LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 12: Modeling Uncertainty and Robustness

Robust Control: Dealing with Uncertainty

The Known Unknowns

CASE 1: External Disturbances

- The most benign source of uncertainty.
- Finite Energy (L_{2}-norm bounded).
- H_{∞} optimal control minimizes the effect of these uncertainties.

Benign Sources:

- Vibrations, Wind, 60 Hz noise
- Initial Conditions
- Sensor Noise
- Changes in Reference Signal

Not-So-Benign Sources:

- Higher-Order Dynamics
- Nonlinearity (Saturation)
- Delay
- Modeling Errors (Parametric vs. Structural)
- Model Reduction
- Logical Switching

Modelling Uncertainty

A Set-Based Description
The Not-So-Benign Sources describe uncertainty in the System (P).

- These can NOT be bounded apriori

The first step is to Quantify our uncertainty.

- How bad can it get?

We need to define the Set of possible Plants.

- $P \in \mathbf{P}$ where \mathbf{P} is a set of possible plants.
- \mathbf{P} can describe either finite or infinite possible systems.
- How do we parameterize \mathbf{P}

Original Problem:

$$
\min _{K \in H_{\infty}}\|\underline{\mathrm{S}}(P, K)\|_{H_{\infty}}
$$

Now we have to add a modifier:

$$
\min _{K \in H_{\infty}} \gamma:\|\underline{S}(P, K)\|_{H_{\infty}} \leq \gamma \quad \text { For All } P \in \mathbf{P}
$$

Modelling Uncertainty

Parametric Uncertainty

There are Three Main Types of Parametric Uncertainty

$$
\ddot{y}(t)=\frac{c}{m} \dot{y}(t)+\frac{k}{m} y(t)=\frac{F(t)}{m}
$$

- Uncertainty in Parameters c, k, m

Multiplicative Uncertainty

- $m=m_{0}\left(1+\eta_{m} \delta_{m}\right)$
- $c=c_{0}\left(1+\eta_{c} \delta_{c}\right)$
- $k=k_{0}\left(1+\eta_{k} \delta_{k}\right)$

Where $\delta_{m}, \delta_{c}, \delta_{k}$ are bounded.

Additive Uncertainty

- $m=m_{0}+\eta_{m} \delta_{m}$
- $c=c_{0}+\eta_{c} \delta_{c}$
- $k=k_{0}+\eta_{k} \delta_{k}$

Where $\delta_{m}, \delta_{c}, \delta_{k}$ are bounded.

Polytopic Uncertainty

$$
\left[\begin{array}{c}
m \\
c \\
k
\end{array}\right] \in\left\{\left[\begin{array}{c}
m \\
c \\
k
\end{array}\right]:\left[\begin{array}{c}
m \\
c \\
k
\end{array}\right]=\sum_{i} \delta_{i}\left[\begin{array}{c}
m_{i} \\
c_{i} \\
k_{i}
\end{array}\right], \begin{array}{l}
\sum_{i} \delta_{i}=1 \\
\delta_{i} \geq 0
\end{array}\right\}
$$

where $\left[\begin{array}{lll}m_{i} & c_{i} & k_{i}\end{array}\right]^{T}$ describe possible model parameters.

Linear-Fractional Representation

The first step is to isolate the unknowns from the knowns
The known part is the Nominal System, M :

$$
\left[\begin{array}{l}
p \\
z
\end{array}\right]=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]\left[\begin{array}{c}
q \\
w
\end{array}\right]
$$

The unknown part is the Uncertain System, $q=\Delta p$

- For which we only know $\Delta \in \Delta$.
- How to parameterize the Set: $\boldsymbol{\Delta}$?

As for the feedback interconnection, we have 3 equations:

$$
p=M_{11} q+M_{12} w, \quad z=M_{21} q+M_{22} w, \quad q=\Delta p
$$

Solving for q,

$$
\begin{aligned}
q & =\Delta p=\Delta M_{11} q+\Delta M_{12} w \\
& =\left(I-\Delta M_{11}\right)^{-1} \Delta M_{12} w
\end{aligned}
$$

Then

$$
z=M_{21} q+M_{22} w=\overbrace{\left(M_{22}+M_{21}\left(I-\Delta M_{11}\right)^{-1} \Delta M_{12}\right)}^{\bar{S}(M, \Delta)} w
$$

Recall that $\bar{S}(M, \Delta)$ is called the Upper Star Product.

Linear-Fractional Representation

Note the algebraic use of systems.

- Δ and $M_{i j}$ are subsystems, not matrices.
- This accounts for the lack of the time parameter, t, in the equations Here we are using the 4-system representation of the nominal system. We can also do this using the 9-matrix representation, but recall the CL system is very complicated.

Linear-Fractional Representation

State-Space Formulation

The Nominal System, M :

$$
\left[\begin{array}{c}
\dot{x}(t) \\
p(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{ccc}
A & B_{2} & B_{1} \\
C_{2} & D_{22} & D_{21} \\
C_{1} & D_{12} & D_{11}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
q(t) \\
w(t)
\end{array}\right]
$$

$\bar{S}(M, \Delta)$ is too complicated unless we
Assume Static Uncertainty: $q(t)=\Delta p(t)$:

Solving for q,

$$
\begin{aligned}
q(t) & =\Delta\left(C_{1} x(t)+D_{11} q(t)+D_{12} w(t)\right) \\
q(t) & =\left(I-\Delta D_{11}\right)^{-1} \Delta\left(C_{1} x(t)+D_{12} w(t)\right) \\
& =\left(I-\Delta D_{11}\right)^{-1} \Delta C_{1} x(t)+\left(I-\Delta D_{11}\right)^{-1} \Delta D_{12} w(t)
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
& \dot{x}(t)=\left(A+B_{1}\left(I-\Delta D_{11}\right)^{-1} \Delta C_{1}\right) x(t)+\left(B_{2}+B_{1}\left(I-\Delta D_{11}\right)^{-1} \Delta D_{12}\right) w(t) \\
& z(t)=\left(C_{2}+D_{21}\left(I-\Delta D_{11}\right)^{-1} \Delta C_{1}\right) x(t)+\left(D_{22}+D_{21}\left(I-\Delta D_{11}\right)^{-1} \Delta D_{12}\right) w(t)
\end{aligned}
$$

Linear-Fractional Representation

- We are representing the LFT as a state-space equivalent representation, which may be easier to work with/understand - even though it involves more equations.
- Here we treat Δ as a matrix and not a system.

The CL system is

$$
\bar{S}(M, \Delta)=\left[\begin{array}{c|c}
A+B_{1}\left(I-\Delta D_{11}\right)^{-1} \Delta C_{1} & B_{2}+B_{1}\left(I-\Delta D_{11}\right)^{-1} \Delta D_{12} \\
\hline C_{2}+D_{21}\left(I-\Delta D_{11}\right)^{-1} \Delta C_{1} & D_{22}+D_{21}\left(I-\Delta D_{11}\right)^{-1} \Delta D_{12}
\end{array}\right]
$$

Alternatively, we can write:

$$
\left[\begin{array}{ll}
A_{c l} & B_{c l} \\
C_{c l} & D_{c l}
\end{array}\right]=\bar{S}(P, \Delta)=\left[\begin{array}{cc}
A & B_{2} \\
C_{2} & D_{22}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right]\left(I-\Delta D_{11}\right)^{-1} \Delta\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right]
$$

Linear-Fractional Representation for Matrices

There is an important point here: The LFT can be used for matrices That is, if you have two equations:

$$
\left[\begin{array}{l}
p(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]\left[\begin{array}{c}
q(t) \\
w(t)
\end{array}\right] \quad \text { and } \quad q(t)=\Delta p(t)
$$

Then

$$
z(t)=\bar{S}(M, \Delta) w(t)=\left(M_{22}+M_{21}\left(I-\Delta M_{11}\right)^{-1} \Delta M_{12}\right) w(t)
$$

Alternatively,

$$
\left[\begin{array}{l}
z(t) \\
p(t)
\end{array}\right]=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]\left[\begin{array}{l}
w(t) \\
q(t)
\end{array}\right] \quad \text { and } \quad q(t)=\Delta p(t)
$$

Becomes

$$
z(t)=\underline{\mathrm{S}}(M, \Delta) w(t)=\left(M_{11}+M_{12} \Delta\left(I-M_{22} \Delta\right)^{-1} M_{21}\right) w(t)
$$

This works even if we replace $z(t)$ with $\left[\begin{array}{l}\dot{x}(t) \\ z(t)\end{array}\right]$ and $w(t)$ with $\left[\begin{array}{l}\dot{x}(t) \\ w(t)\end{array}\right]$

Linear-Fractional Representation

Nominal System (Upper Feedback Representation):

$$
\begin{aligned}
& \left.\left[\begin{array}{c}
p(t) \\
\dot{x}(t) \\
z(t)
\end{array}\right]=\left[\left.\begin{array}{c}
D_{11} \\
\hdashline\left[\begin{array}{cc}
B_{1} \\
D_{21}
\end{array}\right]
\end{array} \right\rvert\, \begin{array}{cc}
C_{1} & D_{12} \\
A & B_{2} \\
C_{2} & D_{22}
\end{array}\right]\right]\left[\begin{array}{c}
q(t) \\
x(t) \\
w(t)
\end{array}\right]=P\left[\begin{array}{c}
q(t) \\
x(t) \\
w(t)
\end{array}\right]=\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{c}
q(t) \\
{\left[\begin{array}{c}
x(t) \\
w(t)
\end{array}\right]}
\end{array}\right] \\
& P_{22}=\left[\begin{array}{cc}
A & B_{2} \\
C_{2} & D_{22}
\end{array}\right], P_{21}=\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right], P_{12}=\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right], P_{11}=D_{11} \text {, }
\end{aligned}
$$

Closed-Loop: Representation of the Upper Feedback Interconnection with Δ

$$
\left[\begin{array}{l}
\dot{x}(t) \\
z(t)
\end{array}\right]=\overbrace{\left(P_{22}+P_{21}\left(I-\Delta P_{11}\right)^{-1} \Delta P_{12}\right)}^{\bar{S}(P, \Delta)}\left[\begin{array}{l}
x(t) \\
w(t)
\end{array}\right]
$$

Apply the LFT to Parametric Uncertainty

Additive Uncertainty

Consider Additive Uncertainty:

$$
\mathbf{P}:=\left\{P: P=P_{0}+\Delta, \Delta \in \boldsymbol{\Delta}\right\}
$$

Nominal System: M

$$
\left[\begin{array}{l}
p \\
z
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
I & M_{0}
\end{array}\right]\left[\begin{array}{c}
q \\
w
\end{array}\right]
$$

Uncertain System: Δ

Solving for z, we get the Upper Star Product

$$
z=\left(M_{22}+M_{21}\left(I-\Delta M_{11}\right)^{-1} \Delta M_{12}\right) w
$$

or

$$
z=\left(M_{0}+\Delta\right) w
$$

Apply the LFT to Parametric Uncertainty

 Multiplicative UncertaintyConsider Multiplicative Uncertainty:

$$
\mathbf{P}:=\left\{P: P=(I+\Delta) P_{0}, \Delta \in \boldsymbol{\Delta}\right\}
$$

Nominal System: M

$$
\left[\begin{array}{c}
p \\
z
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & M_{0} \\
I & M_{0}
\end{array}\right]}_{M}\left[\begin{array}{c}
q \\
w
\end{array}\right]
$$

Using the Upper Star Product we get

$$
\bar{S}(M, \Delta)=M_{22}+M_{21}\left(I-\Delta M_{11}\right)^{-1} \Delta M_{12}=(I+\Delta) M_{0}
$$

thus

$$
z=(I+\Delta) M_{0} w
$$

Example of Parametric Uncertainty

Recall The Spring-Mass Example

$$
\ddot{y}(t)=-c \dot{y}(t)-\frac{k}{m} y(t)+\frac{F(t)}{m}
$$

Multiplicative Uncertainty

- $m=m_{0}\left(1+\eta_{m} \delta_{m}\right)$
- $c=c_{0}\left(1+\eta_{c} \delta_{c}\right)$
- $k=k_{0}\left(1+\eta_{k} \delta_{k}\right)$

Define $x_{1}=y$ and $x_{2}=m \dot{y}$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & m^{-1} \\
-k & -c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] F \quad \text { Nominal System Dynamics }
$$

$\left[\begin{array}{c|c|c}A & B_{2} & B_{1} \\ \hline C_{2} & D_{22} & D_{21} \\ \hline C_{1} & D_{12} & D_{11}\end{array}\right]=\left[\begin{array}{cc|c|ccc}0 & m_{0}^{-1} & 0 & -\eta_{m} & 0 & 0 \\ -k_{0} & -c_{0} & 1 & 0 & \eta_{k} & \eta_{c} \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & m_{0}^{-1} & 0 & -\eta_{m} & 0 & 0 \\ -k_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & -c_{0} & 0 & 0 & 0 & 0\end{array}\right]$
9-matrix Plant

Example of Parametric Uncertainty

Note the states $x_{1}=y$ and $x_{2}=m \dot{y}$ were chose carefully so as to separate the uncertain parameters.

Example of Parametric Uncertainty

Nominal System: P

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & m_{0}^{-1} \\
-k_{0} & -c_{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] F(t)+\left[\begin{array}{cc}
-\eta_{m} & 0 \\
0 & 0 \\
0 & \eta_{k}
\end{array} \eta_{c}\right.}
\end{array}\right] q(t)
$$

Uncertain System: Δ

Closed-Loop:

$$
q=\Delta p=\left[\begin{array}{ccc}
\delta_{m} & 0 & 0 \\
0 & \delta_{k} & 0 \\
0 & 0 & \delta_{c}
\end{array}\right] p \quad\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
z(t)
\end{array}\right]=\left(P_{22}+P_{21}\left(I-\Delta P_{11}\right)^{-1} \Delta P_{12}\right)\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
F(t)
\end{array}\right]
$$

where

$$
P_{22}=\left[\begin{array}{cc}
A & B_{2} \\
C_{2} & D_{22}
\end{array}\right], P_{21}=\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right], P_{12}=\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right], P_{11}=D_{11},
$$

Questions:

- How to formulate the uncertainty matrix?
- What if the uncertainty is time-varying?

Formulating the LFT representation

Recall the feedback representation has the form:

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
z(t)
\end{array}\right]=\left(P_{22}+P_{21}\left(I-\Delta P_{11}\right)^{-1} \Delta P_{12}\right)\left[\begin{array}{l}
x(t) \\
F(t)
\end{array}\right]
$$

What types of parametric uncertainty have this form? Let

$$
\begin{aligned}
& P_{22}=\sum_{i} P_{22, i}, \quad P_{21}=\left[\begin{array}{lll}
P_{21,1} & \cdots & P_{21,1}
\end{array}\right] \\
& P_{12}=\left[\begin{array}{c}
P_{12,1} \\
\vdots \\
P_{12, k}
\end{array}\right], \quad P_{11}=\left[\begin{array}{ccc}
P_{11,1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & P_{11, k}
\end{array}\right] \quad \Delta=\left[\begin{array}{ccc}
\delta_{1} I & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \delta_{k} I
\end{array}\right]
\end{aligned}
$$

Then

$$
P_{22}+P_{21}\left(I-\Delta P_{11}\right)^{-1} \Delta P_{12}=\sum_{i} P_{22, i}+P_{21, i}\left(\delta_{i}^{-1} I-P_{11, i}\right)^{-1} P_{12, i}
$$

Hence any Rational Uncertainty can be represented

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
z(t)
\end{array}\right]=\left(P_{22}+P_{21}\left(I-\Delta P_{11}\right)^{-1} \Delta P_{12}\right)\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
w(t)
\end{array}\right]
$$

In fact, ANY state-space system with rational uncertainty can be represented

Recall any proper, rational transfer function $\hat{G}(s)$ has a representation as

$$
\hat{G}(s)=C(s I-A)^{-1} B+D
$$

For each δ_{i}, if we can find a $\hat{G}\left(\delta_{i}^{-1}\right)$, we can construct the corresponding LFT.

Formulating the LFT

Consider the Example From Gu, Petkoz, Konstantinov

Recall:

State-Space Systems can be represented in Block-Diagram Form. e.g.

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

$$
m \ddot{x}+c \dot{x}+k x=F \quad x(s)=\frac{1}{m s^{2}+c s+k} F(s)
$$

Lets consider how to do this problem in General with Block Diagrams.
Step 1: Isolate all the uncertain parameters:

Formulating the LFT

Step 2: Rewrite all the uncertain blocks as LFTs

For the $\frac{1}{m_{0}\left(1+\eta_{m} \delta_{m}\right)}$ Term:

$$
\frac{1}{m}=\frac{1}{m_{0}\left(1+\eta_{m} \delta_{m}\right)}=\frac{1}{m_{0}}-\frac{1}{m_{0}}\left(1+\eta_{m} \delta_{m}\right)^{-1} \eta_{m} \delta_{m}=\bar{S}\left(M_{m}, \delta_{m}\right)
$$

where $M_{m}=\left[\begin{array}{ll}-\eta_{m} & \frac{1}{m_{0}} \\ -\eta_{m} & \frac{1}{m_{0}}\end{array}\right]$.
For the $c_{0}\left(1+\eta_{c} \delta_{c}\right)$ and $k_{0}\left(1+\eta_{k} \delta_{k}\right)$ Terms:

$$
\begin{array}{ll}
c=c_{0}\left(1+\eta_{c} \delta_{c}\right)=\bar{S}\left(M_{c}, \delta_{c}\right) & M_{c}=\left[\begin{array}{cc}
0 & c_{0} \\
\eta_{c} & c_{0}
\end{array}\right] \\
k=k_{0}\left(1+\eta_{k} \delta_{k}\right)=\bar{S}\left(M_{k}, \delta_{c}\right) & M_{k}=\left[\begin{array}{cc}
0 & k_{0} \\
\eta_{k} & k_{0}
\end{array}\right]
\end{array}
$$

Formulating the LFT

Step 3: Write down all your equations!

Set $x_{1}=x, x_{2}=\dot{x}, z=x_{1}$ so $\ddot{x}=\dot{x}_{2}$.

Formulating the LFT

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-\eta_{m} u_{m}+\frac{1}{m_{0}}\left(w-v_{c}-v_{k}\right) \\
y_{m} & =-\eta_{m} u_{m}+\frac{1}{m_{0}}\left(w-v_{c}-v_{k}\right) \\
y_{c} & =c_{0} x_{2} \\
y_{k} & =k_{0} x_{1} \\
v_{c} & =\eta_{c} u_{c}+c_{0} x_{2}, \quad v_{k}=\eta_{k} u_{k}+k_{0} x_{1} \\
z & =x_{1} \\
u_{m} & =\delta_{m} y_{m}, \quad u_{c}=\delta_{c} y_{c}, \quad u_{k}=\delta_{k} y_{k}
\end{aligned}
$$

Eliminating v_{c} and v_{k}, we get
$\left[\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2} \\ y_{m} \\ y_{c} \\ y_{k} \\ z\end{array}\right]=\left[\begin{array}{cc|ccc|c}0 & 1 & 0 & 0 & 0 & 0 \\ -\frac{k_{0}}{m_{0}} & -\frac{c_{0}}{m_{0}} & -\eta_{m} & -\frac{\eta_{c}}{m_{0}} & -\frac{\eta_{k}}{m_{0}} & \frac{1}{m_{0}} \\ \hline-\frac{k_{0}}{m_{0}} & -\frac{c_{0}}{m_{0}} & -\eta_{m} & -\frac{\eta_{c}}{m_{0}} & -\frac{\eta_{k}}{m_{0}} & \frac{1}{m_{0}} \\ 0 & c_{0} & 0 & 0 & 0 & 0 \\ k_{0} & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & & 0 & 0 & 0 \\ 0\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ u_{m} \\ u_{c} \\ u_{k} \\ w\end{array}\right] \quad u=\left[\begin{array}{ccc}\delta_{m} & 0 & 0 \\ 0 & \delta_{k} & 0 \\ 0 & 0 & \delta_{c}\end{array}\right] y$

Structured Uncertainty

In the previous example, Δ has Structure

$$
q=\left[\begin{array}{ccc}
\delta_{m} & 0 & 0 \\
0 & \delta_{k} & 0 \\
0 & 0 & \delta_{c}
\end{array}\right] p
$$

Of course, $\|\Delta\|<1$, but it is also diagonal.

- To ignore this structure leads to conservative Results
- We will return to this issue in the next lecture.

Nonlinearity (Structural Error in Model)

Absolute Stability Problems

The Rayleigh Equation:

$$
\ddot{y}-2 \zeta\left(1-\alpha \dot{y}^{2}\right) \dot{y}+y=u
$$

Nominal System: P

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{cc}
2 \zeta & -1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{c}
-2 \zeta \alpha \\
0
\end{array}\right] q(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
p(t) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t) \\
y(t) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

- Δ is NOT norm-bounded. $\left(p(t)^{3} \not \leq K p(t)\right.$ for any $\left.K\right)$
- However, $\langle p, q\rangle=\int p(t) q(t) d t=\int p(t)^{4} d t \geq 0$.
- Does This Help?

Unmodelled States

Model Reduction

Higher-Order Dynamics and Model Reduction: Missing States

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] w \\
y & =\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D w
\end{aligned}
$$

Problem: If we don't model the states x_{2}, then $A_{12}, A_{21}, A_{22}, B_{2}$ and C_{2} are all unknown.
Model of Uncertainty: Put all the unknowns is an interconnected system.

Nominal System: P

$$
\begin{gathered}
\dot{x}_{1}(t)=A_{11} x_{1}(t)+p(t)+B_{1} w(t) \\
q(t)=\left[\begin{array}{l}
I \\
0
\end{array}\right] x_{1}(t)+\left[\begin{array}{l}
0 \\
I
\end{array}\right] w(t)
\end{gathered}
$$

Uncertain System: Δ

$$
\begin{array}{r}
\dot{x}_{2}(t)=A_{22} x_{1}(t)+\left[\begin{array}{ll}
A_{21} & B_{2}
\end{array}\right] q(t) \\
p(t)=A_{12} x_{2}(t)
\end{array}
$$

Question: How to model Δ if it is unknown?

- Since Δ is state-space (and stable), $\Delta \in H_{\infty}$.
- Which means $\|\Delta\|_{\mathcal{L}\left(L_{2}\right)}=\|\Delta\|_{H_{\infty}}$ is bounded.
- Can we assume $\|\Delta\|_{H_{\infty}}<1$? $<.1$?

Time-Varying Uncertainty?

Gain Scheduling and Logical Switching

Several Operating Points:

Table 11.2 Parameter Values at the Seven Operating Points

Time (s)	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
$a_{1}(t)$	1.593	1.485	1.269	1.130	0.896	0.559	0.398
$a_{1}^{\prime}(t)$	0.285	0.192	0.147	0.118	0.069	0.055	0.043
$a_{2}(t)$	260.559	266.415	196.737	137.385	129.201	66.338	51.003
$a_{3}(t)$	185.488	182.532	176.932	160.894	138.591	78.404	53.840
$a_{4}(t)$	1.506	1.295	1.169	1.130	1.061	0.599	0.421
$a_{5}(t)$	0.298	0.243	0.217	0.191	0.165	0.105	0.078
$b_{1}(t)$	1.655	1.502	1.269	1.130	0.896	0.559	0.398
$b_{1}^{\prime}(t)$	0.295	0.195	0.147	0.118	0.069	0.055	0.043
$b_{2}(t)$	39.988	-24.627	-31.452	-41.425	-68.165	-21.448	-9.635
$b_{3}(t)$	159.974	170.532	182.030	184.093	154.608	89.853	59.587
$b_{4}(t)$	0.771	0.652	0.680	0.691	0.709	0.360	0.243
$b_{5}(t)$	0.254	0.191	0.188	0.182	0.162	0.102	0.072

Dynamics:

$$
\dot{x}(t)=A x(t)+B u(t)
$$

If $\mathrm{x}(\mathrm{t})<3: u(t)=K_{1} x(t)$
If $\mathrm{x}(\mathrm{t})>3: u(t)=K_{2} x(t)$
There can be an array of gains.

In Gain Scheduling, the controller switches depending on operating point.

The dynamics switch with the state.

- This is called a Hybrid System
- Technically, it is not uncertain, since model is defined

Delayed Systems

Infinite Unmodelled States

$$
\dot{x}(t)=A x(t)+A_{1} x(t-\tau)+B u(t)
$$

Nominal System: P

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+A q(t)+B u(t) \\
p(t) & =x(t) \\
y(t) & =x(t)
\end{aligned}
$$

Uncertain System: Δ

$$
q(t)=p(t-\tau)
$$

In the Frequency Domain:

$$
q(s)=e^{-\tau s} p(s)
$$

Hence $\hat{\Delta}(s)=e^{-\tau s}$

- $\|\hat{\Delta}\|_{H_{\infty}}=1$
- Can use Small-gain.

Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty

- Time-Varying Uncertainty can cause problems
- Because dealing with Structured Uncertainty is difficult, we often look for alternative representations.
Consider the following form of time-varying uncertainty

$$
\dot{x}(t)=\left(A_{0}+\Delta A(t)\right) x(t)
$$

where

$$
\Delta A(t)=A_{1} \delta_{1}(t)+\cdots+A_{k} \delta_{k}(t)
$$

where $\delta(t)$ lies in either the intervals

$$
\delta_{i}(t) \in\left[\delta_{i}^{-}, \delta_{i}^{+}\right]
$$

or the simplex

$$
\delta(t) \in\left\{\alpha: \sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0\right\}
$$

For convenience, we denote this Convex Hull as

$$
C o\left(A_{1}, \cdots, A_{k}\right):=\left\{\sum_{i} A_{i} \alpha_{i}: \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}
$$

Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty
For example,

$$
m \ddot{x}+c \dot{x}+k x=F \quad x(s)=\frac{1}{m s^{2}+c s+k} u(s)
$$

Define $x_{1}=y$ and $x_{2}=m \dot{y}$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & m^{-1} \\
-k & -\frac{c}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] F
$$

Then if $m \in\left[m^{-}, m^{+}\right], c \in\left[c^{-}, c^{+}\right], k \in\left[k^{-}, k^{+}\right]$, then

$$
\begin{gathered}
m^{-1} \in\left[\frac{1}{m^{+}}, \frac{1}{m^{-}}\right] \\
\frac{c}{m} \in\left[\frac{c^{-}}{m^{+}}, \frac{c^{+}}{m^{-}}\right]
\end{gathered}
$$

Note: This doesn't always work!

- e.g. if in addition there were a c coefficient (appearing w/o $1 / m$).
- Need a change of parameters which becomes affine in the parameters.
- Then you are stuck with the LFT.

Discrete-Time Case

All frameworks are readily adapted to the Discrete-Time Case: LFT Framework:

$$
\left[\begin{array}{c}
x_{k+1} \\
z_{k}
\end{array}\right]=\bar{S}(P, \Delta)\left[\begin{array}{l}
x_{k} \\
w_{k}
\end{array}\right]
$$

Additive or Polytopic Framework:

$$
x_{k+1}=\left(A_{0}+\Delta A_{k}\right) x_{k}+\left(B_{0}+\Delta B_{k}\right) u_{k}
$$

where

$$
\Delta A_{k}=A_{1} \delta_{1, k}+\cdots+A_{k} \delta_{K, k}
$$

where δ_{k} lies in either the intervals

$$
\delta_{i, k} \in\left[\delta_{i}^{-}, \delta_{i}^{+}\right]
$$

or the simplex

$$
\delta_{k} \in\left\{\alpha: \sum_{i} \alpha_{i}=1, \alpha_{i} \geq 0\right\}
$$

Types of Uncertainty

To Summarize, we have many choices for our uncertainty Set, $\boldsymbol{\Delta}$

- Unstructured, Dynamic, norm-bounded:

$$
\Delta:=\left\{\Delta \in \mathcal{L}\left(L_{2}\right):\|\Delta\|_{H_{\infty}}<1\right\}
$$

- Structured, Static, norm-bounded:

$$
\boldsymbol{\Delta}:=\left\{\operatorname{diag}\left(\delta_{1}, \cdots, \delta_{K}, \Delta_{1}, \cdots \Delta_{N}\right):\left|\delta_{i}\right|<1, \bar{\sigma}\left(\Delta_{i}\right)<1\right\}
$$

- Structured, Dynamic, norm-bounded:

$$
\boldsymbol{\Delta}:=\left\{\operatorname{diag}\left(\Delta_{1}, \Delta_{2}, \cdots\right) \in \mathcal{L}\left(L_{2}\right):\left\|\Delta_{i}\right\|_{H_{\infty}}<1\right\}
$$

- Unstructured, Parametric, norm-bounded:

$$
\boldsymbol{\Delta}:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
$$

- Parametric, Polytopic:

$$
\Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}: \Delta=\sum_{i} \alpha_{i} H_{i}, \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}
$$

- Parametric, Interval:

$$
\boldsymbol{\Delta}:=\left\{\sum_{i} \Delta_{i} \delta_{i}: \delta_{i} \in\left[\delta_{i}^{-}, \delta_{i}^{+}\right]\right\}
$$

Each of these can be Time-Varying or Time-Invariant!

