

cl

Ccl Dcl −γI





Yh 0 0
0 I 0
0 0 I




=



Y T
h AT

clX
T
h +XhAclYh XhBcl Y T

h CT
cl

BT
clX

T
h −γI DT

cl

CclYh Dcl −γI


 < 0
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The next, and key step in the proof isXhAclYh XhBcl 0
0 0 0

CclYh Dcl 0

 =

Xh 0
0 0
0 I

[
Acl Bcl

Ccl Dcl

] [
Yh 0 0
0 I 0

]
(2)

=


I 0 0
X X2 0
0 0 0
0 0 I


 A 0 B1

0 0 0
C1 0 D11

+

 B2 0
0 I

D12 0

K2

[
C2 0 D21

0 I 0

] Y1 I 0 0
Y T
2 0 0 0
0 0 I 0



=


AY A B1 0
XAY XA XB1 0

0 0 0 0
C1Y C1 D11 0

+


B2 0
0 I
0 0

D12 0

([
I 0

XB2 X2

]
K2

[
I C2Y
0 Y T

2

])[
0 C2 D21 0
I 0 0 0

]

=


AY A B1 0
0 XA XB1 0
0 0 0 0

C1Y C1 D11 0

+


B2 0
0 I
0 0

D12 0

([
0 0
0 XAY

]
+

[
I 0

XB2 X2

]
K2

[
I C2Y
0 Y T

2

])
︸ ︷︷ ︸

K3

[
0 C2 D21 0
I 0 0 0

]

=


AY A B1 0
0 XA XB1 0
0 0 0 0

C1Y C1 D11 0

+


B2 0
0 I
0 0

D12 0

K3

[
0 C2 D21 0
I 0 0 0

]
.
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Then we are done, since



Y T
h AT

clX
T
h +XhAclYh XhBcl Y T

h CT
cl

BT
clX

T
h −γI DT

cl

CclYh Dcl −γI




=



XhAclYh XhBcl 0

0 0 0
CclYh Dcl 0


+



XhAclYh XhBcl 0

0 0 0
CclYh Dcl 0



T

+



0 0 0
0 −γI 0
0 0 −γI
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Conclusion

The H∞-optimal controller is a dynamic system.

• Transfer Function K̂(s) =

[
AK BK

CK DK

]

Minimizes the effect of external input (w) on external output (z).

∥z∥L2
≤ ∥S(P,K)∥H∞∥w∥L2

• Minimum Energy Gain
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H2-optimal dynamic output feedback control

Theorem 2.

The following are equivalent.

1. There exists a K̂ =

[
AK BK

CK DK

]
such that ∥S(K,P )∥H2 < γ.

2. There exist X1, Y1, Z,K3 such thatAY + Y AT A B1

AT XA + ATX XB1

BT
1 BT

1 X −γI

+

B2 0
0 I
0 0

K3

[
0 C2 D21

I 0 0

]
+

 0 I

CT
2 0

DT
21 0

K
T
3

[
BT

2 0 0
0 I 0

]
< 0,

 Y I Y CT
1

I X CT
1

C1Y C1 W

 +

 0 0
0 0

D12 0

K3

[
0 C2 0
I 0 0

]
+

 0 I

CT
2 0
0 0

K
T
3

[
0 0 DT

12
0 0 0

]
> 0,

D11 +
[
D12 0

]
K3

[
D21

0

]
= 0, trace(Z) < γ

Moreover, DK = (I +DK2D22)
−1DK2, BK = BK2(I −D22DK),

CK = (I −DKD22)CK2, AK = AK2 −BK(I −D22DK)−1D22CK where[
DK2 CK2

BK2 AK2

]
=

[
I 0

XB2 X2

]−1 (
K3 −

[
0 0
0 XAY

])[
I C2Y
0 Y T

2

]−1

for any full-rank X2 and Y2 such that X2Y
T
2 = I −XY .
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Mixed H2/H∞-optimal dynamic output feedback control
Theorem 3.
suppose there exist X,Y,K3 such thatAY + Y AT A B1 Y CT

1
AT XA + AT X XB1 CT

1
BT

1 BT
1 X −γ1I DT

11
C1Y C1 D11 −γ1I


+

 B2 0
0 I
0 0

D12 0

K3

[
0 C2 D21 0
I 0 0 0

]
+


0 I

CT
2 0

DT
21 0
0 0

K
T
3

[
BT

2 0 0 DT
12

0 I 0 0

]
< 0

AY + Y AT A B1

AT XA + ATX XB1

BT
1 BT

1 X −γI

 +

B2 0
0 I
0 0

K3

[
0 C2 D21

I 0 0

]
+

 0 I

CT
2 0

DT
21 0

K
T
3

[
BT

2 0 0
0 I 0

]
< 0,

 Y I Y CT
1

I X CT
1

C1Y C1 W

 +

 0 0
0 0

D12 0

K3

[
0 C2 0
I 0 0

]
+

 0 I

CT
2 0
0 0

K
T
3

[
0 0 DT

12
0 0 0

]
> 0,

D11 +
[
D12 0

]
K3

[
D21

0

]
= 0, trace(Z) < γ2

Then if DK = (I +DK2D22)
−1DK2, BK = BK2(I −D22DK),

CK = (I −DKD22)CK2, AK = AK2 −BK(I −D22DK)−1D22CK where[
DK2 CK2

BK2 AK2

]
=

[
I 0

XB2 X2

]−1 (
K3 −

[
0 0
0 XAY

])[
I C2Y

0 Y T
2

]−1

for full-rank X2 and Y2 with X2Y
T
2 = I −XY , we have ∥S(P,K)∥H∞ < γ1

and ∥S(P,K)∥H2
< γ2.
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Mixed H2/H∞-optimal dynamic output feedback control
Theorem 3.
suppose there exist X,Y,K3 such thatAY + Y AT A B1 Y CT

1
AT XA + AT X XB1 CT

1
BT

1 BT
1 X −γ1I DT

11
C1Y C1 D11 −γ1I


+

 B2 0
0 I
0 0

D12 0

K3

[
0 C2 D21 0
I 0 0 0

]
+


0 I

CT
2 0

DT
21 0
0 0

K
T
3

[
BT

2 0 0 DT
12

0 I 0 0

]
< 0

AY + Y AT A B1

AT XA + ATX XB1

BT
1 BT

1 X −γI

 +

B2 0
0 I
0 0

K3

[
0 C2 D21

I 0 0

]
+

 0 I

CT
2 0

DT
21 0

K
T
3

[
BT

2 0 0
0 I 0

]
< 0,

 Y I Y CT
1

I X CT
1

C1Y C1 W

 +

 0 0
0 0

D12 0

K3

[
0 C2 0
I 0 0

]
+

 0 I

CT
2 0
0 0

K
T
3

[
0 0 DT

12
0 0 0

]
> 0,

D11 +
[
D12 0

]
K3

[
D21

0

]
= 0, trace(Z) < γ2

Then if DK = (I +DK2D22)
−1DK2, BK = BK2(I −D22DK),

CK = (I −DKD22)CK2, AK = AK2 −BK(I −D22DK)−1D22CK where[
DK2 CK2

BK2 AK2

]
=

[
I 0

XB2 X2

]−1 (
K3 −

[
0 0
0 XAY

])[
I C2Y

0 Y T
2

]−1

for full-rank X2 and Y2 with X2Y
T
2 = I −XY , we have ∥S(P,K)∥H∞ < γ1

and ∥S(P,K)∥H2 < γ2.

2
0
2
3
-1
0
-1
9

Lecture 10

Mixed H2/H∞-optimal dynamic output feedback
control

The systems used for the H∞ and H2 norms can be different, but must use the
same A,B2, C2, D22 matrices, since these appear in the variable substitution –
i.e.

PH2 =

 A B1,H2 B2

C1,H2 D11,H2 D12,H2

C2 D21,H2 D22


and

PH∞ =

 A B1,H∞ B2

C1,H∞ D11,H∞ D12,H∞

C2 D21,H∞ D22


This allows us to select different disturbances and regulated outputs for each

norm, and add filters to the H2 norm, but not the H∞ norm.



Example of Mixed H∞-H2 optimal control

Note the predicted gains in Mixed H∞-H2 optimal control are not tight.

A =

 0 10 2
−1 1 0
0 2 −5

 B2 =

0
1
0

 ;C2 =
[
0 1 0

]
D22 = 0;

B1,H∞ =

1
0
0

 C1,H∞ =

1 0 0
0 0 0
0 0 0

 D11,H∞ =

0
0
1

 D12,H∞ =

0
1
0

 D21,H∞ = 1

B1,H2
=

0
0
1

 C1,H2
=

0 1 0
0 0 1
0 0 0

 D11,H2
=

0
0
0

 D12,H2
=

0
0
1

 D21,H2
= 1

bound/objective ∥·∥H∞ ∥·∥H2
∥·∥H∞ + ∥·∥H2

Predicted ∥S(P,K)∥H2 N/A 3.816 6.8877
Actual ∥S(P,K)∥H2 ∞ 3.816 5.1625
Predicted ∥S(P,K)∥H∞ 4.833 N/A 6.6551
Actual ∥S(P,K)∥H∞ 4.833 5.138 6.4533
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