LMI Methods in Optimal and Robust Control

Matthew M. Peet Arizona State University

Lecture 12: Modeling Uncertainty and Robustness

Robust Control: Dealing with Uncertainty

The Known Unknowns

CASE 1: External Disturbances

- The most benign source of uncertainty.
- Finite Energy (*L*₂-norm bounded).
- H_∞ optimal control minimizes the effect of these uncertainties.

Benign Sources:

- Vibrations, Wind, 60 Hz noise
- Initial Conditions
- Sensor Noise
- Changes in Reference Signal

Not-So-Benign Sources:

- Higher-Order Dynamics
- Nonlinearity (Saturation)
- Delay
- Modeling Errors (Parametric vs. Structural)
- Model Reduction
- Logical Switching

Modelling Uncertainty

A Set-Based Description

The Not-So-Benign Sources describe uncertainty in the System (P).

• These can NOT be bounded apriori

The first step is to **Quantify** our uncertainty.

• How bad can it get?

We need to define the **Set** of possible Plants.

- $P \in \mathbf{P}$ where \mathbf{P} is a set of possible plants.
- P can describe either finite or infinite possible systems.
- How do we parameterize ${f P}$

Original Problem:

$$\min_{K \in H_{\infty}} \|\underline{\mathbf{S}}(P, K)\|_{H_{\infty}}$$

Now we have to add a modifier:

$$\min_{K \in H_{\infty}} \gamma : \|\underline{\mathsf{S}}(P, K)\|_{H_{\infty}} \le \gamma \quad \text{ For All } P \in \mathbf{P}.$$

Modelling Uncertainty

Parametric Uncertainty

There are Three Main Types of Parametric Uncertainty

$$\ddot{y}(t) = \frac{c}{m}\dot{y}(t) + \frac{k}{m}y(t) = \frac{F(t)}{m}$$

• Uncertainty in Parameters c, k, m

Multiplicative Uncertainty

•
$$m = m_0(1 + \eta_m \delta_m)$$

•
$$c = c_0(1 + \eta_c \delta_c)$$

•
$$k = k_0(1 + \eta_k \delta_k)$$

Where $\delta_m, \delta_c, \delta_k$ are bounded.

Polytopic Uncertainty

$$\begin{bmatrix} m \\ c \\ k \end{bmatrix} \in \left\{ \begin{bmatrix} m \\ c \\ k \end{bmatrix} : \begin{bmatrix} m \\ c \\ k \end{bmatrix} = \sum_{i} \delta_{i} \begin{bmatrix} m_{i} \\ c_{i} \\ k_{i} \end{bmatrix}, \begin{array}{l} \sum_{i} \delta_{i} = 1, \\ \delta_{i} \ge 0. \end{array} \right\}$$

where $\begin{bmatrix} m_i & c_i & k_i \end{bmatrix}^T$ describe possible model parameters.

Additive Uncertainty

•
$$m = m_0 + \eta_m \delta_m$$

•
$$c = c_0 + \eta_c \delta_c$$

•
$$k = k_0 + \eta_k \delta_k$$

Lecture 12:

Where $\delta_m, \delta_c, \delta_k$ are bounded.

m

Linear-Fractional Representation

The first step is to isolate the unknowns from the knowns

The known part is the **Nominal System**, M:

$$\begin{bmatrix} p \\ z \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} q \\ w \end{bmatrix}$$

The unknown part is the **Uncertain System**, $q = \Delta p$

- For which we only know $\Delta \in \mathbf{\Delta}$.
- How to parameterize the Set: Δ ?

As for the feedback interconnection, we have 3 equations:

$$p = M_{11}q + M_{12}w, \qquad z = M_{21}q + M_{22}w, \qquad q = \Delta p$$

Solving for q,

$$q = \Delta p = \Delta M_{11}q + \Delta M_{12}w$$
$$= (I - \Delta M_{11})^{-1} \Delta M_{12}w$$

Then

$$z = M_{21}q + M_{22}w = \overbrace{(M_{22} + M_{21}(I - \Delta M_{11})^{-1}\Delta M_{12})}^{\bullet}w$$

Recall that $\overline{S}(M, \Delta)$ is called the **Upper Star Product**.

M. Peet

 $\bar{S}(M,\Delta)$

-Linear-Fractional Representation

Note the algebraic use of systems.

- Δ and M_{ij} are subsystems, not matrices.
- This accounts for the lack of the time parameter, t, in the equations

Here we are using the 4-system representation of the nominal system. We can also do this using the 9-matrix representation, but recall the CL system is very complicated.

Linear-Fractional Representation

State-Space Formulation

The **Nominal System**, M:

$$\begin{bmatrix} \dot{x}(t) \\ p(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} A & B_2 & B_1 \\ C_2 & D_{22} & D_{21} \\ C_1 & D_{12} & D_{11} \end{bmatrix} \begin{bmatrix} x(t) \\ q(t) \\ w(t) \end{bmatrix}$$

 $\bar{S}(M, \Delta)$ is too complicated unless we Assume Static Uncertainty: $q(t) = \Delta p(t)$: Solving for q,

$$\begin{aligned} q(t) &= \Delta (C_1 x(t) + D_{11} q(t) + D_{12} w(t)) \\ q(t) &= (I - \Delta D_{11})^{-1} \Delta (C_1 x(t) + D_{12} w(t)) \\ &= (I - \Delta D_{11})^{-1} \Delta C_1 x(t) + (I - \Delta D_{11})^{-1} \Delta D_{12} w(t) \end{aligned}$$

Finally, we get

$$\dot{x}(t) = (A + B_1(I - \Delta D_{11})^{-1}\Delta C_1)x(t) + (B_2 + B_1(I - \Delta D_{11})^{-1}\Delta D_{12})w(t)$$
$$z(t) = (C_2 + D_{21}(I - \Delta D_{11})^{-1}\Delta C_1)x(t) + (D_{22} + D_{21}(I - \Delta D_{11})^{-1}\Delta D_{12})w(t)$$

Lecture 12

-Linear-Fractional Representation

- We are representing the LFT as a state-space equivalent representation, which may be easier to work with/understand even though it involves more equations.
- $\bullet~$ Here we treat Δ as a matrix and not a system.

The CL system is

$$\bar{S}(M,\Delta) = \begin{bmatrix} A + B_1(I - \Delta D_{11})^{-1} \Delta C_1 & B_2 + B_1(I - \Delta D_{11})^{-1} \Delta D_{12} \\ \hline C_2 + D_{21}(I - \Delta D_{11})^{-1} \Delta C_1 & D_{22} + D_{21}(I - \Delta D_{11})^{-1} \Delta D_{12} \end{bmatrix}$$

Alternatively, we can write:

$$\begin{bmatrix} A_{cl} & B_{cl} \\ C_{cl} & D_{cl} \end{bmatrix} = \bar{S}(P, \Delta) = \begin{bmatrix} A & B_2 \\ C_2 & D_{22} \end{bmatrix} + \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} (I - \Delta D_{11})^{-1} \Delta \begin{bmatrix} C_1 & D_{12} \end{bmatrix}$$

Linear-Fractional Representation for Matrices

There is an important point here: The LFT can be used for matrices That is, if you have two equations:

$$\begin{bmatrix} p(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} q(t) \\ w(t) \end{bmatrix} \quad \text{and} \quad q(t) = \Delta p(t)$$

Then

$$z(t) = \bar{S}(M, \Delta)w(t) = \left(M_{22} + M_{21}(I - \Delta M_{11})^{-1}\Delta M_{12}\right)w(t)$$

_Alternatively,

$$\begin{bmatrix} z(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} w(t) \\ q(t) \end{bmatrix} \qquad \text{and} \qquad q(t) = \Delta p(t)$$

Becomes

$$z(t) = \underline{S}(M, \Delta)w(t) = (M_{11} + M_{12}\Delta(I - M_{22}\Delta)^{-1}M_{21})w(t)$$

This works even if we replace z(t) with $\begin{bmatrix} \dot{x}(t) \\ z(t) \end{bmatrix}$ and w(t) with $\begin{bmatrix} \dot{x}(t) \\ w(t) \end{bmatrix}$

M. Peet

Nominal System (Upper Feedback Representation):

$$\begin{bmatrix} p(t) \\ \dot{x}(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} D_{11} & \begin{bmatrix} C_1 & D_{12} \\ B_1 \\ D_{21} \end{bmatrix} & \begin{bmatrix} A & B_2 \\ C_2 & D_{22} \end{bmatrix} \end{bmatrix} \begin{bmatrix} q(t) \\ x(t) \\ w(t) \end{bmatrix} = P \begin{bmatrix} q(t) \\ x(t) \\ w(t) \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} q(t) \\ x(t) \\ w(t) \end{bmatrix}$$
$$P_{22} = \begin{bmatrix} A & B_2 \\ C_2 & D_{22} \end{bmatrix}, P_{21} = \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix}, P_{12} = \begin{bmatrix} C_1 & D_{12} \end{bmatrix}, P_{11} = D_{11},$$

Closed-Loop: Representation of the Upper Feedback Interconnection with Δ

$$\begin{bmatrix} \dot{x}(t) \\ z(t) \end{bmatrix} = \overbrace{(P_{22} + P_{21}(I - \Delta P_{11})^{-1} \Delta P_{12})}^{\bar{S}(P,\Delta)} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$$

Apply the LFT to Parametric Uncertainty

Additive Uncertainty

Δ Consider Additive Uncertainty: $\mathbf{P} := \{ P : P = P_0 + \Delta, \Delta \in \mathbf{\Delta} \}$ pΜ **Nominal System:** M Uncertain System: Δ $\begin{bmatrix} p \\ z \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & M_0 \end{bmatrix} \begin{bmatrix} q \\ w \end{bmatrix}$ $q = \Delta p$ Solving for z, we get the Upper Star Product $z = (M_{22} + M_{21}(I - \Delta M_{11})^{-1} \Delta M_{12})w$

 $z = (M_0 + \Delta)w$

or

q

w

Apply the LFT to Parametric Uncertainty

Multiplicative Uncertainty

Using the Upper Star Product we get

$$\bar{S}(M,\Delta) = M_{22} + M_{21}(I - \Delta M_{11})^{-1}\Delta M_{12} = (I + \Delta)M_0$$

thus

$$z = (I + \Delta)M_0 w$$

Example of Parametric Uncertainty

Recall The Spring-Mass Example

$$\ddot{y}(t) = -c\dot{y}(t) - \frac{k}{m}y(t) + \frac{F(t)}{m}$$

Multiplicative Uncertainty

- $m = m_0(1 + \eta_m \delta_m)$
- $c = c_0(1 + \eta_c \delta_c)$
- $k = k_0(1 + \eta_k \delta_k)$ Define $x_1 = y$ and $x_2 = m\dot{y}$

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & m^{-1}\\ -k & -c \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} F$$
 Nominal System Dynamics
$$\begin{bmatrix} A & B_2 & B_1\\ \hline C_2 & D_{22} & D_{21}\\ \hline C_1 & D_{12} & D_{11} \end{bmatrix} = \begin{bmatrix} 0 & m_0^{-1} & 0 & -\eta_m & 0 & 0\\ \hline -k_0 & -c_0 & 1 & 0 & \eta_k & \eta_c\\ \hline 1 & 0 & 0 & 0 & 0 & 0\\ \hline 0 & m_0^{-1} & 0 & -\eta_m & 0 & 0\\ \hline -k_0 & 0 & 0 & 0 & 0 & 0\\ 0 & -c_0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 9-matrix

Note the states $x_1 = y$ and $x_2 = m\dot{y}$ were chose carefully so as to separate the uncertain parameters.

Example of Parametric Uncertainty

Nominal System: P

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & m_0^{-1} \\ -k_0 & -c_0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} F(t) + \begin{bmatrix} -\eta_m & 0 & 0 \\ 0 & \eta_k & \eta_c \end{bmatrix} q(t)$$

$$p(t) = \begin{bmatrix} 0 & m_0^{-1} \\ -k_0 & 0 \\ 0 & -c_0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} -\eta_m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} q(t)$$

$$z(t) = x_1(t)$$

Uncertain System: Δ

Closed-Loop:

$$q = \Delta p = \begin{bmatrix} \delta_m & 0 & 0\\ 0 & \delta_k & 0\\ 0 & 0 & \delta_c \end{bmatrix} p \qquad \begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t)\\ z(t) \end{bmatrix} = (P_{22} + P_{21}(I - \Delta P_{11})^{-1} \Delta P_{12}) \begin{bmatrix} x_1(t)\\ x_2(t)\\ F(t) \end{bmatrix}$$

where

$$P_{22} = \begin{bmatrix} A & B_2 \\ C_2 & D_{22} \end{bmatrix}, P_{21} = \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix}, P_{12} = \begin{bmatrix} C_1 & D_{12} \end{bmatrix}, P_{11} = D_{11}$$

Questions:

- How to formulate the uncertainty matrix?
- What if the uncertainty is time-varying?

M. Peet

1_F

Formulating the LFT representation

Recall the feedback representation has the form:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ z(t) \end{bmatrix} = (P_{22} + P_{21}(I - \Delta P_{11})^{-1} \Delta P_{12}) \begin{bmatrix} x(t) \\ F(t) \end{bmatrix}$$

What types of parametric uncertainty have this form? Let

$$P_{22} = \sum_{i} P_{22,i}, \qquad P_{21} = \begin{bmatrix} P_{21,1} & \cdots & P_{21,1} \end{bmatrix}$$
$$P_{12} = \begin{bmatrix} P_{12,1} \\ \vdots \\ P_{12,k} \end{bmatrix}, \quad P_{11} = \begin{bmatrix} P_{11,1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & P_{11,k} \end{bmatrix} \quad \Delta = \begin{bmatrix} \delta_1 I & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \delta_k I \end{bmatrix}$$

Then

$$P_{22} + P_{21}(I - \Delta P_{11})^{-1} \Delta P_{12} = \sum_{i} P_{22,i} + P_{21,i}(\delta_i^{-1}I - P_{11,i})^{-1} P_{12,i}$$

Hence any *Rational* Uncertainty can be represented

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ z(t) \end{bmatrix} = (P_{22} + P_{21}(I - \Delta P_{11})^{-1} \Delta P_{12}) \begin{bmatrix} x_1(t) \\ x_2(t) \\ w(t) \end{bmatrix}$$

In fact, ANY state-space system with rational uncertainty can be represented

M. Peet

Lecture 12

2023-10-23

Recall any proper, rational transfer function $\hat{G}(s)$ has a representation as

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

For each δ_i , if we can find a $\hat{G}(\delta_i^{-1})$, we can construct the corresponding LFT.

Consider the Example From Gu, Petkoz, Konstantinov

Recall:

State-Space Systems can be represented in Block-Diagram Form. e.g.

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

$$m\ddot{x} + c\dot{x} + kx = F \qquad x(s) = \frac{1}{ms^2 + cs + k}F(s)$$

Lets consider how to do this problem in General with Block Diagrams. **Step 1:** Isolate all the uncertain parameters:

Step 2: Rewrite all the uncertain blocks as LFTs

Step 3: Write down all your equations!

Set
$$x_1 = x, x_2 = \dot{x}, z = x_1$$
 so $\ddot{x} = \dot{x}_2$.

M. Peet

 $\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\eta_m u_m + \frac{1}{m_0} (w - v_c - v_k) \\ y_m &= -\eta_m u_m + \frac{1}{m_0} (w - v_c - v_k) \\ y_c &= c_0 x_2 \\ y_k &= k_0 x_1 \\ v_c &= \eta_c u_c + c_0 x_2, \qquad v_k = \eta_k u_k + k_0 x_1 \\ z &= x_1 \end{aligned}$

 $u_m = \delta_m y_m, \quad u_c = \delta_c y_c, \quad u_k = \delta_k y_k$ Eliminating v_c and v_k , we get

In the previous example, Δ has $\mbox{Structure}$

$$q = \begin{bmatrix} \delta_m & 0 & 0\\ 0 & \delta_k & 0\\ 0 & 0 & \delta_c \end{bmatrix} p$$

Of course, $\|\Delta\| < 1$, but it is also *diagonal*.

- To ignore this structure leads to conservative Results
- We will return to this issue in the next lecture.

Nonlinearity (Structural Error in Model)

Absolute Stability Problems

The Rayleigh Equation:

$$\ddot{y} - 2\zeta(1 - \alpha \dot{y}^2)\dot{y} + y = u$$

Nominal System: P

Uncertain System: Δ

$$\dot{x}(t) = \begin{bmatrix} 2\zeta & -1\\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} -2\zeta\alpha\\ 0 \end{bmatrix} q(t) + \begin{bmatrix} 1\\ 0 \end{bmatrix} u(t)$$
$$p(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

$$q(t) = (\Delta p)(t) = p(t)^3$$

- Δ is NOT norm-bounded. ($p(t)^3 \not\leq Kp(t)$ for any K)
- However, $\langle p,q\rangle = \int p(t)q(t)dt = \int p(t)^4 dt \ge 0.$
- Does This Help?

Unmodelled States

Model Reduction

Higher-Order Dynamics and Model Reduction: Missing States

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} w$$

$$y = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + Dw$$

Problem: If we don't model the states x_2 , then A_{12} , A_{21} , A_{22} , B_2 and C_2 are all unknown.

Model of Uncertainty: Put all the unknowns is an interconnected system.

Nominal System: P

Uncertain System: Δ

$$\dot{x}_{1}(t) = A_{11}x_{1}(t) + p(t) + B_{1}w(t) \qquad \dot{x}_{2}(t) = A_{22}x_{1}(t) + \begin{bmatrix} A_{21} & B_{2} \end{bmatrix} q(t)$$
$$q(t) = \begin{bmatrix} I \\ 0 \end{bmatrix} x_{1}(t) + \begin{bmatrix} 0 \\ I \end{bmatrix} w(t) \qquad p(t) = A_{12}x_{2}(t)$$

Question: How to model Δ if it is unknown?

- Since Δ is state-space (and stable), $\Delta \in H_{\infty}$.
- Which means $\|\Delta\|_{\mathcal{L}(L_2)} = \|\Delta\|_{H_{\infty}}$ is bounded.
- Can we assume $\|\Delta\|_{H_{\infty}} < 1? < .1?$

Time-Varying Uncertainty?

Gain Scheduling and Logical Switching

Several Operating Points:

Table 11.2 Parameter Values at the Seven Operating Points

Time (s)	t1	t2	t3	14	t5	<i>t</i> ₆	t7
$a_1(t)$	1.593	1.485	1.269	1.130	0.896	0.559	0.398
$a'_1(t)$	0.285	0.192	0.147	0.118	0.069	0.055	0.043
$a_2(t)$	260.559	266.415	196.737	137.385	129.201	66.338	51.003
a ₃ (t)	185.488	182.532	176.932	160.894	138.591	78.404	53.840
$a_4(t)$	1.506	1.295	1.169	1.130	1.061	0.599	0.421
$a_5(t)$	0.298	0.243	0.217	0.191	0.165	0.105	0.078
$b_1(t)$	1.655	1.502	1.269	1.130	0.896	0.559	0.398
$b'_1(t)$	0.295	0.195	0.147	0.118	0.069	0.055	0.043
$b_2(t)$	39.988	-24.627	-31.452	-41.425	-68.165	-21.448	-9.635
$b_3(t)$	159.974	170.532	182.030	184.093	154.608	89.853	59.587
$b_4(t)$	0.771	0.652	0.680	0.691	0.709	0.360	0.243
$b_5(t)$	0.254	0.191	0.188	0.182	0.162	0.102	0.072

Dynamics:

If Tf

$$\dot{x}(t) = Ax(t) + Bu(t)$$

If x(t) <3 : $u(t) = K_1x(t)$
If x(t) >3 : $u(t) = K_2x(t)$
There can be an array of gains.

In Gain Scheduling, the controller switches depending on operating point.

The dynamics switch with the state.

- This is called a Hybrid System
- Technically, it is not uncertain, since model is defined

$$\dot{x}(t) = Ax(t) + A_1x(t-\tau) + Bu(t)$$

Nominal System: P

$$\begin{split} \dot{x}(t) &= Ax(t) + Aq(t) + Bu(t) \\ p(t) &= x(t) \\ y(t) &= x(t) \end{split}$$

Uncertain System: Δ

$$q(t) = p(t - \tau)$$

In the Frequency Domain:

$$q(s) = e^{-\tau s} p(s)$$

Hence $\hat{\Delta}(s) = e^{-\tau s}$ • $\|\hat{\Delta}\|_{H_{\infty}} = 1$ • Can use Small-gain.

Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty

- Time-Varying Uncertainty can cause problems
- Because dealing with *Structured Uncertainty* is difficult, we often look for alternative representations.

Consider the following form of time-varying uncertainty

$$\dot{x}(t) = (A_0 + \Delta A(t))x(t)$$

where

$$\Delta A(t) = A_1 \delta_1(t) + \dots + A_k \delta_k(t)$$

where $\delta(t)$ lies in either the intervals

$$\delta_i(t) \in [\delta_i^-, \delta_i^+]$$

or the simplex

$$\delta(t) \in \{\alpha \ : \ \sum_i \alpha_i = 1, \ \alpha_i \ge 0\}$$

For convenience, we denote this Convex Hull as

$$Co(A_1, \cdots, A_k) := \left\{ \sum_i A_i \alpha_i : \alpha_i \ge 0, \sum_i \alpha_i = 1 \right\}$$

M. Peet

Lecture 12:

Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty

For example,

$$m\ddot{x} + c\dot{x} + kx = F \qquad x(s) = \frac{1}{ms^2 + cs + k}u(s)$$

Define $x_1 = y$ and $x_2 = m\dot{y}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & m^{-1} \\ -k & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} F$$

Then if $m\in[m^-,m^+]$, $c\in[c^-,c^+]$, $k\in[k^-,k^+]$, then

$$m^{-1} \in \left[\frac{1}{m^+}, \frac{1}{m^-}\right]$$
$$\frac{c}{m} \in \left[\frac{c^-}{m^+}, \frac{c^+}{m^-}\right]$$

Note: This doesn't always work!

- e.g. if in addition there were a c coefficient (appearing w/o 1/m).
- Need a change of parameters which becomes affine in the parameters.
- Then you are stuck with the LFT.

M. Peet

Discrete-Time Case

All frameworks are readily adapted to the Discrete-Time Case: LFT Framework:

$$\begin{bmatrix} x_{k+1} \\ z_k \end{bmatrix} = \bar{S}(P, \Delta) \begin{bmatrix} x_k \\ w_k \end{bmatrix}$$

Additive or Polytopic Framework:

$$x_{k+1} = (A_0 + \Delta A_k)x_k + (B_0 + \Delta B_k)u_k$$

where

$$\Delta A_k = A_1 \delta_{1,k} + \dots + A_k \delta_{K,k}$$

where δ_k lies in either the intervals

$$\delta_{i,k} \in [\delta_i^-, \delta_i^+]$$

or the simplex

$$\delta_k \in \{\alpha \, : \, \sum_i \alpha_i = 1, \, \alpha_i \ge 0\}$$

Types of Uncertainty

To Summarize, we have many choices for our uncertainty Set, Δ

• Unstructured, Dynamic, norm-bounded:

$$\mathbf{\Delta} := \{ \Delta \in \mathcal{L}(L_2) : \|\Delta\|_{H_{\infty}} < 1 \}$$

• Structured, Static, norm-bounded:

 $\boldsymbol{\Delta} := \{ \operatorname{diag}(\delta_1, \cdots, \delta_K, \Delta_1, \cdots \Delta_N) : |\delta_i| < 1, \ \bar{\sigma}(\Delta_i) < 1 \}$

• Structured, Dynamic, norm-bounded:

 $\boldsymbol{\Delta} := \{ \operatorname{diag}(\Delta_1, \Delta_2, \cdots) \in \mathcal{L}(L_2) : \|\Delta_i\|_{H_{\infty}} < 1 \}$

• Unstructured, Parametric, norm-bounded:

$$\mathbf{\Delta} := \{ \Delta \in \mathbb{R}^{n \times n} : \|\Delta\| \le 1 \}$$

Parametric, Polytopic:

$$\boldsymbol{\Delta} := \{ \Delta \in \mathbb{R}^{n \times n} : \Delta = \sum_{i} \alpha_{i} H_{i}, \, \alpha_{i} \ge 0, \, \sum_{i} \alpha_{i} = 1 \}$$

• Parametric, Interval:

$$\mathbf{\Delta} := \left\{ \sum_i \Delta_i \delta_i \, : \, \delta_i \in [\delta_i^-, \delta_i^+]
ight\}$$

Each of these can be Time-Varying or Time-Invariant!

M. Peet