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Example of Parametric Uncertainty

Recall The Spring-Mass Example

ÿ(t) + cẏ(t) +
k

m
y(t) =

F (t)

m
Multiplicative Uncertainty

• m ∈ [m−,m+]

• c ∈ [c−, c+]

• k[k−, k+]

State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 
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Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 

Y3 

Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 
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Questions:

• Can we do robust optimal control without the LFT framework??

• Consider static uncertainty?
▶ Can we do better than Quadratic Stabilization??

General Formulation

ẋ = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)
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Lets Start with Stability with Static Uncertainty
General Formulation

ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)

Where A,B,C,D are rational (denominators d(δ) > 0 for all δ ∈ ∆)

Theorem 1.

Suppose there exists P (δ)− ϵI ≥ 0 for all δ ∈ ∆ and such that

A(δ)TP (δ) + P (δ)A(δ) ≤ 0 for all δ ∈ ∆

Then A(δ) is Hurwitz for all δ ∈ ∆.

Theorem 2.

Suppose there exists si, ri ∈ Σs such that P (δ) = s0(δ) +
∑

i si(δ)gi(δ) and

−A(δ)TP (δ)− P (δ)A(δ) = r0(δ) +
∑

i

ri(δ)gi(δ)

Then A(δ) is Hurwitz for all δ ∈ {δ : gi(δ) ≥ 0}.

Proof: Use V (x) = xTP (δ)x.
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Lets Start With Stability

Apply this to The Spring-Mass Example

ÿ(t) = −cẏ(t)− k

m
y(t) =

F (t)

m[
ẋ1

ẋ2

]
=

[
0 1
−c − k

m

]

︸ ︷︷ ︸
A(c,k,m)

[
x1

x2

]
+

[
0
1
m

]
u(t)

Semi-Algebraic Form:
• g1(m) = (m−m−)(m+ −m) ≥ 0
• g2(c) = (c− c−)(c+ − c) ≥ 0
• g3(k) = (k − k−)(k+ − k) ≥ 0

We are searching for a P , si, ri ∈ Σs such that

P (c, k,m) = s0(c, k,m)+ s1(c, k,m)gi(m)+ s2(c, k,m)g2(c)+ s3(c, k,m)g3(k)

such that

−mA(c, k,m)TP (c, k,m)− P (c, k,m)mA(c, k,m)

= m(r0(c, k,m) + r1(c, k,m)gi(m) + r2(c, k,m)g2(c) + r3(c, k,m)g3(k))
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SOSTOOLS does not work with Matrix-Valued Problems
You should instead download SOSMOD

SOSMOD vMAE598 is my personal toolbox and is compatible with the code
presented in these lecture notes.

• May have issues with versions of Matlab 2016a and later. Working to
correct these.

• Folder Must be added to the Matlab PATH

• Also contains example scripts for the code listed in the lecture notes.

Link: SOSMOD for MAE 598 download

• Also on Blackboard

• I may add features associated with later Lectures in the future.
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SOSTOOLS Code for Robust Stability Analysis

> pvar m c k

> Am=[0 m;-c*m -k];

> mmin=.1;mmax=1;cmin=.1;cmax=1;kmin=.1;kmax=1;

> g1=(mmax-m)(m-mmin);g2=(cmax-c)(c-cmin);g3=(kmax-k)(k-kmin);

> vartable=[m c k];

> prog=sosprogram(vartable);

> [prog,S0]=sosposmatrvar(prog,2,4,vartable);

> [prog,S1]=sosposmatrvar(prog,2,4,vartable);

> [prog,S2]=sosposmatrvar(prog,2,4,vartable);

> [prog,S3]=sosposmatrvar(prog,2,4,vartable);

> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);

> [prog,R1]=sosposmatrvar(prog,2,4,vartable);

> [prog,R2]=sosposmatrvar(prog,2,4,vartable);

> [prog,R3]=sosposmatrvar(prog,2,4,vartable);

> [prog,R4]=sosposmatrvar(prog,2,4,vartable);

> constr=-(Am’*P+P*Am)-m*(R0+R1*g1+R2*g2+R3*g3);

> prog=sosmateq(prog,constr);

> prog=sossolve(prog);

> Pn=sosgetsol(prog,P)
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Now we can do Time-Varying Uncertainty

Time-Varying Formulation:
ẋ(t) = A(δ(t))x(t) +B(δ(t))u(t) δ(t) ∈ ∆1

y(t) = C(δ(t))x(t) +D(δ(t))u(t) δ̇(t) ∈ ∆2

Simple Example: Angle of attack (α)

α̇(t) = −ρ(t)v(t)2cα(α(t),M(t))

2I
α(t)

The time-varying parameters are:
• velocity, v and Mach number, M (M depends on Reynolds #);
• density of air, ρ;
• Also, we sometimes treat α itself as an uncertain parameter.

Figure: CM vs. α and Re # Figure: CM vs. Mach # and αM. Peet Lecture 18: 6 / 21



Exponential Stability with Time-Varying Uncertainty

ẋ(t) = A(δ(t))x(t)

Theorem 3.

Suppose there exists P (δ)− ϵI ≥ 0 for all δ ∈ ∆ and such that

A(δ)TP (δ) + P (δ)A(δ) +
∑

i

∂

∂δi
P (δ)δ̇i ≤ 0 for all δ ∈ ∆2, δ̇ ∈ ∆2

Then ẋ(t) = A(δ(t))x(t) is exponentially stable.

Proof: Use V (t, x) = xTP (δ(t))x.

• Treat δi and δ̇i as independent (Usually not conservative).
• If ∆2 = Rn, then requires ∂

∂δi
P (δ) = 0 (Quadratic Stability).

Example: Gain Scheduling Choose Ki based on δ

ẋ(t) =
{
(A(δ) +BKi)x(t) δ ∈ ∆i

No Bound on rate of variation! (∆2 = Rn)• Unless δ depends on x....
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Extension to Optimal Controller Synthesis

We have two cases

• Time-Varying Parametric Uncertainty ẋ(t) = A(δ(t))x(t)

• Static Parametric Uncertainty ẋ(t) = A(δ)x(t)

Most of the LMIs in this course can be adapted to either case using the
Positivstellensatz.

• Need to be careful with TV uncertainty, however.

Popular Uses:
• H2 optimal control with uncertainty

▶ Makes H2 robust (H∞ is already robust to some extent).
▶ NOT RIGOROUS when δ(t) is time-varying.

• Robust Kalman Filtering
▶ The Kalman Filter is not always stable in closed-Loop...
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H2-optimal robust control

Static Formulation
ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)

H2-optimal State Feedback Synthesis

Theorem 4.

Suppose P̂ (s, δ) = C(δ)(sI −A(δ))−1B(δ). Then the following are equivalent.

1. ∥S(K(δ), P (δ))∥H2
< γ for all δ ∈ ∆..

2. K(δ) = Z(δ)X(δ)−1 for some Z(δ) and X(δ) such that X(δ) > 0 for all
δ ∈ ∆ and

[
A(δ) B2(δ)

] [X(δ)
Z(δ)

]
+
[
X(δ) Z(δ)T

] [A(δ)T

B(δ)T2

]
+B1(δ)B1(δ)

T < 0

[
X(δ) (C1(δ)X(δ) +D12(δ)Z(δ))T

C1(δ)X(δ) +D12(δ)Z(δ) W (δ)

]
> 0

TraceW (δ) < γ2

for all δ ∈ ∆.
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The KYP Lemma with Time-Varying Uncertainty

Lemma 5.

Suppose

G(δ(t)) =

[
A(δ(t)) Bδ(t)
Cδ(t) Dδ(t)

]
.

Then ∥G(δ(t))∥L(L2) ≤ γ for all δ(t) with δ(t) ∈ ∆1 and δ̇(t) ∈ ∆2 if there
exists a X(δ) such that X(δ) > 0 for all δ ∈ ∆1 and

[
A(δ)TX(δ) +X(δ)A(δ) +

∑
i βi

∂
∂δi

X(δ) X(δ)B(δ)

B(δ)TX(δ) −γI

]

+
1

γ

[
C(δ)T

D(δ)T

] [
C(δ) D(δ)

]
< 0

for all δ ∈ ∆1 and β ∈ ∆2.
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The KYP Lemma with Time-Varying Uncertainty

ẋ(t) = A(δ(t))x(t) +B(δ(t))u(t) δ(t) ∈ ∆1

y(t) = C(δ(t))x(t) +D(δ(t))u(t) δ̇(t) ∈ ∆2

Proof.

Let V (x, t) = xTX(δ(t))x. Then

V̇ (x(t), t)− (γ − ϵ)∥u(t)∥2 + 1

γ
∥y(t)∥2 < 0

=

[
x(t)
u(t)

]T [[
A(δ)TX(δ) +X(δ)A(δ) +

∑
i δ̇i

∂
∂δi

X(δ) X(δ)B(δ)

B(δ)TX(δ) −(γ − ϵ)I

]

+
1

γ

[
C(δ)T

D(δ)T

] [
C(δ) D(δ)

]
] [

x(t)
u(t)

]

≤ 0
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H∞-optimal robust control with Time-Varying Uncertainty

However, Controller Synthesis is a Problem!

• Schur Complement Still works.

• Duality Doesn’t work.

Lemma 6.

Suppose
G(δ(t)) =

[
A(δ(t)) B(δ(t))
C(δ(t)) D(δ(t))

]
.

Then ∥G(δ(t))∥L(L2) ≤ γ for all δ(t) with δ(t) ∈ ∆1 and δ̇(t) ∈ ∆2 if there
exists a X(δ) such that X(δ) > 0 for all δ ∈ ∆1 and

[
(A(δ) + B2(δ)K(δ))T X(δ) + X(δ)(A(δ) + B2(δ)K(δ)) +

∑
i βi

∂
∂δi

X(δ) ∗T ∗T

B1(δ)T X(δ) −γI ∗T
C1(δ) + D12(δ)K(δ) D11(δ) −γI

]
< 0

for all δ ∈ ∆1 and β ∈ ∆2.

We fall back on iterative methods (Similar to D-K iteration)

• Optimize P , then optimize K.

• rinse and repeat.
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Robust Local Stability
Search for a Parameter-Dependent Lyapunov Function

The Rayleigh Equation:

ÿ − 2ζ(1− αẏ2)ẏ + y = u

Uncertainty:

ζ ∈ [1.8, 2.2]

α ∈ [.8, 1.2]

2 - 3 Mathematical Preliminaries 2001.10.08.01

Example: Raleigh equation

ÿ − 2ζ(1− αẏ2)ẏ + y = u

Define G by

ẋ(t) =

[
2ζ −1
1 0

]
x +

[
−2ζα
0

]
q +

[
1
0

]
u

p(t) =
[
1 0

]
x(t)

y(t) =
[
0 1

]
x(t)

and Q by
q(t) = Q(p(t)) = p(t)3

[
ẋ1(t)
ẋ2(t)

]
=

[
2ζ(1− αx2

1)x1 + x2

x1

]

Find a Lyapunov Function: V (y, ẏ, α, ζ)

V (x1, x2, α, ζ) ≥ .01 ∗ (x2
1 + x2

2) ∀x ∈ Br, α, ζ ∈ ∆

and V (0, 0, α, ζ) = 0 and

∇xV (x1, x2, α, ζ)
T f(x1, x2, α, ζ) ≤ 0 ∀x ∈ Br, α, ζ ∈ ∆
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SOSTOOLS Code for Robust Nonlinear Stability Analysis

> pvar x1 x2 z a

> zmin = .8; zmax = 1.2; amin = 1.8; amax = 2.2; g1 = r− (x12 + x22);
> r = .3; g2 = (amax− a)(a− amin); g3 = (zmax− z)(z− zmin);
> f = [2 ∗ z ∗ (1− a ∗ x22) ∗ x2− x1; x1];
> vartable=[x1 x2 a z];

> prog=sosprogram(vartable);

> Z1=monomials(vartable,0:1); Z2=monomials(vartable,0:2);

> Z3=monomials(vartable,0:3);

> [prog,V0]=sossosvar(prog,Z2);

> [prog,r1]=sossosvar(prog,Z1); [prog,r2]=sossosvar(prog,Z1);

> [prog,r3]=sossosvar(prog,Z1);

> V = V0+ .001 ∗ (x12 + x22) + g1 ∗ r1+ g2 ∗ r2+ g3 ∗ r3;
> prog=soseq(prog,subs(V,[x1, x2]’,[0, 0]’));

> nablaV=[diff(V,x1);diff(V,x2)];

> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);

> [prog,s1]=sossosvar(prog,Z2); [prog,s2]=sossosvar(prog,Z2);

> [prog,s3]=sossosvar(prog,Z2);

> prog=sosineq(prog,-nablaV’*f-s1*g1-s2*g2-s3*g3);

> prog=sossolve(prog);
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Integer Programming Example
MAX-CUT

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index xi = −1 or xj = 1 to maximize overall cost.

• The cost if xi and xj do not share the same index is wij .
• The cost if they share an index is 0
• The weight wi,j are given.
• Thus the total cost is

1

2

∑

i,j

wi,j(1− xixj)
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MAX-CUT

The optimization problem is the integer program:

max
x2
i=1

1

2

∑

i,j

wi,j(1− xixj)

The MAX-CUT problem can be reformulated as

min γ :

γ ≥ max
x2
i=1

1

2

∑

i,j

wi,j(1− xixj) for all x ∈ {x : x2
i = 1}

We can compute a bound on the max cost using the Nullstellensatz

min
pi∈R[x], s0∈Σs

γ :

γ − 1

2

∑

i,j

wi,j(1− xixj) +
∑

i

pi(x)(x
2
i − 1) = s0(x)
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MAX-CUT

Consider the MAX-CUT problem with 5 nodes

w12 = w23 = w45 = w15 = .5 and w14 = w24 = w25 = w34 = 0

where wij = wji. The objective function is

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5

We use SOSTOOLS and bisection on γ to solve

min
pi∈R[x], s0∈Σs

γ :

γ − f(x) +
∑

i

pi(x)(x
2
i − 1) = s0(x)

We achieve a least upper bound of γ = 4.
However!

• we don’t know if the optimization problem achieves this objective.

• Even if it did, we could not recover the values of xi ∈ [−1, 1].
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MAX-CUT

1

1

2

3 4

5

Figure: A Proposed Cut

Upper bounds can be used to VERIFY optimality of a cut.
We Propose the Cut

• x1 = x3 = x4 = 1

• x2 = x5 = −1

This cut has objective value

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5 = 4

Thus verifying that the cut is optimal.
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MAX-CUT code

pvar x1 x2 x3 x4 x5;

vartable = [x1; x2; x3; x4; x5];

prog = sosprogram(vartable);

gamma = 4;

f = 2.5 - .5*x1*x2 - .5*x2*x3 - .5*x3*x4 - .5*x4*x5 - .5*x5*x1;

bc1 = x1^2 - 1 ;

bc2 = x2^2 - 1 ;

bc3 = x3^2 - 1 ;

bc4 = x4^2 - 1 ;

bc5 = x5^2 - 1 ;

for i = 1:5

[prog, p{1+i}] = sospolyvar(prog,Z);

end;

expr = (gamma-f)+p{1}*bc1+p{2}*bc2+p{3}*bc3+p{4}*bc4+p{5}*bc5;
prog = sosineq(prog,expr);

prog = sossolve(prog);
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

∆ = {∆ = diag(δ1In1, · · · , δsIns : δi ∈ R}

• δi represent unknown parameters.

Definition 7.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

∥∆∥

The fundamental inequality we have is ∆γ = {diag(δi), :
∑

i δ
2
i ≤ γ}. We

want to find the largest γ such that I −M∆ is stable for all ∆ ∈ ∆γ
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The Structured Singular Value, µ

The system

ẋ(t) = A0x(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈ ∆

is stable if there exists a P (δ) ∈ Σs such that

V̇ = xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x < ϵxTx

for all x, p, δ such that

(x, p, δ) ∈
{
x, p, δ : p = diag(δi)(Nx+Qp),

∑

i

δ2i ≤ γ

}

Proposition 1 (Lower Bound for µ).

µ ≥ γ if there exist polynomial h ∈ R[x, p, δ] and si ∈ Σs such that

xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x− ϵxTx

= −s0(x, p, δ)− (γ −
∑

i

δ2i )s1(x, p, δ)− (p− diag(δi)(Nx+Qp))h(x, p, δ)
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