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Optimization of Polynomials:
As Opposed to Polynomial Programming

Polynomial Programming (NOT CONVEX): n decision variables

min
x∈Rn

f(x)

gi(x) ≥ 0

• f and gi must be convex for the problem to be convex.

Optimization of Polynomials: Lifting to a higher-dimensional space

max
g,γ

γ

f(x)− γ = h(x) for all x ∈ Rn

h(x) ≥ 0 for all x ∈ {x ∈ Rn : gi(x) ≥ 0}

• The decision variables are functions (e.g. g)
▶ One constraint for every possible value of x.

• But how to parameterize functions????
• How to enforce an infinite number of constraints???
• Advantage: Problem is convex, even if f, g, h are not convex.
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Optimization of Polynomials:
Some Examples: Matrix Copositivity

Of course, you already know some applications of Optimization of Polynomials
• Global Stability of Nonlinear Systems

V (x) > ϵx2 for all x ∈ Rn

∇V (x)T f(x) < 0 for all x ∈ Rn

Stability of Systems with Positive States: Not all states can be negative...
• Cell Populations/Concentrations
• Volume/Mass/Length

We want:

V (x) = xTPx ≥ 0 for all x ≥ 0

V̇ (x) = xT (ATP + PA)x ≤ 0 for all x ≥ 0

• Matrix Copositivity (An NP-hard Problem)

Verify:

xTPx ≥ 0 for all x ≥ 0
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Optimization of Polynomials:
Some Examples: Robust Control

Recall: Systems with Uncertainty

ẋ(t) = A(δ)x(t) +B1(δ)w(t) +B2(δ)u(t)

y(t) = C(δ)x(t) +D12(δ)u(t) +D11(δ)w(t)

Theorem 1.

There exists an F (δ) such that ∥S(P (δ),K(0, 0, 0, F (δ)))∥H∞ ≤ γ for all
δ ∈ ∆ if there exist Y > 0 and Z(δ) such that[

Y A(δ)T + A(δ)Y + Z(δ)T B2(δ)T + B2(δ)Z(δ) ∗T ∗T

B1(δ)T −γI ∗T
C1(δ)Y + D12(δ)Z(δ) D11(δ) −γI

]
< 0 for all δ ∈ ∆

Then F (δ) = Z(δ)Y −1.
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The Structured Singular Value, µ

Definition 2.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

∥∆∥

The system

ẋ(t) = A0x(t) +Mq(t), q(t) = ∆(t)p(t),

p(t) = Nx(t) +Qq(t), ∆ ∈ ∆

Lower Bound for µ: µ ≥ γ if there exists a P (δ) such that
P (δ) ≥ 0 for all δ

V̇ = xTP (δ)(A0x+Mq) + (A0x+Mq)TP (δ)x < ϵxTx

for all x, q, δ such that

(x, q, δ) ∈

{
x, q, δ : q = diag(δi)(Nx+Qq),

∑
i

δ2i ≤ γ2

}
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Overview

In this lecture, we will show how the LMI framework can be expanded
dramatically to other forms of control problems.

1. Positivity of Polynomials

1.1 Sum-of-Squares

2. Positivity of Polynomials on Semialgebraic sets

2.1 Inference and Cones
2.2 Positivstellensatz

3. Applications

3.1 Nonlinear Analysis
3.2 Robust Analysis and Synthesis
3.3 Global optimization
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Is Optimization of Polynomials Tractable or Intractable?
The Answer lies in Convex Optimization

A Generic Convex Optimization Problem:

max
x

bx

subject to Ax ∈ C

The problem is convex optimization if

• C is a convex cone.

• b and A are affine.

Computational Tractability: Convex Optimization over C is tractable if

• The set membership test for y ∈ C is in P (polynomial-time verifiable).

• The variable x is a finite dimensional vector (e.g. Rn).
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Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

V is the decision variable (infinite-dimensional)

• How to make it finite-dimensional???

The set of polynomials is an infinite-dimensional (but Countable) vector space.

• It is Finite Dimensional if we bound the degree

• All finite-dimensional vector spaces are equivalent!

But we need a way to parameterize this space...
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To Begin: How do we Parameterize Polynomials???

A Parametrization consists of a basis and a set of parameters (coordinates)
• The set of polynomials is an infinite-dimensional vector space.
• It is Finite Dimensional if we bound the degree

▶ The monomials are a simple basis for the space of polynomials

Definition 3.

Define Zd(x) to be the vector of monomial bases of degree d or less.

e.g., if x ∈ R2, then the vector of basis functions is

Z2(x1, x2)
T =

[
1 x1 x2 x1x2 x2

1 x2
2

]
and

Z4(x1)
T =

[
1 x1 x2

1 x3
2 x4

1

]
Linear Representation

• Any polynomial of degree d can be represented with a vector c ∈ Rm

p(x) = cTZd(x)
• c is the vector of parameters (decision variables).
• Zd(x) doesn’t change (fixed).

2x2
1 + 6x1x2 + 4x2 + 1 =

[
1 0 4 6 2 0

] [
1 x1 x2 x1x2 x2

1 x2
2

]T
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Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables V ∈ R[x] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

Now use the polynomial parametrization V (x) = cTZ(x)
• Now c is the decision variable.

Convex Optimization of Polynomials: Variables c ∈ Rn and γ ∈ R

max
c,γ

γ

subject to

cTZ(x)− xTx ≥ 0 ∀x
cT∇Z(x)f(x) + γxTx ≤ 0 ∀x

• Z(x) is a fixed vector of monomial bases.
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Can LMIs be used for Optimization of Polynomials???
Optimization of Polynomials is NP-Hard!!!

Problem: Use a finite number of variables:

max bTx

subject to A0(y) +

n∑
i

xiAi(y) ⪰ 0 ∀y

The Ai are matrices of polynomials in y. e.g. Using multi-index notation,

Ai(y) =
∑
α

Ai,α yα

The FEASIBLITY TEST is Computationally Intractable
The problem: “Is p(x) ≥ 0 for all x ∈ Rn?” (i.e. “p ∈ R+[x]?”) is NP-hard.
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How to Find Lyapunov Functions (LF)?
We know a LF by its Properties

What makes a LF a Lyapunov Function?
Property 1: Positivity

• The Lyapunov function must be positive (metrics are positive).

• Also V (0) = 0 if 0 is an equilibrium.

Property 2: Negativity along Trajectories

• A Lyapunov Function decreases monotonically in time.
▶ A longer trajectory is always “bigger” than a shorter one.
▶ As time progresses, the trajectory gets shorter.
▶ Hence the LF is always decreasing.

Thus: If a function has properties 1) and 2), it is a Lyapunov Function

Note: For Linear Systems, we can restrict the search to quadratic LFs.
Property 3: Quadratic (e.g. xTPx)

• If the system is Linear, the solution map is Linear

• Then if the metric is Quadratic, the Lyapunov function is Quadratic.
▶ The Composition of Linear and Quadratic Functions is Quadratic
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Lyapunov Functions for Linear ODEs

ẋ(t) = Ax(t)
if x ∈ Rn, then any quadratic function has the form:

V (x)[1] =


x1
x2
x3
x4
x5


T

︸ ︷︷ ︸
xT


P11 P21 P31 P41 P51

P21 P22 P32 P42 P52

P31 P32 P33 P43 P53

P41 P42 P43 P44 P54

P51 P52 P53 P54 P55


︸ ︷︷ ︸

P≥0


x1
x2
x3
x4
x5


︸ ︷︷ ︸

x

≥ 0

P3 - Quadratic: The 15 variables Pij parameterize all possible quadratic
functions on x ∈ R5.
P1 - Positive: V (x) > 0 for all x ̸= 0 if and only if P has all positive
eigenvalues.
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Lyapunov Functions for Nonlinear ODEs[
ẋ(t)
ẏ(t)

]
= f(x(t), y(t))

Lets try a quadratic function of the form:

V (x, y)[2] =


x
y
xy
x2

y2


T

︸ ︷︷ ︸
Z(x,y)T


P11 P21 P31 P41 P51

P21 P22 P32 P42 P52

P31 P32 P33 P43 P53

P41 P42 P43 P44 P54

P51 P52 P53 P54 P55


︸ ︷︷ ︸

P≥0


x
y
xy
x2

y2


︸ ︷︷ ︸
Z(x,y)

≥ 0

P3 - Pseudo-Quadratic: The 15 variables Pij parameterize positive
polynomial functions x, y ∈ R2 of degree d ≤ 4.
P1 - Positive: V (x) > 0 for all x ̸= 0 if P has all positive eigenvalues.
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Can LMIs be used to Optimize Positive Polynomials???
Show Me the LMI!

Basic Idea: If there exists a Positive Matrix P ≥ 0 such that

V (x) = Zd(x)
TPZd(x)

Positive Matrices (P ≥ 0) have square roots!

P = QTQ
Hence

V (x) = Zd(x)
TQTQZd(x) = (QZd(x))

T (QZd(x))

= h(x)Th(x) ≥ 0

Conclusion:
V (x) ≥ 0 for all x ∈ Rn

if there exists a P ≥ 0 such that

V (x) = Zd(x)
TPZd(x)

• Such a function is called Sum-of-Squares (SOS), denoted V ∈ Σs.
• This is an LMI! Equality constraints relate the coefficients of V (decision
variables) to the elements of P (more decision variables).
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How Hard is it to Determine Positivity of a Polynomial???
Certificates

Definition 4.

A Polynomial, f , is called Positive SemiDefinite (PSD) if

f(x) ≥ 0 for all x ∈ Rn

The Primary Problem: How to enforce the constraint f(x) ≥ 0 for all x?

Easy Proof: Certificate of Infeasibility

• A Proof that f is NOT PSD.

• i.e. To show that
f(x) ≥ 0 for all x ∈ Rn

is FALSE, we need only find a point x with f(x) < 0.

Complicated Proof: It is much harder to identify a Certificate of Feasibility

• A Proof that f is PSD.
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Global Positivity Certificates (Proofs and Counterexamples)

Question: How does one prove that f(x) is positive semidefinite?

What Kind of Functions do we Know are PSD?

• Any squared function is positive.

• The sum of squared forms is PSD

• The product of squared forms is PSD

• The ratio of squared forms is PSD

So V (x) ≥ 0 for all x ∈ Rn if

V (x) =
∏
k

∑
i fik(x)

2∑
j hjk(x)2

.

But is any PSD polynomial the sum, product, or ratio of squared polynomials?

• An old Question....
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Sum-of-Squares
Hilbert’s 17th Problem

Definition 5.

A polynomial, p(x) ∈ R[x] is a Sum-of-Squares (SOS), denoted p ∈ Σs if
there exist polynomials gi(x) ∈ R[x] such that

p(x) =

k∑
i=1

gi(x)
2.

David Hilbert created a famous list of 23 then-unsolved mathematical problems
in 1900.

• Only 10 have been fully resolved.

• The 17th problem has been resolved.

“Given a multivariate polynomial that takes only non-negative values
over the reals, can it be represented as a sum of squares of rational
functions?” -D. Hilbert, 1900
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Sum-of-Squares
Hilbert’s 17th Problem

Hilbert’s 17th was resolved in the affirmative by E. Artin in 1927.

• Any PSD polynomial is the sum, product and ratio of squared polynomials.

• If p(x) ≥ 0 for all x ∈ Rn, then

p(x) =
g(x)

h(x)

where g, h ∈ Σs.

• If p is positive definite, then we can assume h(x) = (
∑

i x
2
i )

d for some d.
That is,

(x2
1 + · · ·+ x2

n)
dp(x) ∈ Σs

• If we can’t find a SOS representation (certificate) for p(x), we can try
(
∑

i x
2
i )

dp(x) for higher powers of d.

Of course this doesn’t answer the question of how we find SOS representations.
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Quadratic Parameterization of Polynomials

Quadratic Representation
• Alternative to Linear Parametrization, a polynomial of degree d can be
represented by a matrix M ∈ Sm as

p(x) = Zd(x)
TMZd(x)

• However, now the problem may be under-determinedx2

xy
y2

T M1 M2 M3

M2 M4 M5

M3 M5 M6

x2

xy
y2


= M1x

4 + 2M2x
3y + (2M3 +M4)x

2y2 + 2M5xy
3 +M6y

4

Thus, there are infinitely many quadratic representations of p. For the
polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we can use the alternative solution

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x
2y2 + 2M5xy

3 +M6y
4

M. Peet Lecture 16: 19 / 36



Polynomial Representation - Quadratic

For the polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we require

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x
2y2 + 2M5xy

3 +M6y
4

Constraint Format:

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; 10 = M6.

An underdetermined system of linear equations (6 variables, 5 equations).

• This yields a family of quadratic representations, parameterized by λ as

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =

x2

xy
y2

T  4 2 −λ
2 −7 + 2λ −1
−λ −1 10

x2

xy
y2


which holds for any λ ∈ R
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Positive Matrix Representation of SOS
Sufficiency

Quadratic Form:

p(x) = Zd(x)
TMZd(x)

Consider the case where the matrix M is positive semidefinite.

Suppose: p(x) = Zd(x)
TMZd(x) where M > 0.

• Any positive semidefinite matrix, M ≥ 0 has a square root M = PPT

Hence
p(x) = Zd(x)

TMZd(x) = Zd(x)
TPPTZd(x).

Which yields

p(x) =
∑
i

∑
j

Pi,jZd,j(x)

2

which makes p ∈ Σs an SOS polynomial.
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Positive Matrix Representation of SOS
Necessity

Moreover: Any SOS polynomial has a quadratic rep. with a PSD matrix.

Suppose: p(x) =
∑

i gi(x)
2 is degree 2d (gi are degree d).

• Each gi(x) has a linear representation in the monomials.

gi(x) = cTi Zd(x)

• Hence

p(x) =
∑
i

gi(x)
2 =

∑
i

Zd(x)cic
T
i Zd(x) = Zd(x)

(∑
i

cic
T
i

)
Zd(x)

• Each matrix cic
T
i ≥ 0. Hence Q =

∑
i cic

T
i ≥ 0.

• We conclude that if p ∈ Σs, there is a Q ≥ 0 with p(x) = Zd(x)QZd(x).

Lemma 6.

Suppose M is polynomial of degree 2d. M ∈ Σs if and only if there exists some
Q ⪰ 0 such that

M(x) = Zd(x)
TQZd(x).
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Sum-of-Squares

Thus we can express the search for a SOS certificate of positivity as an LMI.

Take the numerical example

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

The question of an SOS representation is equivalent to

Find M =

M1 M2 M3

M2 M4 M5

M3 M5 M6

 ≥ 0 such that

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; M6 = 10.

In fact, this is feasible for

M =

 4 2 −6
2 5 −1
−6 −1 10

 =

0 2
2 1
1 −3

[0 2 1
2 1 −3

]
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Sum-of-Squares

We can use this solution to construct an SOS certificate of positivity.

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =

x2

xy
y2

T  4 2 −6
2 5 −1
−6 −1 10

x2

xy
y2


=

x2

xy
y2

T 0 2
2 1
1 −3

[0 2 1
2 1 −3

]x2

xy
y2


=

[
2xy + y2

2x2 + xy + 3y2

]T [
2xy + y2

2x2 + xy + 3y2

]
= (2xy + y2)2 + (2x2 + xy + 3y2)2
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Solving Sum-of-Squares using SDP
Quadratic vs. Linear Representation

Quadratic Representation: (Using Matrix M ∈ Rp×p):

p(x) = Zd(x)
TMZd(x)

Linear Representation: (Using Vector c ∈ Rq)

q(x) = cTZ2d(x)

To constrain p(x) = q(x), we write [Zd]i = xαi , [Z2d]j = xβj and reformulate

p(x) = Zd(x)
TMZd(x) =

∑
i,j

Mi,jx
αi+αj = vec(M)TAZ2d(x)

where A ∈ Rp2×q is defined as

Ai,j =

{
1 if αmod(i,p) + α⌊i⌋p+1 = βj

0 otherwise

This then implies that

Zd(x)
TMZd(x) = vec(M)TAZ2d(x)

Hence if we constrain c = vec(M)TA, this is equivalent to p(x) = q(x)
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Solving Sum-of-Squares using SDP
Quadratic vs. Linear Representation

Summarizing, e.g., for Lyapunov stability, we have variables M > 0, Q > 0 with
the constraint

−vec(M)TA = vec(Q)TAB

Feasibility implies stability since

V (x) = Z(x)TQZ(x) ≥ 0

V̇ (x) = vec(Q)TA∇Z2d(x)

= vec(Q)TABZ2d(x)

= −vec(M)TAZ2d(x)

= −Z(x)TMZ(x) ≥ 0
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Sum-of-Squares
YALMIP SOS Programming

YALMIP has SOS functionality
Link: YALMIP SOS Manual

To test whether
4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

is a positive polynomial, we use:
> sdpvar x y

> p = 4 ∗ x4 + 4 ∗ x3 ∗ y− 7 ∗ x2 ∗ y2 − 2 ∗ x ∗ y3 + 10 ∗ y4;
> F=[];

> F=[F;sos(p)];

> solvesos(F);

To retrieve the SOS decomposition, we use
> sdisplay(p)

> ans =
> ′1.7960 ∗ x2 − 3.0699 ∗ y2 + 0.6468 ∗ x ∗ y′
> ′ − 0.6961 ∗ x2 − 0.7208 ∗ y2 − 1.4882 ∗ x ∗ y′
> ′0.5383 ∗ x2 + 0.2377 ∗ y2 − 0.3669 ∗ x ∗ y′
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Sum-of-Squares
SOS using SOSTOOLS

In this class, we will use instead SOSTOOLS
Link: SOSTOOLS Website

To test whether
4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

is a positive polynomial, we use:
> pvar x y

> p = 4 ∗ x4 + 4 ∗ x3 ∗ y− 7 ∗ x2 ∗ y2 − 2 ∗ x ∗ y3 + 10 ∗ y4;
> prog=sosprogram([x y]);

> prog=sosineq(prog,p);

> prog=sossolve(prog);
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SOS Programming:
Numerical Example

This also works for matrix-valued polynomials.

M(y, z) =

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]
=


z 0
yz 0
0 1
0 y
0 y2


T 

1 0 0 0 1
0 1 1 −1 0
0 1 1 −1 0
0 −1 −1 1 0
1 0 0 0 1



z 0
yz 0
0 1
0 y
0 y2



=


z 0
yz 0
0 1
0 y
0 y2


T [

0 1 1 −1 0
1 0 0 0 1

]T [
0 1 1 −1 0
1 0 0 0 1

]
z 0
yz 0
0 1
0 y
0 y2


=

[
yz 1− y
z y2

]T [
yz 1− y
z y2

]
∈ Σs
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SOS Programming:
Numerical Example

This also works for matrix-valued polynomials.

M(y, z) =

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]
SOSTOOLS Code: Matrix Positivity
> pvar x y

> M = [(y2 + 1) ∗ z2 y ∗ z; y ∗ z y4 + y2 − 2 ∗ y+ 1];
> prog=sosprogram([y z]);

> prog=sosmatrixineq(prog,M);

> prog=sossolve(prog);
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
SOSTOOLS Code: Global Stability
> pvar x y

> f = [−y− 1.5 ∗ x2 − .5 ∗ x3; 3 ∗ x− y];
> prog=sosprogram([x y]);

> Z=monomials([x,y],0:2);

> [prog,V]=sossosvar(prog,Z);

> V = V+ .0001 ∗ (x4 + y4);
> prog=soseq(prog,subs(V,[x; y],[0; 0]));

> nablaV=[diff(V,x);diff(V,y)];

> prog=sosineq(prog,-nablaV’*f);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

Finds a Lyapunov Function of degree 4.
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
YALMIP Code: Global Stability
> sdpvar x y

> f = [−y− 1.5 ∗ x2 − .5 ∗ x3; 3 ∗ x− y];
> [V,Vc]=polynomial([x y],4);

> F=[Vc(1)==0];

> F = [F; sos(V− .00001 ∗ (x2 + y2))];
> nablaV=jacobian(V,[x y]);

> F=[F;sos(-nablaV*f)];

> solvesos(F,[],[],[Vc])

Finds a Lyapunov Function of degree 4.

• Going forward, we will use mostly SOSTOOLS
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SOSOPT and DelayTOOLS

There is a third relatively new Parser called SOSOPT

Link: SOSOPT Website

And I can plug my own mini-toolbox version of SOSTOOLS:

Link: DelayTOOLS Website

• However, I don’t expect you to need this toolbox for this class.
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
This is feasible with

V (x) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+ 0.61188y3 + 0.47537x4 − 0.052424x3y + 0.44289x2y2 + 0.090723y4
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Summary of the SOS Conditions

Proposition 1.

Suppose: p(x) = Zd(x)
TQZd(x) for some Q > 0. Then p(x) ≥ 0 for all

x ∈ Rn

Refinement 1: Suppose Zd(x)
TPZd(x)p(x) = Zd(x)

TQZd(x) for some
Q,P > 0. Then p(x) ≥ 0 for all x ∈ Rn.

Refinement 2: Suppose (
∑

i x
2
i )

qp(x) = Zd(x)
TQZd(x) for some P > 0,

q ∈ N. Then p(x) ≥ 0 for all x ∈ Rn.

Ignore these Refinements

• SOS by itself is sufficient. The refinements are Necessary and Sufficient.

• Almost never necessary in practice...
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Problems with SOS

Unfortunately, a Sum-of-Squares representation is not necessary for positivity.

• Artin included ratios of squares.

Counterexample: The Motzkin Polynomial

M(x, y) = x2y4 + x4y2 + 1− 3x2y2
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However, (x2 + y2 + 1)M(x, y) is a Sum-of-Squares.

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy3 − x)2 + (x2y2 − 1)2

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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