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Types of Uncertainty

In this Lecture, we will cover
¢ Unstructured, Dynamic, norm-bounded:

A :={A e L(Ls) : [|Allmg, <1}
Structured, Static, norm-bounded:
A = {diag(d1, -+ ,0Kx, A1, - AN) : 6] <1, 5(A;) <1}
® Structured, Dynamic, norm-bounded:
A={A,Ag,--- € L(La) : ||Ail|. <1}

Unstructured, Static, norm-bounded:
A= {AeR™™ ; ||A] <1}

Parametric, PolytopiC'
={AeR"": A= Z%H“ a; >0, Zal =1}

® Parametric, Interval:

—{ZA5 €661}

Each of these can be Time-Varying or Time-Invariant!
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Back to the Linear Fractional Transformation

The interval and polytopic cases rely on Linearity of the
uncertain parameters.

i(t) = (Ao + A(t))x(t) p[ " ]q

The Linear-Fractional Transformation, however

Lf(t)] — 5(P,A) Bg;] — (Pys+ P A(I—Piy A) "' Pro) ng]

is an arbitrary rational function.
We focus on two results:
® The S-Procedure for Unstructured Uncertainty Sets

® The Structured Singular Value for Structured Uncertainty Sets.
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Robust Stability

Questions:
® Is S(M,A) stable for all A € A?
® |s I — AMj; invertible for all A € A?
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Redefine Robust and Quadratic Stability

Suppose we have the system

M- []Wn ]Wu]

My Moo

Definition 1.
The pair (M, A) is Robustly Stable if (I — M;;A) is invertible for all A € A.

L(t)| _ g x(t)
] = s [0
Definition 2 (Continuous-Time).
The pair (M, A) is Robustly Stable if for some 5 > 0,
Moo + MglA(I = MuA)_lMlg + BI is Hurwitz for all A € A.
Alternatively, if |:.7)k+1:| _ S(M,A) [xk}

Zk Wk

Definition 3 (Discrete-Time).

The pair (M, A) is Robustly Stable if
p(MQQ aF MQlA(I = MllA)ilMlg) = ﬂ <1 forall A e A.

Alternatively, if
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Quadratic Stability - Parametric Uncertainty

Focus on the 1,1 block of S(M, A):
If @(t) = S(M, A)z(t),

Definition 4 (Continuous Time).
The pair (M, A) is Quadratically Stable if there exists a P > 0 such that

S(M,A)'P+ PS(M,A) < —BI  forall Ac A

Alternatively, if 41 = S(M, A)xy,

Definition 5 (Discrete Time).

The pair (M, A) is Quadratically Stable if there exists a P > 0 such that
S(M,A)TPS(M,A)—P < —BI forall Ac A

for all A € A.
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Parametric, Norm-Bounded Time-Varying Uncertainty

Consider the state-space representation:

A

v

i(t) = Az(t) + Mp(t),  p(t) = A(t)q(t),
q(t) = Nz(t) + Qp(t),  A(t) e A

® Parametric, Norm-Bounded Uncertainty:

A= {AcR™™ : |A| <1}
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- Parametric, Norm-Bounded Time-Varying
Uncertainty

If we close the loop,
i(t) = Az(t) + Mq(t),  q(t) = A()(N=z(t) + Qq(t)),
q(t) = (I - A(H)Q) " A(t)Na(t)

@(t) = (A+ MI — AB)Q) 'A(t)N)z(t) = § <L’3 ]Q”] ,A>

But this is complicated, so we seek a simpler approach.
V(z) =z" Pz

V(z) = 2(t)T P(Az(t) + Mq(t)) + (Az(t) + Mq(t))" Pz(t) < 0
for all p, x such that
lgll? <INz + Qq||?

A6 A =<E o] af]-[a~ e

or

a8
q

]



Parametric, Norm-Bounded Uncertainty

Quadratic Stability: There exists a P > 0 such that

2T P(Ax+Mq)+(Az+Mq)" Pz < 0 for all [z,q] € {az,q D g = Ap,p :ivz ZQQ,
Theorem 6.
The system

i(t) = Az(t) + Mq(t),  q(t) = A)p(?),
p(t) = Na(t) + Qq(t), AcA:={AcR™: |A|<1}

is quadratically stable if and only if there exists some P > 0 such that

[ 7o ] <o

o ] {1l Bl oy ol =)
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- Parametric, Norm-Bounded Uncertainty

The quadratic stability condition is a conditional LMI
e Positive on a subset of [z, ¢]
e [z,q] lies in an ellipsoid (a semialgebraic set).)

e Enforcing an LMI on a subset is usually hard.




Parametric, Norm-Bounded Uncertainty

Proof, If.
If
z| [ATP+ PA PM]| [z
M { MTP 0 ] M =0
x z| [z] [-NTN —NTQ ] [z
wan [o] 431 < [ [arv e 1] =}
then

2T P(Az 4+ Mq) + (Az + Mq)" Pz <0

for all z, g such that
lgll* < [Nz + Qq||?

Therefore, since ¢ = Ap implies ||g|| < ||p||, we have quadratic stability.
The only if direction is similar.
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The S-Procedure

A Significant LMI for your Toolbox

Quaderatic stability here requires positivity of a matrix on a
® This is Generally a very hard problem
® NP-hard to determine if 27 Fx > 0 for all z > 0. (Matrix Copositivity)

S-procedure to the rescue!

The S-procedure asks the question:
° s zT'Fz>0forall z € {z:27Gx > 0}7?
Corollary 7 (S-Procedure).

2TFz>0 forall z € {x : 2T Gz > 0} if there exists a scalar 7 > 0 such that
F—7G > 0.

Sufficiency is Obvious!

® The S-procedure is Necessary if {z : 7Gx > 0} has an interior point.
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An LMI for Parametric, Norm-Bounded Uncertainty
Theorem 8 (Dual Version).

The system
o(t) = Ax(t) + Mq(t),  q(t) = AD)p(D),

p(t) = Na(t) + Qq(t), AeA:={AcR™™:|A]<1}
is quadratically stable if and only if there exists some i > 0 and P > 0 such that
AP+ PAT PNT MMT  MQT <0}
NP 0 FloMT QQT -1
Noting that the LMI can be written as
{AP +PAT PNT} m {M] !
+ <0

NP —ul Qe
or
AP+ PAT PNT MT
NP —ul QT | <o
M Q -1ir

we see that this condition is simply an H, gain condition on the nominal

system ||||m,, < 1.
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L An LMI for Parametric, Norm-Bounded Uncertainty

e We skipped the Primal version, but it should be obvious.

e Set 4 =1 and we have an LMI for |||z, <1

An LMI for Parametric, Norm-Bounded Uncertainty

Theorem 8 (Dual Version),

The sstem

AT e

Noting tht the




Necessity of the Small-Gain Condition

This leads to the interesting result:

If A= {A € L(Ly) : |A|| <1}, then

S(P,A) € Hy, if and only if ||My1]|g, <1

The small gain condition is necessary and sufficient for stability.

Quadratic Stability is equivalent to stability.

Holds for Uncertainty
» Does this mean Quadratic and Robust Stability are Equivalent?
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Quadratic Stability and Equivalence to Robust Stability

Consider Quadratic Stability in Discrete-Time: xp+1 = S;(M, A)xg.
Definition 9.
(S1,A) is QS if

Sy (M, AN)TPS;(M,A)—P <0 forall Ac A

Theorem 10 (Packard and Doyle).
Let M € R(vtm)x(ntm) pe given with p(My1) < 1 and o(May) < 1. Then the
following are equivalent.

1. The pair (M, A = R™*™) js quadratically stable.

2. The pair (M, A = C™*™) js quadratically stable.

3. The pair (M, A = C™*™) js robustly stable.
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Quadratically Stabilizing Controllers with Parametric
Norm-Bounded Uncertainty

However, we can add controllers:

Theorem 11.
The system with u(t) = Kxz(t) and

#(t) = Az(t) + Mq(t) + Bu(t),  q(t) = A()p(?),
p(t) = Nz(t) + Qq(t) + Di2ult), AeA:={AecR™ :|A| <1}

is quadratically stable if and only if there exists some y > 0 and P > 0 such that

(A+ BK)P + P(A+ BK)T P(N—I—DlzK)T] N{MMT MQT <0}

(N + D12K)P 0 QMT QQT -1

Of course, this is bilinear in P and K, so we make the change of variables
Z =KP.
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An LMI for Quadratically Stabilizing Controllers with
Parametric Norm-Bounded Uncertainty

Theorem 12.
There exists a K such that the system with u(t) = Kx(t)

i(t) = A(t) + Mq(t) + Bu(t),  q(t) = A®D)p(0),
p(t) = Na(t) + Qq(t) + Diou(®), A€ A= {AeR™ : ||A] <1}

is quadratically stable if and only if there exists some u > 0, Z and P > 0 such
that

AP+ BZ + PAT + ZTBT PNT + ZTDF, MM MQT ] _ 0
NP+ DsZ 0 FloMT QQT —1 :

Then K = ZP~! is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H,, norm.
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L An LMI for Quadratically Stabilizing Controllers with =

Parametric Norm-Bounded Uncertainty

This is from Boyd page 101

An LMI for Quadratically Stabilizing Controllers with
Parametric Norm-Bounded Uncertainty

The
There h tht the system wit #(0)
Ae(0) + Mafe) + Bult), 0
Nelt) + Qult)+ Dunlt),  Ac A= (AR : [A] <1}

o onl f th

ists some >, Z and P > 0 such

AP+ BZ+ AT+ ZTHT PNT4ZTDE] | [MMT MQT
NP [ »

o qqr-1) <"
Then

.

he H.. norm



An LMI for H..-Optimal Quadratically Stabilizing
Controllers with Parametric Norm-Bounded Uncertainty

In this case, we restrict Q = 0.

Theorem 13.
There exists a K such that the system with u(t) = Kx(t)

i(t)
p(t)
z(t)

satisfies ||z|| L, < Y||wl||L, if there exists some y > 0, Z and P > 0 such that

Az(t) + Mq(t) + Bow(t) + Bu(t),  q(t) = A)p(D),
Nz(t) + Digu(t), AeA:={AeR"": ||A| <1}
Cx(t) + Daoul(t)

AP + BZ + PAT + Z"BT + BoBT + uMM™T (CP + D22 2)T PNT + Z7 DY,
CP + DxnZ —~2I 0 <0.
NP+ D127 0 —ul

Then K = ZP~1 is the corresponding controller.
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L An LMI for Ho.-Optimal Quadratically Stabilizing
Controllers with Parametric Norm-Bounded
Uncertainty

This is from Boyd page 110.
| believe it relies on the following alternative to the S-procedure [Xie, 1992] (See
also Caverly Notes), which is similar to Finsler's Lemma

Theorem 14.

The following are equivalent

1.
Q+FAE+ET"AFT >0  forall|All <1

2. There exists some € > 0 such that

Q+eFFT +¢'ETE >0

Unfortunately, to put the LMI in the form of 1 requires us to eliminate the pass-
through term Q.



Structure, Norm-Bounded Uncertainty

For the case of structured parametric uncertainty, we define the structured set

A:{A:diag((slfnh... Oslns, Agi, - 7As+f) . ; € R, AER"’“X”’“}

51[n1

0slns
As-‘,—l

AV

® § and A represent unknown parameters.
® s is the number of scalar parameters.

® fis the number of matrix parameters.
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

Definition 15.
Given system M € L(L3) and set A as above, we define the Structured
Singular Value of (M, A) as

1

inf  Aca A
I—MA s singular

(M, A) =

Of course, S(M, A) is stable if and only if u(M;, A) < 1.
® Obviously, u(M,A) < || M||
For A = {A € £(Ly) : |A] < 1}, u(M, A) = || M|
u(aM, A) = [o|u(M, A)
® Can increase M by a factor m before losing stability.

In general, computing p is NP-hard unless uncertainty is unstructured.
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Scalings and The Structured Singular Value

Suppose ® = {O© : OA = AO for all A € A}
® Then u(M,A) = infece||OMO~L|.

® O is the set of scalings.
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Scalings and The Structured Singular Value

A ={A =diag(611p1,- -+, 0slns, Asy1, -, Agpyp) 1 §; € R, A e RTEXMe}
Define the set of scalings

PO = {dl&g(@l, 795,03+1I7"' 795+f_[ 1 0; >0, Gj > 0}

Theorem 16.

Suppose system M has transfer function M(s) = C(sI — A)~'B + D with
M € H.,. The following are equivalent
® There exists © € PO such that |OMO~||? < 4.
® There exists © € PO and X > 0 such that
ATX + XA XB 1 [cT
Xk _@] - [DT o[c D] <0

Note: To minimize v, you must use bisection.
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An LMI for Stability of Structured, Norm-Bounded
Uncertainty

This allows us to generalize the S-procedure to structured uncertainty

Theorem 17.

The system
£(t) = Az(t) + Mp(t),  p(t) = A(t)q(?),
q(t) = Nz(t) + Qp(t), Ac A |A<LT

is quadratically stable if and only if there exists some © € P® and P > 0 such

that AP + PAT PNT} [M@MT MeQT

NP 0 QoMT QoQT —e| <%

This is an LMl in © and P.
® The constraint © € PO is linear
PO = {dlag(@1, s ,65,95+1I,~ .- a05+fI) :0; >0, 9j > 0}
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An LMI for Stability with Structured, Norm-Bounded
Uncertainty

To prove the theorem, we can take a closer look at the scalings:
Since TA = AT for T € ©, the system can equivalently be written as
(t) = Az(t) + MT 'q(t),  q(t) = A(t)p(t),
p(t) = TNa(t) + TQT 'q(t),  A€A, ||A] <1
forany T'€ ©. Then

AP + PAT PNT MMT MQT <0
NP 0 QMT QQT -1
becomes

AP 4+ PAT PNTTT MT>MT  MT2QTTT | _ 0
TNP 0 TQT2MT TQT2QTTT —1

Pre- and Post-multiplying by [é T91} and using © = T2 € PO, we recover

the LMI condition.
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An LMI for Stabilizing State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Theorem 18.
There exists a K such that the system with u(t) = Kxz(t)

#(t) = Az(t) + Bu(t) + Mq(t),  q(t) = AD)p(D),
p(t) = Na(t) + Qq(t) + Digu(t), A€A, [|A] <1

is quadratically stable if there exists some © € PO, P > 0 and Z such that

AP+ BZ + PAT +ZTBT PNT +ZTDL)|  [MeMT  mMeQT <0
NP+ D1y,7 0 QOMT QeQT - :

Then K = ZP~" is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H,, norm.
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L An LMI for Stabilizing State-Feedback Controllers
with Structured Norm-Bounded Uncertainty

This is from Boyd, page 102

Using © = ul, we recover the LMI for unstructured uncertainty.



An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

In this case, we set Q = 0.
Theorem 19.

There exists a K such that the system with u(t) = Kx(t)

&(t) = Az(t) + Bu(t) + Mq(t) + Baw(t),  q(t) = A()p(t),
p(t) = Na(t) + Dipult), A€ A, A <1
z(t) = Cx(t) + Dagu(t)
satisfies ||y||L, < v||u||L, if there exists some © € PO, Z and P > 0 such that

AP + BZ + PAT + Z"BT + BoBY + MOMT (CP + D2)" PNT + Z7 DT,
CP+ Dy Z —~2I 0 <0
NP + D27 0 -0

Then K = ZP~! is the corresponding controller.
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An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Using the equivalent scaled system

@(t) = Ax(t) + Bu(t) + MT 'q(t) + Bow(t), q(t) = A(t)p(t),
p(t) = TNz(t) + TDyou(t), AcA, |A]<1

z(t) = Cx(t) + Dagu(t)
we get
AP+ BZ + PAT + 2zTBT  ByBY + M7= 2MT  (CP 4 Dyy2)T  PNTTT 4 2T DL, 1T
CP + D9sZ —~21 0 <o.
TNP +TD152 0 -1
I 0 0
Pre- and Post-multiplying by [0 I 0 |, and using © =772 c PO, we
0o 0 7!

recover the LMI condition.
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Lecture 14 Structured Norm-Bounded Uncertainty

L An LMI for Optimal State-Feedback Controllers with "~
Structured Norm-Bounded Uncertainty

This is not from Boyd, but should be



Output-Feedback Robust Controller Synthesis

How to Solve the Output Feedback Case???

— s A

p q
2" G |e—r—w
— e
y u

inf sup ||S(S(G,A), K)|| ..
K aea
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D-K lteration

A Heuristic for Dynamic Output Feedback Synthesis

Finally, we mention a Heuristic for Output-Feedback Controller synthesis.

Initialize: © = 1.

Define: )
A | B1©7 % B,
Ge(s)=| ©2C4 | ©2D1,072 ©3D;y
CQ D21®7% 0

Step 1: Fix © and solve
inf||S(Ge, K)||n..

Step 2: Fix K and minimize -y such that there exists © € P® ( or
© € PO x [ if you include the regulated output channel.) and X > 0 such that

ALX + XAy XBg| , 1 [Ch
where Ay, By, Cep, Dy define S(Gr, K). (Requires Bisection).

Step 3: GOTO Step 1
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I—D—K Iteration

LB Cu D deine (G, 1), (Reaui
Step 3: 0010 Step 1

As with most heuristics, there are many variations on the D-K iteration.
one presented here is the simplest, and probably will not work well.



A Word on D-K Iteration with Static Uncertainty

A Heuristic for Dynamic Output Feedback Synthesis

The D-K iteration outlined in this lecture is only valid for Dynamic Uncertainty:
A(t).

® Qur Scalings © are time-invariant.
For Static uncertainties, we should search for Dynamic Scaling Factors

® ©O(s) is a Transfer Function

® This is much harder to represent as an LMI (Or by any other method!).

® Matlab has built-in functionality, but it is hard to use.

We will return to p analysis for static uncertainties when we consider more
advanced forms of optimization.
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