LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 14: LMIs for Robust Control in the LFT Framework

Types of Uncertainty

In this Lecture, we will cover

- Unstructured, Dynamic, norm-bounded:

$$
\Delta:=\left\{\Delta \in \mathcal{L}\left(L_{2}\right):\|\Delta\|_{H_{\infty}}<1\right\}
$$

- Structured, Static, norm-bounded:

$$
\boldsymbol{\Delta}:=\left\{\operatorname{diag}\left(\delta_{1}, \cdots, \delta_{K}, \Delta_{1}, \cdots \Delta_{N}\right):\left|\delta_{i}\right|<1, \bar{\sigma}\left(\Delta_{i}\right)<1\right\}
$$

- Structured, Dynamic, norm-bounded:

$$
\boldsymbol{\Delta}:=\left\{\Delta_{1}, \Delta_{2}, \cdots \in \mathcal{L}\left(L_{2}\right):\left\|\Delta_{i}\right\|_{H_{\infty}}<1\right\}
$$

- Unstructured, Static, norm-bounded:

$$
\Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
$$

- Parametric, Polytopic:

$$
\Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}: \Delta=\sum_{i} \alpha_{i} H_{i}, \alpha_{i} \geq 0, \sum_{i} \alpha_{i}=1\right\}
$$

- Parametric, Interval:

$$
\boldsymbol{\Delta}:=\left\{\sum_{i} \Delta_{i} \delta_{i}: \delta_{i} \in\left[\delta_{i}^{-}, \delta_{i}^{+}\right]\right\}
$$

Each of these can be Time-Varying or Time-Invariant!

Back to the Linear Fractional Transformation

The interval and polytopic cases rely on Linearity of the uncertain parameters.

$$
\dot{x}(t)=\left(A_{0}+\Delta(t)\right) x(t)
$$

The Linear-Fractional Transformation, however

$$
\left[\begin{array}{l}
\dot{x}(t) \\
p(t)
\end{array}\right]=\bar{S}(P, \Delta)\left[\begin{array}{l}
x(t) \\
q(t)
\end{array}\right]=\left(P_{22}+P_{21} \Delta\left(I-P_{11} \Delta\right)^{-1} P_{12}\right)\left[\begin{array}{l}
x(t) \\
q(t)
\end{array}\right]
$$

is an arbitrary rational function.
We focus on two results:

- The S-Procedure for Unstructured Uncertainty Sets
- The Structured Singular Value for Structured Uncertainty Sets.

Robust Stability

Questions:

- Is $\bar{S}(M, \Delta)$ stable for all $\Delta \in \Delta$?
- Is $I-\Delta M_{11}$ invertible for all $\Delta \in \boldsymbol{\Delta}$?

Redefine Robust and Quadratic Stability

Suppose we have the system

$$
M=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]
$$

Definition 1.

The pair $(M, \boldsymbol{\Delta})$ is Robustly Stable if $\left(I-M_{11} \Delta\right)$ is invertible for all $\Delta \in \boldsymbol{\Delta}$.
Alternatively, if

$$
\left[\begin{array}{l}
\dot{x}(t) \\
z(t)
\end{array}\right]=\bar{S}(M, \Delta)\left[\begin{array}{l}
x(t) \\
w(t)
\end{array}\right]
$$

Definition 2 (Continuous-Time).

The pair $(M, \boldsymbol{\Delta})$ is Robustly Stable if for some $\beta>0$, $M_{22}+M_{21} \Delta\left(I-M_{11} \Delta\right)^{-1} M_{12}+\beta I$ is Hurwitz for all $\Delta \in \Delta$.

Alternatively, if

$$
\left[\begin{array}{c}
x_{k+1} \\
z_{k}
\end{array}\right]=\bar{S}(M, \Delta)\left[\begin{array}{l}
x_{k} \\
w_{k}
\end{array}\right]
$$

Definition 3 (Discrete-Time).

The pair $(M, \boldsymbol{\Delta})$ is Robustly Stable if $\rho\left(M_{22}+M_{21} \Delta\left(I-M_{11} \Delta\right)^{-1} M_{12}\right)=\beta<1$ for all $\Delta \in \boldsymbol{\Delta}$.

Quadratic Stability - Parametric Uncertainty

Focus on the 1,1 block of $\bar{S}(M, \Delta)$:
If

$$
\dot{x}(t)=\bar{S}(M, \Delta) x(t),
$$

Definition 4 (Continuous Time).

The pair $(M, \boldsymbol{\Delta})$ is Quadratically Stable if there exists a $P>0$ such that

$$
\bar{S}(M, \Delta)^{T} P+P \bar{S}(M, \Delta)<-\beta I \quad \text { for all } \Delta \in \Delta
$$

Alternatively, if

$$
x_{k+1}=\bar{S}(M, \Delta) x_{k},
$$

Definition 5 (Discrete Time).

The pair $(M, \boldsymbol{\Delta})$ is Quadratically Stable if there exists a $P>0$ such that

$$
\bar{S}(M, \Delta)^{T} P \bar{S}(M, \Delta)-P<-\beta I \quad \text { for all } \Delta \in \Delta
$$

for all $\Delta \in \Delta$.

Parametric, Norm-Bounded Time-Varying Uncertainty

Consider the state-space representation:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+M p(t), & & p(t)=\Delta(t) q(t), \\
q(t) & =N x(t)+Q p(t), & & \Delta(t) \in \Delta
\end{aligned}
$$

- Parametric, Norm-Bounded Uncertainty:

$$
\Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
$$ Uncertainty

If we close the loop,

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+M q(t), \quad q(t)=\Delta(t)(N x(t)+Q q(t)), \\
& q(t)=(I-\Delta(t) Q)^{-1} \Delta(t) N x(t) \\
& \dot{x}(t)=\left(A+M(I-\Delta(t) Q)^{-1} \Delta(t) N\right) x(t)=\bar{S}\left(\left[\begin{array}{cc}
A & M \\
N & Q
\end{array}\right], \Delta\right)
\end{aligned}
$$

But this is complicated, so we seek a simpler approach.

$$
\begin{gathered}
V(x)=x^{T} P x \\
\dot{V}(x)=x(t)^{T} P(A x(t)+M q(t))+(A x(t)+M q(t))^{T} P x(t)<0
\end{gathered}
$$

for all p, x such that

$$
\|q\|^{2} \leq\|N x+Q q\|^{2}
$$

or

$$
\left[\begin{array}{l}
x \\
q
\end{array}\right]^{T}\left[\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right] \leq\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{l}
N^{T} \\
Q^{T}
\end{array}\right]\left[\begin{array}{ll}
N & Q
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right]=\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{ll}
N^{T} N & N^{T} Q \\
Q^{T} N & Q^{T} Q
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right]
$$

Parametric, Norm-Bounded Uncertainty

Quadratic Stability: There exists a $P>0$ such that
$x^{T} P(A x+M q)+(A x+M q)^{T} P x<0$ for all $[x, q] \in\left\{\begin{array}{c}x, q: q=\Delta p, \begin{array}{c}p=N x+Q q, \\ \Delta \in \Delta\end{array}, ~\end{array}\right.$

Theorem 6.

The system

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+M q(t), & q(t)=\Delta(t) p(t) \\
p(t)=N x(t)+Q q(t), & \Delta \in \Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
\end{array}
$$

is quadratically stable if and only if there exists some $P>0$ such that

$$
\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{cc}
A^{T} P+P A & P M \\
M^{T} P & 0
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right]<0
$$

$$
\text { for all }\left[\begin{array}{l}
x \\
q
\end{array}\right] \in\left\{\left[\begin{array}{l}
x \\
q
\end{array}\right]:\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{cc}
-N^{T} N & -N^{T} Q \\
-Q^{T} N & I-Q^{T} Q
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right] \leq 0\right\}
$$

Lecture 14

Parametric, Norm-Bounded Uncertainty

The quadratic stability condition is a conditional LMI

- Positive on a subset of $[x, q]$
- $[x, q]$ lies in an ellipsoid (a semialgebraic set).)
- Enforcing an LMI on a subset is usually hard.

Parametric, Norm-Bounded Uncertainty

Proof, If.

If

$$
\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{cc}
A^{T} P+P A & P M \\
M^{T} P & 0
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right]<0
$$

$$
\text { for all }\left[\begin{array}{l}
x \\
q
\end{array}\right] \in\left\{\left[\begin{array}{l}
x \\
q
\end{array}\right]:\left[\begin{array}{l}
x \\
q
\end{array}\right]\left[\begin{array}{cc}
-N^{T} N & -N^{T} Q \\
-Q^{T} N & I-Q^{T} Q
\end{array}\right]\left[\begin{array}{l}
x \\
q
\end{array}\right] \leq 0\right\}
$$

then

$$
x^{T} P(A x+M q)+(A x+M q)^{T} P x<0
$$

for all x, q such that

$$
\|q\|^{2} \leq\|N x+Q q\|^{2}
$$

Therefore, since $q=\Delta p$ implies $\|q\| \leq\|p\|$, we have quadratic stability. The only if direction is similar.

The S-Procedure

A Significant LMI for your Toolbox

Quadratic stability here requires positivity of a matrix on a subset.

- This is Generally a very hard problem
- NP-hard to determine if $x^{T} F x \geq 0$ for all $x \geq 0$. (Matrix Copositivity) S-procedure to the rescue!

The S-procedure asks the question:

- Is $z^{T} F z \geq 0$ for all $z \in\left\{x: x^{T} G x \geq 0\right\}$?

Corollary 7 (S-Procedure).

$z^{T} F z \geq 0$ for all $z \in\left\{x: x^{T} G x \geq 0\right\}$ if there exists a scalar $\tau \geq 0$ such that $F-\tau G \succeq 0$.

Sufficiency is Obvious!

- The S-procedure is Necessary if $\left\{x: x^{T} G x>0\right\}$ has an interior point.

An LMI for Parametric, Norm-Bounded Uncertainty

Theorem 8 (Dual Version).

The system

$$
\begin{array}{ll}
\dot{x}(t)=A x(t)+M q(t), & q(t)=\Delta(t) p(t) \\
p(t)=N x(t)+Q q(t), & \Delta \in \Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
\end{array}
$$

is quadratically stable if and only if there exists some $\mu \geq 0$ and $P>0$ such that

$$
\left.\left[\begin{array}{cc}
A P+P A^{T} & P N^{T} \\
N P & 0
\end{array}\right]+\mu\left[\begin{array}{cc}
M M^{T} & M Q^{T} \\
Q M^{T} & Q Q^{T}-I
\end{array}\right]<0\right\}
$$

Noting that the LMI can be written as

$$
\left[\begin{array}{cc}
A P+P A^{T} & P N^{T} \\
N P & -\mu I
\end{array}\right]+\mu\left[\begin{array}{c}
M \\
Q
\end{array}\right]\left[\begin{array}{c}
M \\
Q
\end{array}\right]^{T}<0
$$

or

$$
\left[\begin{array}{ccc}
A P+P A^{T} & P N^{T} & M^{T} \\
N P & -\mu I & Q^{T} \\
M & Q & -\frac{1}{\mu} I
\end{array}\right]<0
$$

we see that this condition is simply an H_{∞} gain condition on the nominal system $\|\cdot\|_{H_{\infty}}<1$.

```
An LMI for Parametric, Norm-Bounded Uncertainty
Theorem }8\mathrm{ (Dual Version).
The system
    Mq(t). }\quad\mp@subsup{\sigma}{}{(t)}=\Delta(t)\beta(t)
    p(t)=Nx(t)+Qq(t),\quad\Delta\in\Delta:={\Delta\in\mp@subsup{\mathbb{R}}{}{0\timesn}:|\Delta|\leqslant1}
is quadratically stable if and only if there evists somne }\mu>0\mathrm{ and }P>0\mathrm{ such that
    [AP+P\mp@subsup{A}{}{T}
Noting that the LMII can be written as
Noting that the LMI can be written as 
or
                                AP+P\mp@subsup{A}{}{T}
*)}[\begin{array}{ccc}{APMP}&{P}&{P\mp@subsup{N}{}{T}}\\{N}&{\mp@subsup{M}{}{T}}\\{M}&{-\muI}&{\mp@subsup{Q}{}{T}}\\{M}&{Q}&{-\frac{1}{\mu}I}\end{array}]<
we see that this co.
```

 -An LMI for Parametric, Norm-Bounded Uncertainty
 - We skipped the Primal version, but it should be obvious.
- Set $\mu=1$ and we have an LMI for $\|\cdot\|_{H_{\infty}}<1$

Necessity of the Small-Gain Condition

This leads to the interesting result:

If $\boldsymbol{\Delta}:=\left\{\Delta \in \mathcal{L}\left(L_{2}\right):\|\Delta\| \leq 1\right\}$, then

- $\bar{S}(P, \Delta) \in H_{\infty}$ if and only if $\left\|M_{11}\right\|_{H_{\infty}}<1$
- The small gain condition is necessary and sufficient for stability.
- Quadratic Stability is equivalent to stability.
- Holds for Dynamic and Parametric Uncertainty
- Does this mean Quadratic and Robust Stability are Equivalent?

Quadratic Stability and Equivalence to Robust Stability

Consider Quadratic Stability in Discrete-Time: $x_{k+1}=S_{l}(M, \Delta) x_{k}$.

Definition 9.

$\left(S_{l}, \boldsymbol{\Delta}\right)$ is QS if

$$
S_{l}(M, \Delta)^{T} P S_{l}(M, \Delta)-P<0 \quad \text { for all } \Delta \in \boldsymbol{\Delta}
$$

Theorem 10 (Packard and Doyle).

Let $M \in \mathbb{R}^{(n+m) \times(n+m)}$ be given with $\rho\left(M_{11}\right) \leq 1$ and $\sigma\left(M_{22}\right)<1$. Then the following are equivalent.

1. The pair $\left(M, \Delta=\mathbb{R}^{m \times m}\right)$ is quadratically stable.
2. The pair $\left(M, \Delta=\mathbb{C}^{m \times m}\right)$ is quadratically stable.
3. The pair $\left(M, \Delta=\mathbb{C}^{m \times m}\right)$ is robustly stable.

Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

However, we can add controllers:

Theorem 11.

The system with $u(t)=K x(t)$ and

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+M q(t)+B u(t), & q(t) & =\Delta(t) p(t), \\
p(t) & =N x(t)+Q q(t)+D_{12} u(t), & \Delta & \in \Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
\end{aligned}
$$

is quadratically stable if and only if there exists some $\mu \geq 0$ and $P>0$ such that

$$
\left.\left[\begin{array}{cc}
(A+B K) P+P(A+B K)^{T} & P\left(N+D_{12} K\right)^{T} \\
\left(N+D_{12} K\right) P & 0
\end{array}\right]+\mu\left[\begin{array}{cc}
M M^{T} & M Q^{T} \\
Q M^{T} & Q Q^{T}-I
\end{array}\right]<0\right\}
$$

Of course, this is bilinear in P and K, so we make the change of variables $Z=K P$.

An LMI for Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

Theorem 12.

There exists a K such that the system with $u(t)=K x(t)$

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+M q(t)+B u(t), & q(t) & =\Delta(t) p(t), \\
p(t) & =N x(t)+Q q(t)+D_{12} u(t), & \Delta & \in \Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\}
\end{aligned}
$$

is quadratically stable if and only if there exists some $\mu \geq 0, Z$ and $P>0$ such that

$$
\left.\left[\begin{array}{cc}
A P+B Z+P A^{T}+Z^{T} B^{T} & P N^{T}+Z^{T} D_{12}^{T} \\
N P+D_{12} Z & 0
\end{array}\right]+\mu\left[\begin{array}{cc}
M M^{T} & M Q^{T} \\
Q M^{T} & Q Q^{T}-I
\end{array}\right]<0\right\} .
$$

Then $K=Z P^{-1}$ is a quadratically stabilizing controller.
We can also extend this result to optimal control in the H_{∞} norm.

Theorem 12.

There euists a K such that the system with u $(t)=K \bar{z}(t)$
$i(t)=A x(t)+M_{q}(t)+B u(t), \quad q(t)=\Delta(t) p(t)$.
$p(t)=N_{\mathrm{r}}(t)+Q_{q(t)}+D_{12} u(t) . \quad \Delta \in \Delta-\left\{\Delta \in \mathbb{R}^{n \times n}=\| \Delta \mid \leq 1\right\}$
An LMI for Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty
$\left.\left[A P^{P}+B Z+P A^{T}+Z^{T} B^{T} \quad P N^{T}+Z^{T} D_{12}^{T}\right]+\mu\left[\begin{array}{cc}M M^{T} & M Q^{T} \\ Q M^{T} & Q Q^{T}-1\end{array}\right]<0\right\}$ $\left[N P+D_{12} Z\right.$ Then $K=Z P^{-1}$ is a quadratically stabivizing controller.

This is from Boyd page 101

An LMI for H_{∞}-Optimal Quadratically Stabilizing

 Controllers with Parametric Norm-Bounded UncertaintyIn this case, we restrict $Q=0$.

Theorem 13.

There exists a K such that the system with $u(t)=K x(t)$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+M q(t)+B_{2} w(t)+B u(t), \quad q(t)=\Delta(t) p(t), \\
& p(t)=N x(t)+D_{12} u(t), \quad \Delta \in \Delta:=\left\{\Delta \in \mathbb{R}^{n \times n}:\|\Delta\| \leq 1\right\} \\
& z(t)=C x(t)+D_{22} u(t)
\end{aligned}
$$

satisfies $\|z\|_{L_{2}} \leq \gamma\|w\|_{L_{2}}$ if there exists some $\mu \geq 0, Z$ and $P>0$ such that

$$
\left[\begin{array}{ccc}
A P+B Z+P A^{T}+Z^{T} B^{T}+B_{2} B_{2}^{T}+\mu M M^{T} & \left(C P+D_{22} Z\right)^{T} & P N^{T}+Z^{T} D_{12}^{T} \\
C P+D_{22} Z & -\gamma^{2} I & 0 \\
N P+D_{12} Z & 0 & -\mu I
\end{array}\right]<0 .
$$

Then $K=Z P^{-1}$ is the corresponding controller.
-An LMI for H_{∞}-Optimal Quadratically Stabilizing Controllers with Parametric Norm-Bounded Uncertainty

This is from Boyd page 110.
I believe it relies on the following alternative to the S-procedure [Xie, 1992] (See also Caverly Notes), which is similar to Finsler's Lemma

Theorem 14.

The following are equivalent
1.

$$
Q+F \Delta E+E^{T} \Delta F^{T}>0 \quad \text { for all }\|\Delta\|<1
$$

2. There exists some $\epsilon>0$ such that

$$
Q+\epsilon F F^{T}+\epsilon^{-1} E^{T} E>0
$$

Unfortunately, to put the LMI in the form of 1 requires us to eliminate the passthrough term Q.

Structure, Norm-Bounded Uncertainty

For the case of structured parametric uncertainty, we define the structured set
$\boldsymbol{\Delta}=\left\{\Delta=\operatorname{diag}\left(\delta_{1} I_{n 1}, \cdots, \delta_{s} I_{n s}, \Delta_{s+1}, \cdots, \Delta_{s+f}\right): \delta_{i} \in \mathbb{R}, \Delta \in \mathbb{R}^{n_{k} \times n_{k}}\right\}$

$$
\Delta=\left[\begin{array}{llllll}
\delta_{1} I_{n 1} & & & & & \\
& \cdots & & & & \\
& & \delta_{s} I_{n s} & & & \\
& & & \Delta_{s+1} & \ldots & \\
& & & & & \Delta_{s+f}
\end{array}\right]
$$

- δ and Δ represent unknown parameters.
- s is the number of scalar parameters.
- f is the number of matrix parameters.

The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured singular value.

Definition 15.

Given system $M \in \mathcal{L}\left(L_{2}\right)$ and set $\boldsymbol{\Delta}$ as above, we define the Structured Singular Value of $(M, \boldsymbol{\Delta})$ as

$$
\mu(M, \boldsymbol{\Delta})=\frac{1}{\inf } \underset{I-M \Delta \in \text { is singular }_{\Delta}^{\Delta}\|\Delta\|}{\|}
$$

Of course, $\bar{S}(M, \boldsymbol{\Delta})$ is stable if and only if $\mu\left(M_{11}, \boldsymbol{\Delta}\right)<1$.

- Obviously, $\mu(M, \boldsymbol{\Delta})<\|M\|$
- For $\boldsymbol{\Delta}:=\left\{\Delta \in \mathcal{L}\left(L_{2}\right):\|\Delta\| \leq 1\right\}, \mu(M, \boldsymbol{\Delta})=\|M\|$
- $\mu(\alpha M, \boldsymbol{\Delta})=|\alpha| \mu(M, \boldsymbol{\Delta})$
- Can increase M by a factor $\frac{1}{\mu(M, \boldsymbol{\Delta})}$ before losing stability.
- In general, computing μ is NP-hard unless uncertainty is unstructured.

Scalings and The Structured Singular Value

Suppose $\boldsymbol{\Theta}=\{\Theta: \Theta \Delta=\Delta \Theta$ for all $\Delta \in \boldsymbol{\Delta}\}$

- Then $\mu(M, \boldsymbol{\Delta})=\inf _{\Theta \in \boldsymbol{\Theta}}\left\|\Theta M \Theta^{-1}\right\|$.
- Θ is the set of scalings.

Scalings and The Structured Singular Value

$$
\boldsymbol{\Delta}=\left\{\Delta=\operatorname{diag}\left(\delta_{1} I_{n 1}, \cdots, \delta_{s} I_{n s}, \Delta_{s+1}, \cdots, \Delta_{s+f}\right): \delta_{i} \in \mathbb{R}, \Delta \in \mathbb{R}^{n_{k} \times n_{k}}\right\}
$$

Define the set of scalings

$$
\mathbf{P \Theta}:=\left\{\operatorname{diag}\left(\Theta_{1}, \cdots, \Theta_{s}, \theta_{s+1} I, \cdots, \theta_{s+f} I: \Theta_{i}>0, \theta_{j}>0\right\}\right.
$$

Theorem 16.

Suppose system M has transfer function $\hat{M}(s)=C(s I-A)^{-1} B+D$ with $\hat{M} \in H_{\infty}$. The following are equivalent

- There exists $\Theta \in \mathbf{P \Theta}$ such that $\left\|\Theta M \Theta^{-1}\right\|^{2}<\gamma$.
- There exists $\Theta \in \mathbf{P \Theta}$ and $X>0$ such that

$$
\left[\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -\Theta
\end{array}\right]+\frac{1}{\gamma^{2}}\left[\begin{array}{l}
C^{T} \\
D^{T}
\end{array}\right] \Theta\left[\begin{array}{ll}
C & D
\end{array}\right]<0
$$

Note: To minimize γ, you must use bisection.

An LMI for Stability of Structured, Norm-Bounded Uncertainty

This allows us to generalize the S-procedure to structured uncertainty

Theorem 17.

The system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+M p(t), & & p(t)=\Delta(t) q(t) \\
q(t) & =N x(t)+Q p(t), & & \Delta \in \Delta,\|\Delta\| \leq 1
\end{aligned}
$$

is quadratically stable if and only if there exists some $\Theta \in \mathbf{P \Theta}$ and $P>0$ such that

$$
\left.\left[\begin{array}{cc}
A P+P A^{T} & P N^{T} \\
N P & 0
\end{array}\right]+\left[\begin{array}{cc}
M \Theta M^{T} & M \Theta Q^{T} \\
Q \Theta M^{T} & Q \Theta Q^{T}-\Theta
\end{array}\right]<0\right\}
$$

This is an LMI in Θ and P.

- The constraint $\Theta \in \mathbf{P \Theta}$ is linear

$$
\mathbf{P \Theta}:=\left\{\operatorname{diag}\left(\Theta_{1}, \cdots, \Theta_{s}, \theta_{s+1} I, \cdots, \theta_{s+f} I\right): \Theta_{i}>0, \theta_{j}>0\right\}
$$

An LMI for Stability with Structured, Norm-Bounded Uncertainty

To prove the theorem, we can take a closer look at the scalings:
Since $T \Delta=\Delta T$ for $T \in \boldsymbol{\Theta}$, the system can equivalently be written as

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+M T^{-1} q(t), \quad q(t)=\Delta(t) p(t), \\
& p(t)=T N x(t)+T Q T^{-1} q(t), \quad \Delta \in \Delta, \quad\|\Delta\| \leq 1
\end{aligned}
$$

for any $T \in \boldsymbol{\Theta}$. Then

$$
\left[\begin{array}{cc}
A P+P A^{T} & P N^{T} \\
N P & 0
\end{array}\right]+\left[\begin{array}{cc}
M M^{T} & M Q^{T} \\
Q M^{T} & Q Q^{T}-I
\end{array}\right]<0
$$

becomes

$$
\left.\left[\begin{array}{cc}
A P+P A^{T} & P N^{T} T^{T} \\
T N P & 0
\end{array}\right]+\left[\begin{array}{cc}
M T^{-2} M^{T} & M T^{-2} Q^{T} T^{T} \\
T Q T^{-2} M^{T} & T Q T^{-2} Q^{T} T^{T}-I
\end{array}\right]<0\right\}
$$

Pre- and Post-multiplying by $\left[\begin{array}{cc}I & 0 \\ 0 & T^{-1}\end{array}\right]$, and using $\Theta=T^{-2} \in \mathbf{P} \Theta$, we recover the LMI condition.

An LMI for Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty

Theorem 18.

There exists a K such that the system with $u(t)=K x(t)$

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t)+M q(t), & q(t) & =\Delta(t) p(t) \\
p(t) & =N x(t)+Q q(t)+D_{12} u(t), & \Delta & \in \Delta,\|\Delta\| \leq 1
\end{aligned}
$$

is quadratically stable if there exists some $\Theta \in \mathbf{P \Theta}, P>0$ and Z such that
$\left[\begin{array}{cc}A P+B Z+P A^{T}+Z^{T} B^{T} & P N^{T}+Z^{T} D_{12}^{T} \\ N P+D_{12} Z & 0\end{array}\right]+\left[\begin{array}{cc}M \Theta M^{T} & M \Theta Q^{T} \\ Q \Theta M^{T} & Q \Theta Q^{T}-\Theta\end{array}\right]<0$.
Then $K=Z P^{-1}$ is a quadratically stabilizing controller.
We can also extend this result to optimal control in the H_{∞} norm.

Theorem 18

There exists a K such that the system with $u(t)=K z(t)$
-An LMI for Stabilizing State-Feedback Controllers with Structured Norm-Bounded Uncertainty

This is from Boyd, page 102
Using $\Theta=\mu I$, we recover the LMI for unstructured uncertainty.

An LMI for Optimal State-Feedback Controllers with

 Structured Norm-Bounded UncertaintyIn this case, we set $Q=0$.

Theorem 19.

There exists a K such that the system with $u(t)=K x(t)$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t)+M q(t)+B_{2} w(t), \quad q(t)=\Delta(t) p(t), \\
& p(t)=N x(t)+D_{12} u(t), \quad \Delta \in \Delta, \quad\|\Delta\| \leq 1 \\
& z(t)=C x(t)+D_{22} u(t)
\end{aligned}
$$

satisfies $\|y\|_{L_{2}} \leq \gamma\|u\|_{L_{2}}$ if there exists some $\Theta \in \mathbf{P} \Theta, Z$ and $P>0$ such that
$\left[\begin{array}{ccc}A P+B Z+P A^{T}+Z^{T} B^{T}+B_{2} B_{2}^{T}+M \Theta M^{T} & \left(C P+D_{22} Z\right)^{T} & P N^{T}+Z^{T} D_{12}^{T} \\ C P+D_{22} Z & -\gamma^{2} I & 0 \\ N P+D_{12} Z & 0 & -\Theta\end{array}\right]<0$
Then $K=Z P^{-1}$ is the corresponding controller.

An LMI for Optimal State-Feedback Controllers with

 Structured Norm-Bounded UncertaintyUsing the equivalent scaled system

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t)+M T^{-1} q(t)+B_{2} w(t), \quad q(t)=\Delta(t) p(t), \\
& p(t)=T N x(t)+T D_{12} u(t), \quad \Delta \in \Delta, \quad\|\Delta\| \leq 1 \\
& z(t)=C x(t)+D_{22} u(t)
\end{aligned}
$$

we get

$$
\left[\begin{array}{ccc}
A P+B Z+P A^{T}+Z^{T} B^{T}+B_{2} B_{2}^{T}+M T^{-2} M^{T} & \left(C P+D_{22} Z\right)^{T} & P N^{T} T^{T}+Z^{T} D_{12}^{T} T^{T} \\
C P+D_{22} Z & -\gamma^{2} & 0 \\
T N P+T D_{12} Z & 0 & -I
\end{array}\right]<0
$$

Pre- and Post-multiplying by $\left[\begin{array}{ccc}I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & T^{-1}\end{array}\right]$, and using $\Theta=T^{-2} \in \mathbf{P} \Theta$, we recover the LMI condition.

An LMI for Optimal State-Feedback Controllers with

 Structured Norm-Bounded Uncertainty
Using the equivalent scaled system

$\dot{x}(t)=A z(t)+B u(t)+M T^{-1} q(t)+B_{2} \mathrm{~m}(t), \quad q(t)=\Delta(t) p(t)$,
$p^{2}(t)=T N x(t)+T D_{12}{ }^{n}(t), \quad \Delta \in \Delta,\|\Delta\| \leq 1$
$z(t)=C x\{t)+D_{22} u(t)$
"

This is not from Boyd, but should be

Output-Feedback Robust Controller Synthesis

How to Solve the Output Feedback Case???

D-K Iteration

A Heuristic for Dynamic Output Feedback Synthesis
Finally, we mention a Heuristic for Output-Feedback Controller synthesis.
Initialize: $\Theta=I$.
Define:

$$
\hat{G}_{\Theta}(s)=\left[\begin{array}{c|cc}
A & B_{1} \Theta^{-\frac{1}{2}} & B_{2} \\
\hline \Theta^{\frac{1}{2}} C_{1} & \Theta^{\frac{1}{2}} D_{11} \Theta^{-\frac{1}{2}} & \Theta^{\frac{1}{2}} D_{12} \\
C_{2} & D_{21} \Theta^{-\frac{1}{2}} & 0
\end{array}\right]
$$

Step 1: Fix Θ and solve

$$
\inf _{K}\left\|\underline{S}\left(G_{\Theta}, K\right)\right\|_{H_{\infty}}
$$

Step 2: Fix K and minimize γ such that there exists $\Theta \in \mathbf{P \Theta}$ (or $\Theta \in \mathbf{P} \Theta \times I$ if you include the regulated output channel.) and $X>0$ such that

$$
\left[\begin{array}{cc}
A_{c l}^{T} X+X A_{c l} & X B_{c l} \\
B_{c l}^{T} X & -\Theta
\end{array}\right]+\frac{1}{\gamma^{2}}\left[\begin{array}{c}
C_{c l}^{T} \\
D_{c l}^{T}
\end{array}\right] \Theta\left[\begin{array}{ll}
C_{c l} & D_{c l}
\end{array}\right]<0
$$

where $A_{c l}, B_{c l}, C_{c l}, D_{c l}$ define $\underline{\mathrm{S}}\left(G_{I}, K\right)$. (Requires Bisection).
Step 3: GOTO Step 1

Lecture 14

D-K Iteration

D-K Iteration
Finally, we mention a Heuristic for Output-Feedback Controller synthesis Initialize: $\Theta=I$.
Define:
$\hat{G}_{\Theta}(s)=\left[\begin{array}{c|cc}A & B_{1} \Theta^{-\frac{1}{2}} & B_{2} \\ \hline \Theta^{2} C_{1} & \Theta^{\dagger} D_{11} \Theta^{-i} & \Theta^{2} D_{12} \\ C_{2} & D_{21} \Theta^{-\frac{1}{2}} & 0\end{array}\right]$
Step 1: Fix θ and solve
Step 2: Fix K and minimize γ such that there exists $\Theta \in \mathrm{P} \Theta$ (or
$\Theta \in \mathbf{P} \Theta \times I$ if you include the regulated output channel.) and $X>0$ such that $\left[\begin{array}{cc}A_{d i}^{T} X+X A_{d} & X B_{d d} \\ B_{d}^{T} X & -\Theta\end{array}\right]+\frac{1}{\gamma^{2}}\left[\begin{array}{cc}C_{d}^{T} \\ D_{d}^{T}\end{array}\right] \Theta\left[\begin{array}{ll}C_{d i} & D_{d}\end{array}\right]<0$
where $A_{d}, B_{d}, C_{d}, D_{d l}$ define $\underline{\underline{S}}\left(G_{f}, K\right)$. (Requires Bisection).
Step 3: oaro Step 1
As with most heuristics, there are many variations on the D-K iteration. The one presented here is the simplest, and probably will not work well.

A Word on D-K Iteration with Static Uncertainty

A Heuristic for Dynamic Output Feedback Synthesis

The D-K iteration outlined in this lecture is only valid for Dynamic Uncertainty: $\Delta(t)$.

- Our Scalings Θ are time-invariant.

For Static uncertainties, we should search for Dynamic Scaling Factors

- $\Theta(s)$ is a Transfer Function
- This is much harder to represent as an LMI (Or by any other method!).
- Matlab has built-in functionality, but it is hard to use.

We will return to μ analysis for static uncertainties when we consider more advanced forms of optimization.

