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Types of Uncertainty

In this Lecture, we will cover
• Unstructured, Dynamic, norm-bounded:

∆ := {∆ ∈ L(L2) : ∥∆∥H∞ < 1}
• Structured, Static, norm-bounded:

∆ := {diag(δ1, · · · , δK ,∆1, · · ·∆N ) : |δi| < 1, σ̄(∆i) < 1}
• Structured, Dynamic, norm-bounded:

∆ := {∆1,∆2, · · · ∈ L(L2) : ∥∆i∥H∞ < 1}
• Unstructured, Static, norm-bounded:

∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}
• Parametric, Polytopic:

∆ := {∆ ∈ Rn×n : ∆ =
∑
i

αiHi, αi ≥ 0,
∑
i

αi = 1}
• Parametric, Interval:

∆ := {
∑
i

∆iδi : δi ∈ [δ−i , δ+i ]}

Each of these can be Time-Varying or Time-Invariant!
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Back to the Linear Fractional Transformation

The interval and polytopic cases rely on Linearity of the
uncertain parameters.

ẋ(t) = (A0 +∆(t))x(t)

The Linear-Fractional Transformation, however[
ẋ(t)
p(t)

]
= S̄(P,∆)

[
x(t)
q(t)

]
= (P22+P21∆(I−P11∆)−1P12)

[
x(t)
q(t)

]
is an arbitrary rational function.

qp M

¢

We focus on two results:

• The S-Procedure for Unstructured Uncertainty Sets

• The Structured Singular Value for Structured Uncertainty Sets.
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Robust Stability

qp M

¢

Questions:

• Is S̄(M,∆) stable for all ∆ ∈ ∆?

• Is I −∆M11 invertible for all ∆ ∈ ∆?
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Redefine Robust and Quadratic Stability
Suppose we have the system

M =

[
M11 M12

M21 M22

]
Definition 1.

The pair (M,∆) is Robustly Stable if (I −M11∆) is invertible for all ∆ ∈ ∆.

Alternatively, if
[
ẋ(t)
z(t)

]
= S̄(M,∆)

[
x(t)
w(t)

]
Definition 2 (Continuous-Time).

The pair (M,∆) is Robustly Stable if for some β > 0,
M22 +M21∆(I −M11∆)−1M12 + βI is Hurwitz for all ∆ ∈ ∆.

Alternatively, if
[
xk+1

zk

]
= S̄(M,∆)

[
xk

wk

]
Definition 3 (Discrete-Time).

The pair (M,∆) is Robustly Stable if
ρ(M22 +M21∆(I −M11∆)−1M12) = β < 1 for all ∆ ∈ ∆.
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Quadratic Stability - Parametric Uncertainty

Focus on the 1,1 block of S̄(M,∆):
If ẋ(t) = S̄(M,∆)x(t),

Definition 4 (Continuous Time).

The pair (M,∆) is Quadratically Stable if there exists a P > 0 such that

S̄(M,∆)TP + PS̄(M,∆) < −βI for all ∆ ∈ ∆

Alternatively, if xk+1 = S̄(M,∆)xk,

Definition 5 (Discrete Time).

The pair (M,∆) is Quadratically Stable if there exists a P > 0 such that

S̄(M,∆)TPS̄(M,∆)− P < −βI for all ∆ ∈ ∆

for all ∆ ∈ ∆.
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Parametric, Norm-Bounded Time-Varying Uncertainty

Consider the state-space representation:

qp M

¢

ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆(t) ∈ ∆

• Parametric, Norm-Bounded Uncertainty:

∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}
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Parametric, Norm-Bounded Time-Varying
Uncertainty

If we close the loop,

ẋ(t) = Ax(t) +Mq(t), q(t) = ∆(t)(Nx(t) +Qq(t)),

q(t) = (I −∆(t)Q)−1∆(t)Nx(t)

ẋ(t) = (A+M(I −∆(t)Q)−1∆(t)N)x(t) = S̄

([
A M
N Q

]
,∆

)
But this is complicated, so we seek a simpler approach.

V (x) = xTPx

V̇ (x) = x(t)TP (Ax(t) +Mq(t)) + (Ax(t) +Mq(t))TPx(t) < 0

for all p, x such that
∥q∥2 ≤ ∥Nx+Qq∥2

or [
x
q

]T [
0 0
0 I

] [
x
q

]
≤

[
x
q

] [
NT

QT

] [
N Q

] [x
q

]
=

[
x
q

] [
NTN NTQ
QTN QTQ

] [
x
q

]



Parametric, Norm-Bounded Uncertainty

Quadratic Stability: There exists a P > 0 such that

xTP (Ax+Mq)+(Ax+Mq)TPx < 0 for all [x, q] ∈
{
x, q : q = ∆p,

p = Nx+Qq,
∆ ∈ ∆

}

Theorem 6.

The system

ẋ(t) = Ax(t) +Mq(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t), ∆ ∈ ∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}

is quadratically stable if and only if there exists some P > 0 such that[
x
q

] [
ATP + PA PM

MTP 0

] [
x
q

]
< 0

for all

[
x
q

]
∈
{[

x
q

]
:

[
x
q

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
q

]
≤ 0

}
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∈
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Parametric, Norm-Bounded Uncertainty

The quadratic stability condition is a conditional LMI

� Positive on a subset of [x, q]

� [x, q] lies in an ellipsoid (a semialgebraic set).)

� Enforcing an LMI on a subset is usually hard.



Parametric, Norm-Bounded Uncertainty

Proof, If.

If[
x
q

] [
ATP + PA PM

MTP 0

] [
x
q

]
< 0

for all

[
x
q

]
∈
{[

x
q

]
:

[
x
q

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
q

]
≤ 0

}
then

xTP (Ax+Mq) + (Ax+Mq)TPx < 0

for all x, q such that
∥q∥2 ≤ ∥Nx+Qq∥2

Therefore, since q = ∆p implies ∥q∥ ≤ ∥p∥, we have quadratic stability.
The only if direction is similar.
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The S-Procedure
A Significant LMI for your Toolbox

Quadratic stability here requires positivity of a matrix on a subset.

• This is Generally a very hard problem

• NP-hard to determine if xTFx ≥ 0 for all x ≥ 0. (Matrix Copositivity)

S-procedure to the rescue!

The S-procedure asks the question:

• Is zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0}?

Corollary 7 (S-Procedure).

zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0} if there exists a scalar τ ≥ 0 such that
F − τG ⪰ 0.

Sufficiency is Obvious!

• The S-procedure is Necessary if {x : xTGx > 0} has an interior point.
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An LMI for Parametric, Norm-Bounded Uncertainty

Theorem 8 (Dual Version).

The system
ẋ(t) = Ax(t) +Mq(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t), ∆ ∈ ∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0 and P > 0 such that[
AP + PAT PNT

NP 0

]
+ µ

[
MMT MQT

QMT QQT − I

]
< 0}

Noting that the LMI can be written as[
AP + PAT PNT

NP −µI

]
+ µ

[
M
Q

] [
M
Q

]T
< 0

or AP + PAT PNT MT

NP −µI QT

M Q − 1
µI

 < 0

we see that this condition is simply an H∞ gain condition on the nominal
system ∥·∥H∞ < 1.
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An LMI for Parametric, Norm-Bounded Uncertainty

� We skipped the Primal version, but it should be obvious.

� Set µ = 1 and we have an LMI for ∥·∥H∞ < 1



Necessity of the Small-Gain Condition

This leads to the interesting result:

qp M

¢

If ∆ := {∆ ∈ L(L2) : ∥∆∥ ≤ 1}, then
• S̄(P,∆) ∈ H∞ if and only if ∥M11∥H∞ < 1

• The small gain condition is necessary and sufficient for stability.

• Quadratic Stability is equivalent to stability.

• Holds for Dynamic and Parametric Uncertainty
▶ Does this mean Quadratic and Robust Stability are Equivalent?
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Quadratic Stability and Equivalence to Robust Stability

Consider Quadratic Stability in Discrete-Time: xk+1 = Sl(M,∆)xk.

Definition 9.

(Sl,∆) is QS if

Sl(M,∆)TPSl(M,∆)− P < 0 for all ∆ ∈ ∆

Theorem 10 (Packard and Doyle).

Let M ∈ R(n+m)×(n+m) be given with ρ(M11) ≤ 1 and σ(M22) < 1. Then the
following are equivalent.

1. The pair (M,∆ = Rm×m) is quadratically stable.

2. The pair (M,∆ = Cm×m) is quadratically stable.

3. The pair (M,∆ = Cm×m) is robustly stable.
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Quadratically Stabilizing Controllers with Parametric
Norm-Bounded Uncertainty

However, we can add controllers:

Theorem 11.

The system with u(t) = Kx(t) and

ẋ(t) = Ax(t) +Mq(t) +Bu(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t) +D12u(t), ∆ ∈ ∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0 and P > 0 such that[
(A+BK)P + P (A+BK)T P (N +D12K)T

(N +D12K)P 0

]
+µ

[
MMT MQT

QMT QQT − I

]
< 0}

Of course, this is bilinear in P and K, so we make the change of variables
Z = KP .
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An LMI for Quadratically Stabilizing Controllers with
Parametric Norm-Bounded Uncertainty

Theorem 12.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Mq(t) +Bu(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t) +D12u(t), ∆ ∈ ∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0, Z and P > 0 such
that[
AP +BZ + PAT + ZTBT PNT + ZTDT

12

NP +D12Z 0

]
+µ

[
MMT MQT

QMT QQT − I

]
< 0}.

Then K = ZP−1 is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H∞ norm.
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An LMI for Quadratically Stabilizing Controllers with
Parametric Norm-Bounded Uncertainty

This is from Boyd page 101



An LMI for H∞-Optimal Quadratically Stabilizing
Controllers with Parametric Norm-Bounded Uncertainty

In this case, we restrict Q = 0.

Theorem 13.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Mq(t) +B2w(t) +Bu(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +D12u(t), ∆ ∈ ∆ := {∆ ∈ Rn×n : ∥∆∥ ≤ 1}
z(t) = Cx(t) +D22u(t)

satisfies ∥z∥L2
≤ γ∥w∥L2

if there exists some µ ≥ 0, Z and P > 0 such thatAP +BZ + PAT + ZTBT +B2B
T
2 + µMMT (CP +D22Z)T PNT + ZTDT

12

CP +D22Z −γ2I 0
NP +D12Z 0 −µI

 < 0.

Then K = ZP−1 is the corresponding controller.
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An LMI for H∞-Optimal Quadratically Stabilizing
Controllers with Parametric Norm-Bounded
Uncertainty

This is from Boyd page 110.
I believe it relies on the following alternative to the S-procedure [Xie, 1992] (See
also Caverly Notes), which is similar to Finsler’s Lemma

Theorem 14.
The following are equivalent

1.
Q+ F∆E + ET∆FT > 0 for all ∥∆∥ < 1

2. There exists some ϵ > 0 such that

Q+ ϵFFT + ϵ−1ETE > 0

Unfortunately, to put the LMI in the form of 1 requires us to eliminate the pass-
through term Q.



Structure, Norm-Bounded Uncertainty

For the case of structured parametric uncertainty, we define the structured set

∆ = {∆ = diag(δ1In1, · · · , δsIns,∆s+1, · · · ,∆s+f ) : δi ∈ R, ∆ ∈ Rnk×nk}

∆ =


δ1In1

· · ·
δsIns

∆s+1

· · ·
∆s+f


• δ and ∆ represent unknown parameters.

• s is the number of scalar parameters.

• f is the number of matrix parameters.
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

Definition 15.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

∥∆∥

Of course, S̄(M,∆) is stable if and only if µ(M11,∆) < 1.

• Obviously, µ(M,∆) < ∥M∥
• For ∆ := {∆ ∈ L(L2) : ∥∆∥ ≤ 1}, µ(M,∆) = ∥M∥
• µ(αM,∆) = |α|µ(M,∆)

• Can increase M by a factor 1
µ(M,∆) before losing stability.

• In general, computing µ is NP-hard unless uncertainty is unstructured.
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Scalings and The Structured Singular Value

Suppose Θ = {Θ : Θ∆ = ∆Θ for all ∆ ∈ ∆}
• Then µ(M,∆) = infΘ∈Θ∥ΘMΘ−1∥.
• Θ is the set of scalings.
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Scalings and The Structured Singular Value

∆ = {∆ = diag(δ1In1, · · · , δsIns,∆s+1, · · · ,∆s+f ) : δi ∈ R, ∆ ∈ Rnk×nk}

Define the set of scalings

PΘ := {diag(Θ1, · · · ,Θs, θs+1I, · · · , θs+fI : Θi > 0, θj > 0}

Theorem 16.

Suppose system M has transfer function M̂(s) = C(sI −A)−1B +D with
M̂ ∈ H∞. The following are equivalent

• There exists Θ ∈ PΘ such that ∥ΘMΘ−1∥2 < γ.

• There exists Θ ∈ PΘ and X > 0 such that[
ATX +XA XB

BTX −Θ

]
+

1

γ2

[
CT

DT

]
Θ
[
C D

]
< 0

Note: To minimize γ, you must use bisection.
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An LMI for Stability of Structured, Norm-Bounded
Uncertainty

This allows us to generalize the S-procedure to structured uncertainty

Theorem 17.

The system
ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈ ∆, ∥∆∥ ≤ 1

is quadratically stable if and only if there exists some Θ ∈ PΘ and P > 0 such
that [

AP + PAT PNT

NP 0

]
+

[
MΘMT MΘQT

QΘMT QΘQT −Θ

]
< 0}

This is an LMI in Θ and P .

• The constraint Θ ∈ PΘ is linear

PΘ := {diag(Θ1, · · · ,Θs, θs+1I, · · · , θs+fI) : Θi > 0, θj > 0}
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An LMI for Stability with Structured, Norm-Bounded
Uncertainty

To prove the theorem, we can take a closer look at the scalings:

Since T∆ = ∆T for T ∈ Θ, the system can equivalently be written as

ẋ(t) = Ax(t) +MT−1q(t), q(t) = ∆(t)p(t),

p(t) = TNx(t) + TQT−1q(t), ∆ ∈ ∆, ∥∆∥ ≤ 1

for any T ∈ Θ. Then[
AP + PAT PNT

NP 0

]
+

[
MMT MQT

QMT QQT − I

]
< 0

becomes[
AP + PAT PNTTT

TNP 0

]
+

[
MT−2MT MT−2QTTT

TQT−2MT TQT−2QTTT − I

]
< 0}

Pre- and Post-multiplying by

[
I 0
0 T−1

]
, and using Θ = T−2 ∈ PΘ, we recover

the LMI condition.
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An LMI for Stabilizing State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Theorem 18.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mq(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t) +D12u(t), ∆ ∈ ∆, ∥∆∥ ≤ 1

is quadratically stable if there exists some Θ ∈ PΘ, P > 0 and Z such that[
AP +BZ + PAT + ZTBT PNT + ZTDT

12

NP +D12Z 0

]
+

[
MΘMT MΘQT

QΘMT QΘQT −Θ

]
< 0.

Then K = ZP−1 is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H∞ norm.

M. Peet Lecture 14: 23 / 28



An LMI for Stabilizing State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Theorem 18.

There exists a K such that the system with u(t) = Kx(t)
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An LMI for Stabilizing State-Feedback Controllers
with Structured Norm-Bounded Uncertainty

This is from Boyd, page 102

Using Θ = µI, we recover the LMI for unstructured uncertainty.



An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

In this case, we set Q = 0.

Theorem 19.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mq(t) +B2w(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +D12u(t), ∆ ∈ ∆, ∥∆∥ ≤ 1

z(t) = Cx(t) +D22u(t)

satisfies ∥y∥L2
≤ γ∥u∥L2

if there exists some Θ ∈ PΘ, Z and P > 0 such thatAP +BZ + PAT + ZTBT +B2B
T
2 +MΘMT (CP +D22Z)T PNT + ZTDT

12

CP +D22Z −γ2I 0
NP +D12Z 0 −Θ

 < 0.

Then K = ZP−1 is the corresponding controller.

M. Peet Lecture 14: 24 / 28



An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Using the equivalent scaled system

ẋ(t) = Ax(t) +Bu(t) +MT−1q(t) +B2w(t), q(t) = ∆(t)p(t),

p(t) = TNx(t) + TD12u(t), ∆ ∈ ∆, ∥∆∥ ≤ 1

z(t) = Cx(t) +D22u(t)

we get

AP + BZ + PAT + ZT BT + B2BT
2 + MT−2MT (CP + D22Z)T PNT TT + ZT DT

12TT

CP + D22Z −γ2I 0
TNP + TD12Z 0 −I

 < 0.

Pre- and Post-multiplying by

I 0 0
0 I 0
0 0 T−1

, and using Θ = T−2 ∈ PΘ, we

recover the LMI condition.
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Lecture 14

An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

This is not from Boyd, but should be



Output-Feedback Robust Controller Synthesis

How to Solve the Output Feedback Case???

inf
K

sup
∆∈∆

∥S(S̄(G,∆),K)∥H∞
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D-K Iteration
A Heuristic for Dynamic Output Feedback Synthesis

Finally, we mention a Heuristic for Output-Feedback Controller synthesis.

Initialize: Θ = I.
Define:

ĜΘ(s) =

 A B1Θ
− 1

2 B2

Θ
1
2C1

C2

Θ
1
2D11Θ

− 1
2 Θ

1
2D12

D21Θ
− 1

2 0


Step 1: Fix Θ and solve

inf
K
∥S(GΘ,K)∥H∞

Step 2: Fix K and minimize γ such that there exists Θ ∈ PΘ ( or
Θ ∈ PΘ× I if you include the regulated output channel.) and X > 0 such that[

AT
clX +XAcl XBcl

BT
clX −Θ

]
+

1

γ2

[
CT

cl

DT
cl

]
Θ
[
Ccl Dcl

]
< 0

where Acl, Bcl, Ccl, Dcl define S(GI ,K). (Requires Bisection).

Step 3: GOTO Step 1
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Lecture 14

D-K Iteration

As with most heuristics, there are many variations on the D-K iteration. The

one presented here is the simplest, and probably will not work well.



A Word on D-K Iteration with Static Uncertainty
A Heuristic for Dynamic Output Feedback Synthesis

The D-K iteration outlined in this lecture is only valid for Dynamic Uncertainty :
∆(t).

• Our Scalings Θ are time-invariant.

For Static uncertainties, we should search for Dynamic Scaling Factors

• Θ(s) is a Transfer Function

• This is much harder to represent as an LMI (Or by any other method!).

• Matlab has built-in functionality, but it is hard to use.

We will return to µ analysis for static uncertainties when we consider more
advanced forms of optimization.
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