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Problems with SOS

The problem is that most nonlinear stability problems are local.

• Global stability requires a unique equilibrium.

• Very few nonlinear systems are globally stable.

Figure: The Lorentz Attractor
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Local Positivity

A more interesting question is the question of local positivity.
Question: Is y(x) ≥ 0 for x ∈ X, where X ⊂ Rn.

Examples:

• Matrix Copositivity:

yTMy ≥ 0 for all y ≥ 0

• Integer Programming (Upper bounds)

min γ

γ ≥ fi(y)

for all y ∈ {−1, 1}n and i = 1, · · · , k

• Local Lyapunov Stability

V (x) ≥ ∥x∥2 for all ∥x∥ ≤ 1

∇V (x)T f(x) ≤ 0 for all ∥x∥ ≤ 1

All these sets are
Semialgebraic.
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Positivity on Which Sets?
Semialgebraic Sets (Defined by Polynomial Inequalities)

How are these sets represented???

Definition 1.

A set X ⊂ Rn is Semialgebraic if it can be represented using polynomial
equality and inequality constraints.

X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}
If there are only equality constraints, the set is Algebraic.

Note: A semialgebraic set can also include ̸= and <.

Discrete Values

{−1, 1}n = {y ∈ Rn : y2i − 1 = 0}
The Ball of Radius 1

{x : ∥x∥ ≤ 1} = {x : 1− xTx ≥ 0}

The representation of a set is NOT UNIQUE.

• Some representations are better than others...
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Other Interesting Sets
Poisson’s Equation (Courtesy of James Forbes)

Consider the dynamics of the rotation matrix on SO(3)

• Gives the orientation in the Body-fixed frame for a body rotating with
angular velocity ω.

Ċ = −

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

C

where C =

C1 C2 C3

C4 C5 C6

C7 C8 C9

 ∈ R3×3 which satisfies CTC = I and detC = 1.

Define

S :=


C1 C2 C3

C4 C5 C6

C7 C8 C9

 : det(C) = 1, CTC = I


So we would like a Lyapunov function V (C) which satisfies

∇V (C)T f(C) ≤ 0 for all C such that C ∈ S
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Recall the SOS Conditions

Proposition 1.

Suppose: p(x) = Zd(x)
TQZd(x) for some Q > 0. Then p(x) ≥ 0 for all

x ∈ Rn
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SOS Positivity on a Subset
Recall the S-Procedure

Corollary 2 (S-Procedure).

zTFz ≥ 0 for all z ∈ S := {x ∈ Rn : xTGx ≥ 0} if there exists a scalar τ ≥ 0
such that F − τG ⪰ 0.

This works because
• τ ≥ 0 and zTGz ≥ 0 for all z ∈ S
• Hence τzTGz ≥ 0 for all z ∈ S

If F ≥ τG, then

zTFz ≥ τzTGz for all z ∈ Rn

≥ 0 for all z ∈ S

Now Consider Polynomials

Proposition 2.

Suppose τ(x) is SOS (≥ 0 ∀x). If f(x)− τ(x)g(x) is SOS (≥ 0 ∀x), then
f(x) ≥ 0 for all x ∈ S := {x : g(x) ≥ 0}
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Summary of SOS Positivity on a set
The Main Idea

Proposition 3.

Suppose si(x) are SOS and ti are polynomials (not necessarily positive). If

f(x) = s0(x) +
∑
i

si(x)gi(x) +
∑
j

tj(x)hj(x)

then
f(x) ≥ 0 for all x ∈ S := {x : gi(x) ≥ 0, hi(x) = 0}

This works because

• si(x) ≥ 0 for all z ∈ S

• gi(x) ≥ 0 for all z ∈ S

• hi(x) = 0 for all z ∈ S

Question: Is it Necessary and Sufficient???
Answer: Yes, but only if we represent S in the right way.

• The Dark Art of the Positivstellensatz!
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How to Represent a Set???
A Problem of Representation and Inference

Consider how to represent a semialgebraic set:
Example: A representation of the interval S = [a, b].

• A first order representation:

{x ∈ R : x− a ≥ 0, b− x ≥ 0}

• A quadratic representation:

{x ∈ R : (x− a)(b− x) ≥ 0}

• We can add arbitrary polynomials which are PSD on X to the
representation.

{x ∈ R : (x− a)(b− x) ≥ 0, x− a ≥ 0}
{x ∈ R : (x2 + 1)(x− a)(b− x) ≥ 0}
{x ∈ R : (x−a)(b−x) ≥ 0, (x2+1)(x−a)(b−x) ≥ 0, (x− a)(b− x) ≥ 0}

There are infinite ways to represent the same set

• Some Work well and others Don’t!
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A Problem of Representation and Inference
Computer-Based Logic and Reasoning

Why are all these representations valid?

• We are adding redundant constraints to the set.

• x− a ≥ 0 and b− x ≥ 0 for x ∈ [a, b] implies

(x− a)(b− x) ≥ 0.

• x2 +1 is SOS, so is obviously positive on x ∈ [a, b].

How are we creating these redundant constraints?

• Logical Inference

• Using existing polynomials which are positive on X
to create new ones.

Note: If f(x) ≥ 0 for x ∈ S

• So f is positive on S if and only if it is a valid constraint...

Big Question:

• Can ANY polynomial which is positive on [a, b] be constructed this way?
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The Cone of Inference

Definition 3.

Given a semialgebraic set S, a function f is called a valid inequality on S if

f(x) ≥ 0 for all x ∈ S

Question: How to construct valid inequalities?

• Closed under addition: If f1 and f2 are valid, then h(x) = f1(x) + f2(x) is
valid

• Closed under multiplication: If f1 and f2 are valid, then h(x) = f1(x)f2(x)
is valid

• Contains all Squares: h(x) = g(x)2 is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.
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The Cone of Inference

Definition 4.

The set of polynomials C ⊂ R[x] is called a Cone if

• f1 ∈ C and f2 ∈ C implies f1 + f2 ∈ C.

• f1 ∈ C and f2 ∈ C implies f1f2 ∈ C.

• Σs ⊂ C.

Note: this is NOT the same definition as in optimization.
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The Cone of Inference

The set of inferences is a cone

Definition 5.

For any set, S, the cone C(S) is the set of polynomials PSD on S

C(S) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ S}

The big question: how to test f ∈ C(S)???

Corollary 6.

f(x) ≥ 0 for all x ∈ S if and only if f ∈ C(S)
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The Monoid

Suppose S is a semialgebraic set and define its monoid.

Definition 7.

For given polynomials {fi} ⊂ R[x], we define monoid({fi}) as the set of all
products of the fi

monoid({fi}) := {h ∈ R[x] : h(x) =
∏

fa1
1 (x)fak

2 (x) · · · fa2

k (x), a ∈ Nk}

• 1 ∈ monoid({fi})
• monoid({fi}) is a subset of the cone defined by the fi.

• The monoid does not include arbitrary sums of squares
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The Cone of Inference

If we combine monoid({fi}) with Σs, we get cone({fi}).

Definition 8.

For given polynomials {fi} ⊂ R[x], we define cone({fi}) as

cone({fi}) := {h ∈ R[x] : h =
∑

sigi, gi ∈ monoid({fi}), si ∈ Σs}

If
S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

cone({fi}) ⊂ C(S) is an approximation to C(S).

• The key is that it is possible to test whether f ∈ cone({fi}) ⊂ C(S)!!!
▶ Sort of... (need a degree bound)
▶ Use e.g. SOSTOOLS
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More on Inference

Corollary 9.

h ∈ cone({fi}) ⊂ C(S) if and only if there exist si, rij , · · · ∈ Σs such that

h(x) = s0 +
∑
i

sifi +
∑
i̸=j

rijfifj +
∑

i ̸=j ̸=k

rijkfifjfk + · · ·

Note we must include all possible combinations of the fi
• A finite number of variables si, rij .

• si, rij ∈ Σs is an SDP constraint.

• The equality constraint acts on the coefficients of f, si, rij .

This gives a sufficient condition for h(x) ≥ 0 for all x ∈ S.

• Can be tested using, e.g. SOSTOOLS
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Numerical Example

Example: To show that h(x) = 5x− 9x2 + 5x3 − x4 is PSD on the interval
[0, 1] = {x ∈ Rn : x(1− x) ≥ 0}, we use f1(x) = x(1− x). This yields the
constraint

h(x) = s0(x) + x(1− x)s1(x)

We find s0(x) = 0, s1(x) = (2− x)2 + 1 so that

5x− 9x2 + 5x3 − x4 = 0 + ((2− x)2 + 1)x(1− x)

Which is a certificate of non-negativity of h on S = [0, 1]

Note: the original representation of S matters:

• If we had used S = {x ∈ R : x ≥ 0, 1− x ≥ 0}, then we would have had 4
SOS variables

h(x) = s0(x) + xs1(x) + (1− x)s2(x) + x(1− x)s3(x)

The complexity can be decreased through judicious choice of representation.
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Stengle’s Positivstellensatz

We have two big questions
• How close an approximation is cone({fi}) ⊂ C(S) to C(S)?

▶ Cannot always be exact since not every positive polynomial is SOS.

• Can we reduce the complexity?

Both these questions are answered by Positivstellensatz Results. Recall

S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

Theorem 10 (Stengle’s Positivstellensatz).

S = ∅ if and only if −1 ∈ cone({fi}). That is, S = ∅ if and only if there exist
si, rij , · · · ∈ Σs such that

−1 = s0 +
∑
i

sifi +
∑
i ̸=j

rijfifj +
∑

i̸=j ̸=k

rijkfifjfk + · · ·

Note that this is not exactly what we were asking.
• We would prefer to know whether h ∈ cone({fi})
• Difference is important for reasons of convexity.
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Stengle’s Positivstellensatz
Lets Cut to the Chase

Problem: We want to know whether f(x) > 0 for all x ∈ {x : gi(x) ≥ 0}.

Corollary 11 (Stengle’s Positivstellensatz).

f(x) > 0 for all x ∈ {x : gi(x) ≥ 0} if and only if there exist si, qij , rij , · · · ∈ Σs

such that

f

s−1 +
∑
i

qigi +
∑
i ̸=j

qijgigj +
∑

i ̸=j ̸=k

qijkgigjgk + · · ·


= 1 + s0 +

∑
i

sigi +
∑
i ̸=j

rijgigj +
∑

i ̸=j ̸=k

rijkgigjgk + · · ·

We have to include all possible combinations of the gi!!!!
• But assumes Nothing about the gi
• The worst-case scenario
• Also bilinear in si and f (Can’t search for both)

We can do better if we choose our gi more carefully!
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Stengle’s Weak Positivstellensatz

Non-Negativity: Considers whether f(x) ≥ 0 for all x ∈ {x : gi(x) ≥ 0}.

Corollary 12 (Stengle’s Positivstellensatz).

f(x) ≥ 0 for all x ∈ {x : gi(x) ≥ 0} if and only if there exist si, qij , rij , · · · ∈ Σs

and q ∈ N such that

f

s−1 +
∑
i

qigi +
∑
i̸=j

qijgigj +
∑

i ̸=j ̸=k

qijkgigjgk + · · ·


= f2q + s0 +

∑
i

sigi +
∑
i ̸=j

rijgigj +
∑

i ̸=j ̸=k

rijkgigjgk + · · ·

Lyapunov Functions are NOT strictly positive!

• The only P-Satz to deal with functions not Strictly Positive.
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Schmudgen’s Positivstellensatz

If the set S is closed, bounded, then the problem can be simplified.

Theorem 13 (Schmüdgen’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is compact. If f(x) > 0 for all
x ∈ S, then there exist si, rij , · · · ∈ Σs and ti ∈ R[x] such that

f = 1 +
∑
j

tjhj + s0 +
∑
i

sigi +
∑
i ̸=j

rijgigj +
∑

i ̸=j ̸=k

rijkgigjgk + · · ·

Note that Schmudgen’s Positivstellensatz is essentially the same as Stengle’s
except for a single term.

• Now we can include both f and si, rij as variables.

• Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).
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Putinar’s Positivstellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 14.

We say that fi ∈ R[x] for i = 1, . . . , nK define a P-compact set Kf , if there
exist h ∈ R[x] and si ∈ Σs for i = 0, . . . , nK such that the level set
{x ∈ Rn : h(x) ≥ 0} is compact and such that the following holds.

h(x)−
nK∑
i=1

si(x)fi(x) ∈ Σs

The condition that a region be P-compact may be difficult to verify. However,
some important special cases include:

• Any region Kf such that all the fi are linear.

• Any region Kf defined by fi such that there exists some i for which the
level set {x : fi(x) ≥ 0} is compact.
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Putinar’s Positivstellensatz

P-Compact is not hard to satisfy.

Corollary 15.

Any compact set can be made P-compact by inclusion of a redundant constraint
of the form fi(x) = β − xTx for sufficiently large β.

Thus P-Compact is a property of the representation and not the set.

Example: The interval [a, b].

• Not Obviously P-Compact:

{x ∈ R : x2 − a2 ≥ 0, b− x ≥ 0}

• P-Compact:
{x ∈ R : (x− a)(b− x) ≥ 0}
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Putinar’s Positivstellensatz

If S is P-Compact, Putinar’s Positivstellensatz dramatically reduces the
complexity

Theorem 16 (Putinar’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is P-Compact. If f(x) > 0 for all
x ∈ S, then there exist si ∈ Σs and ti ∈ R[x] such that

f = s0 +
∑
i

sigi +
∑
j

tjhj

A single multiplier for each constraint.

• We are back to the original condition

• A Good representation of the set is P-compact
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Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Let

X :=

{
x : pi(x) ≥ 0 i = 1, . . . , k

}

Theorem 17.
Suppose there exists a polynomial v, a constant ϵ > 0, and sum-of-squares polynomials
s0, si, t0, ti such that

v(x)−
∑
i

si(x)pi(s)− s0(s)− ϵ xTx = 0

−∇v(x)T f(x)−
∑
i

ti(x)pi(s)− t0(x)− ϵ xTx = 0

Then the system is exponentially stable on any Yγ := {x : v(x) ≤ γ} where Yγ ⊂ X.

Note: Find the largest Yγ via bisection.
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Local Stability Analysis

Van-der-Pol Oscillator
ẋ(t) = −y(t)

ẏ(t) = −µ(1− x(t)2)y(t) + x(t)

Procedure:

1. Use Bisection to find the largest ball on which you can find a Lyapunov
function.

2. Use Bisection to find the largest level set of that Lyapunov function on
which you can find a Lyapunov function. Repeat
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Local Stability Analysis

First, Find the Lyapunov function
SOSTOOLS Code: Find a Local Lyapunov Function
> pvar x y

> mu=1; r=2.8;

> g = r− (x2 + y2);
> f = [−y;−mu ∗ (1− x2) ∗ y+ x];
> prog=sosprogram([x y]);

> Z2=monomials([x y],0:2);

> Z4=monomials([x y],0:4);

> [prog,V]=sossosvar(prog,Z2);

> V = V+ .0001 ∗ (x4 + y4);
> prog=soseq(prog,subs(V,[x, y]’,[0, 0]’));

> nablaV=[diff(V,x);diff(V,y)];

> [prog,s]=sossosvar(prog,Z2);

> prog=sosineq(prog,-nablaV’*f-s*g);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

This finds a Lyapunov function which is decreasing on the ball of radius
√
2.8

• Lyapunov function is of degree 4.
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Local Stability Analysis

Next find the largest level set which is contained in the ball of radius
√
2.8.

> pvar x y

> gamma=6.6;

> Vg=gamma-Vn;

> g = r− (x2 + y2);
> prog=sosprogram([x y]);

> Z2=monomials([x y],0:2);

> [prog,s]=sossosvar(prog,Z2);

> prog=sosineq(prog,g-s*Vg);

> prog=sossolve(prog);  
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In this case, the maximum γ is 6.6

• Estimate of the DOA will increase with degree of the variables.
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Making Sense of Positivity Constraints

−V̇ (x)− g(x) · s(x) ≥ 0 ∀x
means

V̇ (x) ≤ −g(x) · s(x) ≤ 0

when g(x) ≥ 0 (since s(x) ≥ 0 and g(x) ≥ 0 on x ∈ X).
• but ∥x∥2 ≤ r implies g(x) ≥ 0
• hence V̇ (x) ≤ 0 for all x ∈ B√

r

Likewise
g(x)− s(x) · (γ − V (x)) ≥ 0 ∀x

means
g(x) ≥ s(x) · (γ − V (x)) ≥ 0

whenever V (x) ≤ γ.
• So g(x) ≥ 0 whenever x ∈ Vγ

• But g(x) ≥ 0 means ∥x∥ ≤
√
r

• So if x ∈ Vγ , then g(x) ≥ 0 and hence ∥x∥ ≤
√
r.

• So Vγ ⊂ B√
r
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An Example of Global Stability Analysis

SOSTOOLS Code: Globally Stabilizing Controller
> pvar w1 w2 w3

> J1=2;J2=1;J3=1;

> k1=1;k2=1;k3=1;

> u1=-k1*w1;u2=-k2*w2;u3=-k3*w3;

> f = [(J2− J3)/J1 ∗ w2 ∗ w3+ u1;
> (J3− J1)/J2 ∗ w3 ∗ w1+ u2;
> (J1− J2)/J3 ∗ w1 ∗ w2+ u3];
> prog=sosprogram([w1 w2 w3]);

> Z=monomials([w1 w2 w3],1:2);

> [prog,V]=sossosvar(prog,Z);

> V = V+ .0001 ∗ (w14 + w24 + w34);
> prog=soseq(prog,subs(V,[w1; w2; w3],[0; 0;

0]));

> nablaV=[diff(V,w1);diff(V,w2);diff(V,w3)];

> prog=sosineq(prog,-nablaV’*f-4.0*V);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

J1ω̇1 = (J2 − J3)ω2ω3 + u1

J2ω̇2 = (J3 − J1)ω3ω1 + u2

J3ω̇3 = (J1 − J2)ω1ω2 + u3

u1 = −k1ω1

u2 = −k2ω2

u3 = −k3ω3

This is feasible and proves exponential stability with decay rate γ = 4
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An Example of Globally Stabilizing Controller Synthesis

SOSTOOLS Code: Globally Stabilizing Controller
> pvar x1 x2 x3

> prog=sosprogram([x1 x2 x3]);

> Z4=monomials([x1 x2 x3],0:3);

> Z2=monomials([x1 x2 x3],0:3);

> [prog,k1]=sospolyvar(prog,Z4);

> [prog,k2]=sospolyvar(prog,Z4);

> u1=k1; u2=k2;

> f=[-x1+x2-x3;-x1*x3-x2+u1;-x1+u2];

> V = x12 + x22 + x32;
> prog=soseq(prog,subs(V,[x1, x2, x3]’,[0,

0, 0]’));

> nablaV=[diff(V,x1);diff(V,x2);diff(V,x3)];

> prog=sosineq(prog,-(nablaV’*f));

> prog=sossolve(prog);

> k1n=sosgetsol(prog,k1)

> k2n=sosgetsol(prog,k2)

ẋ1 = −x1 + x2 − x3

ẋ2 = −x1x3 − x2 + u1

ẋ3 = −x1 + u2

Find u1(t) = k1(x(t)),
u2(t) = k2(x(t))
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