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Conclusion

To solve the H∞-optimal output-feedback problem, we solve

min
γ,X1,Y1,An,Bn,Cn,Dn

γ such that[
X1 I
I Y1

]
> 0AY1+Y1A
T +B2Cn+CT

n BT
2 ∗T ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+CT

2 BT
n ∗T ∗T

[B1 +B2DnD21]
T [XB1 +BnD21]

T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI

<0
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Conclusion

Then, we construct our controller using

DK = (I +DK2D22)
−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK .

where[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn

Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T
2 0

C2Y1 I

]−1

.

and where X2 and Y2 are any matrices which satisfy X2Y
T
2 = I −X1Y1.

• e.g. Let Y2 = I and X2 = I −X1Y1.

• The optimal controller is NOT uniquely defined.

• Don’t forget to check invertibility of I −D22DK
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Conclusion

The H∞-optimal controller is a dynamic system.

• Transfer Function K̂(s) =

[
AK BK

CK DK

]
Minimizes the effect of external input (w) on external output (z).

∥z∥L2
≤ ∥S(P,K)∥H∞∥w∥L2

• Minimum Energy Gain
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H2-optimal control
Motivation

H2-optimal control minimizes the H2-norm of the transfer function.

• The H2-norm has no direct interpretation.

∥G∥2H2
=

1

2π

∫ ∞

−∞
Trace(Ĝ(ıω)∗Ĝ(ıω))dω

Motivation: Assume external input, w, is Gaussian noise with power spectral
density Ŝw. Then, the variance is given by

E[w(t)2] =
1

2π

∫ ∞

−∞
Trace(Ŝw(ıω))dω

Theorem 1.

For an LTI system P , if w is noise with spectral density Ŝw(ıω) and z = Pw,
then z is noise with density

Ŝz(ıω) = P̂ (ıω)Ŝ(ıω)P̂ (ıω)∗
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H2-optimal control
Motivation

Then the output z = Gw has signal variance (Power)

E[z(t)2] =
1

2π

∫ ∞

−∞
Trace(Ĝ(ıω)∗S(ıω)Ĝ(ıω))dω

≤ ∥S∥H∞∥G∥2H2

If the input signal is white noise, then Ŝ(ıω) = I and

E[z(t)2] = ∥Ĝ∥2H2
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H2-optimal control
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≤ ∥S∥H∞∥G∥2H2

If the input signal is white noise, then Ŝ(ıω) = I and
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Lecture 11

H2-optimal control

Hence the H2 norm represents the power spectral density of the output of the
system when the input is white noise.

� Thus H2 optimal control is optimal in a certain sense when the input is
expected to be white noise.

� However, this doesn’t work when the noise is colored (concentrated at
certain frequencies).

� For colored noise, however, we can use prefilters to obtain optimal
controllers.



H2-optimal control
Colored Noise

Now suppose the noise is colored with density Ŝw(ıω). Now define Ĥ as
Ĥ(ıω)Ĥ(ıω)∗ = Ŝw(ıω) and the filtered system

P̂s(s) =

[
P̂11(s)Ĥ(s) P̂12(s)

P̂21(s)Ĥ(s) P̂22(s)

]
.

Now, applying feedback to the filtered plant, we get

S(Ps,K)(s) = P11H + P12(I −KP22)
−1KP21H = S(P,K)H

Now the spectral density, Ŝz of the output of the true plant using colored noise
equals the output of the artificial plant under white noise. i.e.

Ŝz(s) = S(P,K)(s)Ŝw(s)S(P,K)(s)∗

= S(P,K)(s)Ĥ(s)Ĥ(s)∗S(P,K)(s)∗ = Ŝ(Ps,K)(s)Ŝ(Ps,K)(s)∗

Thus if K minimizes the H2-norm of the filtered plant (∥Ŝ(Ps,K)∥2H2
), it will

minimize the variance of the true plant under the influence of colored noise with
density Ŝw.
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H2-optimal control
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Lecture 11

H2-optimal control

In this case, the response of the prefiltered system to white noise is the same as
the unfiltered system response to colored noise.

Alternatively, we can write

min
K

∥S(P,K)w∥ var
w=colored

= min
K

∥S(P,K)Hu∥ var
u=white

= min
K

∥S(P,K)H∥H2



H2-optimal control

Theorem 2.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ∥P̂∥H2 < γ.

2. There exists some X > 0 such that

traceBTXB < γ2

ATX +XA+ CTC < 0

Recall that the Controllability Grammian is a solution!

• Recall how the proof works.

• But this time use the observability grammian.
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H2-optimal control

Proof.

Suppose A is Hurwitz and ∥P̂∥H2 < γ. Then the Observability Grammian is
defined as

Xo =

∫ ∞

0

eA
T tCTCeAtdt

Now recall the Laplace transform

(
ΛeAt

)
(s) =

∫ ∞

0

eAte−tsdt

=

∫ ∞

0

e−(sI−A)tdt

= −(sI −A)−1e−(sI−A)tdt

∣∣∣∣t=−∞

t=0

= (sI −A)−1

Hence
(
ΛCeAtB

)
(s) = C(sI −A)−1B.
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H2-optimal control

Proof.(
ΛCeAtB

)
(s) = C(sI −A)−1B implies

∥P̂∥2H2
= ∥C(sI −A)−1B∥2H2

=
1

2π

∫ ∞

0

Trace((C(ıωI −A)−1B)∗(C(ıωI −A)−1B))dω

= Trace

∫ ∞

−∞
BT eA

T tCTCeAtBdt

= TraceBTXoB

Thus Xo ≥ 0 and TraceBTXoB = ∥P̂∥2H2
< γ2.

The rest of the proof we can skip.
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H2-optimal control
Full-State Feedback

Lets consider the full-state feedback problem

Ĝ(s) =

 A B1 B2

C1

I
0 D12

0 0


• D12 is the weight on control effort.

• D11 = 0 is a feed-through term and must be 0.

• C2 = I as this is state-feedback.

K̂(s) =

[
0 0
0 K

]
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H2-optimal control
Full-State Feedback

Theorem 3.

The following are equivalent.

1. ∥S(K,P )∥H2 < γ.

2. K = ZX−1 for some Z and X > 0 where[
A B2

] [X
Z

]
+
[
X ZT

] [AT

BT
2

]
+B1B

T
1 < 0

Trace
[
C1X +D12Z

]
X−1

[
C1X +D12Z

]
< γ2

However, this is nonlinear, so we need to reformulate using the Schur
Complement.
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H2-optimal control

Applying the Schur Complement gives the alternative formulation convenient for
control.

Theorem 4.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ∥P̂∥H2
< γ.

2. There exists some X,W > 0 such that[
ATX +XA XB

BTX −γI

]
< 0,

[
X CT

C W

]
> 0, TraceW < γ2
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H2-optimal control
Full-State Feedback

Theorem 5.

The following are equivalent.

1. ∥S(K,P )∥H2 < γ.

2. K = ZX−1 for some Z and X > 0 where[
A B2

] [X
Z

]
+
[
X ZT

] [AT

BT
2

]
+B1B

T
1 < 0[

X (C1X +D12Z)T

C1X +D12Z W

]
> 0

TraceW < γ2

Thus we can solve the H2-optimal static full-state feedback problem.
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H2-optimal control
Relationship to LQR

The LQR Problem:

• Full-State Feedback

• Choose K to minimize the cost function∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

subject to dynamic constraints

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

Trying to minimize the effect of x0 on a weighted-L2-norm of the regulated
output.
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H2-optimal control
Relationship to LQR

To solve the LQR problem using H2 optimal state-feedback control, let

• C1 =

[
Q

1
2

0

]
,

• D12 =

[
0

R
1
2

]
and D11 = 0,

• B2 = B and B1 = I.

So that

S(P,K) =

[
A+B2K B1

C1 +D12K D11

]
=

 A+BK I

Q
1
2

R
1
2K

0


And solve the H2 full-state feedback problem. Then if

ẋ(t) = ACLx(t) = (A+BK)x(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

Then x(t) = eACLtx0.
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Lecture 11

H2-optimal control

Translating to the input-output formulation, recall we apply the problem setup
to

P =

 A
[
B1 B2

][
C1

I

] [
D11 D12

0 0

] 
K =

[
0 0

0 K

]



H2-optimal control
Relationship to LQR

Ignoring the regulated outputs for now, we have

ẋ(t) = ACLx(t) = (A+BK)x(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

then x(t) = eACLtx0, u(t) = KeACLtx0 and∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt =

∫ ∞

0

xT
0 e

AT
CLt(Q+KTRK)eACLtx0dt

= Trace

∫ ∞

0

xT
0 e

AT
CLt

[
Q

1
2

R
1
2K

]T [
Q

1
2

R
1
2K

]
eACLtx0dt

= ∥x0∥2Trace
∫ ∞

0

BT
1 e

AT
CLt(C1 +D12K)T (C1 +D12K)eACLtB1dt

= ∥x0∥2BT
1 X0B1 = ∥x0∥2∥S(P,K)∥2H2

Thus LQR reduces to a special case of H2 static state-feedback.
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H2-optimal control
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H2-optimal control

Recall that

� C1 =

[
Q

1
2

0

]
,

� D12 =

[
0

R
1
2

]
and D11 = 0,

� B2 = B and B1 = I.

So that

S(P,K) =

[
A+B2K B1

C1 +D12K D11

]
=

 A+BK I

Q
1
2

R
1
2K

0





H2-optimal output feedback control

Theorem 6 (Scherer, Gahinet).

The following are equivalent.

• There exists a K̂ =

[
AK BK

CK DK

]
such that ∥S(K,P )∥H2

< γ.

• There exist X1, Y1, Z,An, Bn, Cn, Dn such thatAY1+Y1A
T +B2Cn+CT

nB
T
2 ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+CT

2 B
T
n ∗T

[B1 +B2DnD21]
T [X1B1 +BnD21]

T −I

<0,

 Y1 I ∗T
I X1 ∗T

C1Y1 +D12Cn C1 +D12DnC2 Z

 > 0,

D11 +D12DnD21 = 0, trace(Z) < γ2
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H2-optimal output feedback control

As before, the controller can be recovered as[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn

Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T
2 0

C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T
2 Y3

]−1

To find the actual controller, we use the identities:

DK = (I +DK2D22)
−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK
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An LMI for Mixed H2-H∞ optimal output feedback control

Theorem 7.

The following are equivalent.

• There exists a K =

[
AK BK

CK DK

]
such that ∥S(K,P )∥H2

< γ1 and

∥S(K,P )∥H∞ < γ2.

• There exist X1, Y1, Z,An, Bn, Cn, Dn such thatAY1+Y1A
T +B2Cn+CT

n BT
2 ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+CT

2 BT
n ∗T

[B1 +B2DnD21]
T [X1B1 +BnD21]

T −I

<0, Y1 I ∗T
I X1 ∗T

C1Y1 +D12Cn C1 +D12DnC2 Z

 > 0,

D11 +D12DnD21 = 0, trace(Z) < γ2
1AY1+Y1A

T +B2Cn+CT
n BT

2 ∗T ∗T ∗T
AT +An + [B2DnC2]

T X1A+ATX1+BnC2+CT
2 BT

n ∗T ∗T
[B1 +B2DnD21]

T [X1B1 +BnD21]
T −γ2I ∗T

C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γ2I

<0
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An LMI for the Kalman Filter! - Continuous Time

System:
ẋ(t) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)

Filter: ˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

Error: ė(t) = (A+ LC)e(t) + w(t) + Lv(t)

The Kalman Filter chooses L to minimize the cost J = E[eT e].

L = ΣCTV −1
2

where V1 = E[w(t)w(t)T] and V2 = E[v(t)v(t)T] and Σ satisfies

AΣ+ ΣAT + V1 = ΣCTV −1
2 CΣ

If we choose u(t) = Kx̂(t) where A+BK is stable,
• A+ LC is stable if system is observable (not detectable).
• Closed-Loop is stable by the separation principle (has Luenberger form).
• A Dual to the LQR problem. Replace (A,B,Q,R,K) with

(AT , CT , V1, V2, L
T )
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Kalman Filter - Discrete Time
Assume the system is driven by noise wk (no feedback)

xk+1 = Axk + wk, yk = Cxk + vk

The steady-state Kalman filter is an estimator of the form:

x̂k+1 = Ax̂k + L(Cx̂k − yk),

where vk is sensor noise. This gives error (ek = xk − x̂k) dynamics

ek+1 = (A+ LC)ek

For the Kalman Filter, we choose L = AΣCT (CΣCT + V )−1 where
V = E[vkv

T
k ] and Σ is the steady-state covariance of the error in the estimated

state and satisfies

Σ = AΣAT +W −AΣCT (CΣCT + V )−1CΣAT

where W = E[wkw
T
k ]. For the unsteady Kalman filter, Σk is updated at each

time-step.

• If (A,W ) controllable and (C,A) observable, then A+ LC is stable.
• Again, dual to discrete-time LQR (which we haven’t solved here!)
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