LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 18: SOS for Robust Stability and Control

Example of Parametric Uncertainty

Recall The Spring-Mass Example

$$
\ddot{y}(t)+c \dot{y}(t)+\frac{k}{m} y(t)=\frac{F(t)}{m}
$$

Multiplicative Uncertainty

- $m \in\left[m_{-}, m_{+}\right]$
- $c \in\left[c_{-}, c_{+}\right]$
- $k\left[k_{-}, k_{+}\right]$

Questions:

- Can we do robust optimal control without the LFT framework??
- Consider static uncertainty?
- Can we do better than Quadratic Stabilization??

General Formulation

$$
\begin{aligned}
\dot{x} & =A(\delta) x(t)+B(\delta) u(t) \\
y(t) & =C(\delta) x(t)+D(\delta) u(t)
\end{aligned}
$$

Lets Start with Stability with Static Uncertainty

General Formulation

$$
\begin{aligned}
& \dot{x}(t)=A(\delta) x(t)+B(\delta) u(t) \\
& y(t)=C(\delta) x(t)+D(\delta) u(t)
\end{aligned}
$$

Where A, B, C, D are rational (denominators $d(\delta)>0$ for all $\delta \in \Delta$)

Theorem 1.

Suppose there exists $P(\delta)-\epsilon I \geq 0$ for all $\delta \in \Delta$ and such that

$$
A(\delta)^{T} P(\delta)+P(\delta) A(\delta) \leq 0 \quad \text { for all } \delta \in \Delta
$$

Then $A(\delta)$ is Hurwitz for all $\delta \in \Delta$.

Theorem 2.

Suppose there exists $s_{i}, r_{i} \in \Sigma_{s}$ such that $P(\delta)=s_{0}(\delta)+\sum_{i} s_{i}(\delta) g_{i}(\delta)$ and

$$
-A(\delta)^{T} P(\delta)-P(\delta) A(\delta)=r_{0}(\delta)+\sum_{i} r_{i}(\delta) g_{i}(\delta)
$$

Then $A(\delta)$ is Hurwitz for all $\delta \in\left\{\delta: g_{i}(\delta) \geq 0\right\}$.
Proof: Use $V(x)=x^{T} P(\delta) x$.

Lets Start With Stability

Apply this to The Spring-Mass Example

$$
\begin{gathered}
\ddot{y}(t)=-c \dot{y}(t)-\frac{k}{m} y(t)=\frac{F(t)}{m} \\
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-c & -\frac{k}{m}
\end{array}\right]}_{A(c, k, m)}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] u(t)}
\end{gathered}
$$

Semi-Algebraic Form:

- $g_{1}(m)=\left(m-m_{-}\right)\left(m_{+}-m\right) \geq 0$
- $g_{2}(c)=\left(c-c_{-}\right)\left(c_{+}-c\right) \geq 0$
- $g_{3}(k)=\left(k-k_{-}\right)\left(k_{+}-k\right) \geq 0$

We are searching for a $P, s_{i}, r_{i} \in \Sigma_{s}$ such that
$P(c, k, m)=s_{0}(c, k, m)+s_{1}(c, k, m) g_{i}(m)+s_{2}(c, k, m) g_{2}(c)+s_{3}(c, k, m) g_{3}(k)$
such that

$$
\begin{aligned}
& -m A(c, k, m)^{T} P(c, k, m)-P(c, k, m) m A(c, k, m) \\
& =m\left(r_{0}(c, k, m)+r_{1}(c, k, m) g_{i}(m)+r_{2}(c, k, m) g_{2}(c)+r_{3}(c, k, m) g_{3}(k)\right)
\end{aligned}
$$

SOSTOOLS does not work with Matrix-Valued Problems

You should instead download SOSMOD

SOSMOD_vMAE598 is my personal toolbox and is compatible with the code presented in these lecture notes.

- May have issues with versions of Matlab 2016a and later. Working to correct these.
- Folder Must be added to the Matlab PATH
- Also contains example scripts for the code listed in the lecture notes. Link: SOSMOD for MAE 598 download
- Also on Blackboard
- I may add features associated with later Lectures in the future.

SOSTOOLS Code for Robust Stability Analysis

$>$ pvar m c k
$>A m=[0 \mathrm{~m} ;-\mathrm{c} * \mathrm{~m}-\mathrm{k}]$;
$>\operatorname{mmin}=.1 ; \max =1 ; \mathrm{cmin}=.1 ; \mathrm{cmax}=1 ; \mathrm{kmin}=.1 ; \mathrm{kmax}=1$;
$>\mathrm{g} 1=(\max -\mathrm{m})(\mathrm{m}-\mathrm{mmin}) ; \mathrm{g} 2=(\mathrm{cmax}-\mathrm{c})(\mathrm{c}-\mathrm{cmin}) ; \mathrm{g} 3=(\mathrm{kmax}-\mathrm{k})(\mathrm{k}-\mathrm{kmin})$;
> vartable=[m c k];
> prog=sosprogram(vartable);
> [prog,S0]=sosposmatrvar(prog,2,4,vartable);
> [prog,S1]=sosposmatrvar(prog,2,4,vartable);
> [prog,S2]=sosposmatrvar(prog,2,4,vartable);
> [prog,S3]=sosposmatrvar(prog,2,4,vartable);
> $\mathrm{P}=\mathrm{S} 0+\mathrm{g} 1 * \mathrm{~S} 1+\mathrm{g} 2 * \mathrm{~S} 2+\mathrm{g} 3 * \mathrm{~S} 3+.00001 *$ eye (2);
> [prog,R1]=sosposmatrvar(prog,2,4,vartable);
> [prog,R2]=sosposmatrvar(prog,2,4,vartable);
> [prog,R3]=sosposmatrvar(prog,2,4,vartable);
> [prog,R4]=sosposmatrvar(prog,2,4,vartable);
$>$ constr=-(Am'*P+P*Am)-m*(R0+R1*g1+R2*g2+R3*g3);
> prog=sosmateq(prog,constr);
> prog=sossolve(prog);
> Pn=sosgetsol(prog, P)

Now we can do Time-Varying Uncertainty

Time-Varying Formulation:

$$
\begin{array}{ll}
\dot{x}(t)=A(\delta(t)) x(t)+B(\delta(t)) u(t) & \delta(t) \in \Delta_{1} \\
y(t)=C(\delta(t)) x(t)+D(\delta(t)) u(t) & \dot{\delta}(t) \in \Delta_{2}
\end{array}
$$

Simple Example: Angle of attack (α)

$$
\dot{\alpha}(t)=-\frac{\rho(t) v(t)^{2} c_{\alpha}(\alpha(t), M(t))}{2 I} \alpha(t)
$$

The time-varying parameters are:

- velocity, v and Mach number, M (M depends on Reynolds \#);
- density of air, ρ;
- Also, we sometimes treat α itself as an uncertain parameter.

M. Peet

Lecture 18:

Exponential Stability with Time-Varying Uncertainty

$$
\dot{x}(t)=A(\delta(t)) x(t)
$$

Theorem 3.

Suppose there exists $P(\delta)-\epsilon I \geq 0$ for all $\delta \in \Delta$ and such that

$$
A(\delta)^{T} P(\delta)+P(\delta) A(\delta)+\sum_{i} \frac{\partial}{\partial \delta_{i}} P(\delta) \dot{\delta}_{i} \leq 0 \quad \text { for all } \delta \in \Delta_{2}, \quad \dot{\delta} \in \Delta_{2}
$$

Then $\dot{x}(t)=A(\delta(t)) x(t)$ is exponentially stable.
Proof: Use $V(t, x)=x^{T} P(\delta(t)) x$.

- Treat δ_{i} and $\dot{\delta}_{i}$ as independent (Usually not conservative).
- If $\Delta_{2}=\mathbb{R}^{n}$, then requires $\frac{\partial}{\partial \delta_{i}} P(\delta)=0$ (Quadratic Stability).

Example: Gain Scheduling Choose K_{i} based on δ

$$
\dot{x}(t)=\left\{\left(A(\delta)+B K_{i}\right) x(t) \quad \delta \in \Delta_{i}\right.
$$

No Bound on rate of variation! $\left(\Delta_{2}=\mathbb{R}^{n}\right)$

- Unless δ depends on $x \ldots$...

Extension to Optimal Controller Synthesis

We have two cases

- Time-Varying Parametric Uncertainty $\dot{x}(t)=A(\delta(t)) x(t)$
- Static Parametric Uncertainty $\dot{x}(t)=A(\delta) x(t)$

Most of the LMIs in this course can be adapted to either case using the Positivstellensatz.

- Need to be careful with TV uncertainty, however.

Popular Uses:

- H_{2} optimal control with uncertainty
- Makes H_{2} robust (H_{∞} is already robust to some extent).
- NOT RIGOROUS when $\delta(t)$ is time-varying.
- Robust Kalman Filtering
- The Kalman Filter is not always stable in closed-Loop...

H_{2}-optimal robust control

Static Formulation

$$
\begin{aligned}
& \dot{x}(t)=A(\delta) x(t)+B(\delta) u(t) \\
& y(t)=C(\delta) x(t)+D(\delta) u(t)
\end{aligned}
$$

H_{2}-optimal State Feedback Synthesis

Theorem 4.

Suppose $\hat{P}(s, \delta)=C(\delta)(s I-A(\delta))^{-1} B(\delta)$. Then the following are equivalent.

1. $\|S(K(\delta), P(\delta))\|_{H_{2}}<\gamma$ for all $\delta \in \Delta$..
2. $K(\delta)=Z(\delta) X(\delta)^{-1}$ for some $Z(\delta)$ and $X(\delta)$ such that $X(\delta)>0$ for all $\delta \in \Delta$ and

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A(\delta) & B_{2}(\delta)
\end{array}\right]\left[\begin{array}{l}
X(\delta) \\
Z(\delta)
\end{array}\right]+\left[\begin{array}{ll}
X(\delta) & Z(\delta)^{T}
\end{array}\right]\left[\begin{array}{l}
A(\delta)^{T} \\
B(\delta)_{2}^{T}
\end{array}\right]+B_{1}(\delta) B_{1}(\delta)^{T}<0} \\
& {\left[\begin{array}{cc}
X(\delta) & \left(C_{1}(\delta) X(\delta)+D_{12}(\delta) Z(\delta)\right)^{T} \\
C_{1}(\delta) X(\delta)+D_{12}(\delta) Z(\delta) & W(\delta)
\end{array}\right]=0}
\end{aligned}
$$

TraceW $(\delta)<\gamma^{2}$
for all $\delta \in \Delta$.

The KYP Lemma with Time-Varying Uncertainty

Lemma 5.

Suppose

$$
G(\delta(t))=\left[\begin{array}{c|c}
A(\delta(t)) & B \delta(t) \\
\hline C \delta(t) & D \delta(t)
\end{array}\right]
$$

Then $\|G(\delta(t))\|_{\mathcal{L}\left(L_{2}\right)} \leq \gamma$ for all $\delta(t)$ with $\delta(t) \in \Delta_{1}$ and $\dot{\delta}(t) \in \Delta_{2}$ if there exists a $X(\delta)$ such that $X(\delta)>0$ for all $\delta \in \Delta_{1}$ and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A(\delta)^{T} X(\delta)+X(\delta) A(\delta)+\sum_{i} \beta_{i} \frac{\partial}{\partial \delta_{i}} X(\delta) & X(\delta) B(\delta) \\
B(\delta)^{T} X(\delta) & -\gamma I
\end{array}\right]} \\
& \quad+\frac{1}{\gamma}\left[\begin{array}{l}
C(\delta)^{T} \\
D(\delta)^{T}
\end{array}\right]\left[\begin{array}{ll}
C(\delta) & D(\delta)
\end{array}\right]<0
\end{aligned}
$$

for all $\delta \in \Delta_{1}$ and $\beta \in \Delta_{2}$.

The KYP Lemma with Time-Varying Uncertainty

$$
\begin{array}{ll}
\dot{x}(t)=A(\delta(t)) x(t)+B(\delta(t)) u(t) & \delta(t) \in \Delta_{1} \\
y(t)=C(\delta(t)) x(t)+D(\delta(t)) u(t) & \dot{\delta}(t) \in \Delta_{2}
\end{array}
$$

Proof.

Let $V(x, t)=x^{T} X(\delta(t)) x$. Then

$$
\begin{aligned}
& \dot{V}(x(t), t)-(\gamma-\epsilon)\|u(t)\|^{2}+\frac{1}{\gamma}\|y(t)\|^{2}<0 \\
& =\left[\begin{array}{l}
x(t) \\
u(t)
\end{array}\right]^{T}\left[\begin{array}{rr}
A(\delta)^{T} X(\delta)+X(\delta) A(\delta)+\sum_{i} \dot{\delta}_{i} \frac{\partial}{\partial \delta_{i}} X(\delta) & X(\delta) B(\delta) \\
B(\delta)^{T} X(\delta) & -(\gamma-\epsilon) I
\end{array}\right] \\
& \quad+\frac{1}{\gamma}\left[\begin{array}{l}
C(\delta)^{T} \\
D(\delta)^{T}
\end{array}\right]\left[\begin{array}{ll}
C(\delta) & D(\delta)
\end{array}\right]\left[\begin{array}{l}
x(t) \\
u(t)
\end{array}\right] \\
& \leq 0
\end{aligned}
$$

H_{∞}-optimal robust control with Time-Varying Uncertainty

However, Controller Synthesis is a Problem!

- Schur Complement Still works.
- Duality Doesn't work.

Lemma 6.

Suppose

$$
G(\delta(t))=\left[\begin{array}{c|c}
A(\delta(t)) & B(\delta(t)) \\
\hline C(\delta(t)) & D(\delta(t))
\end{array}\right] .
$$

Then $\|G(\delta(t))\|_{\mathcal{L}\left(L_{2}\right)} \leq \gamma$ for all $\delta(t)$ with $\delta(t) \in \Delta_{1}$ and $\dot{\delta}(t) \in \Delta_{2}$ if there exists a $X(\delta)$ such that $X(\delta)>0$ for all $\delta \in \Delta_{1}$ and

$$
\left[\begin{array}{ccc}
\left(A(\delta)+B_{2}(\delta) K(\delta)\right)^{T} X(\delta)+X(\delta)\left(A(\delta)+B_{2}(\delta) K(\delta)\right)+\sum_{i} \beta_{i} \frac{\partial}{\partial \delta_{i}} X(\delta) & *^{T} & *^{T} \\
B_{1}(\delta)^{T} X(\delta) & -\gamma I & *^{T} \\
C_{1}(\delta)+D_{12}(\delta) K(\delta) & D_{11}(\delta) & -\gamma I
\end{array}\right]<0
$$

for all $\delta \in \Delta_{1}$ and $\beta \in \Delta_{2}$.
We fall back on iterative methods (Similar to D-K iteration)

- Optimize P, then optimize K.
- rinse and repeat.

Robust Local Stability

Search for a Parameter-Dependent Lyapunov Function The Rayleigh Equation:

$$
\ddot{y}-2 \zeta\left(1-\alpha \dot{y}^{2}\right) \dot{y}+y=u
$$

Uncertainty:

$$
\begin{aligned}
& \zeta \in[1.8,2.2] \\
& \alpha \in[.8,1.2]
\end{aligned}
$$

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 \zeta\left(1-\alpha x_{1}^{2}\right) x_{1}+x_{2} \\
x_{1}
\end{array}\right]
$$

Find a Lyapunov Function: $V(y, \dot{y}, \alpha, \zeta)$

$$
V\left(x_{1}, x_{2}, \alpha, \zeta\right) \geq .01 *\left(x_{1}^{2}+x_{2}^{2}\right) \quad \forall x \in B_{r}, \quad \alpha, \zeta \in \Delta
$$

and $V(0,0, \alpha, \zeta)=0$ and

$$
\nabla_{x} V\left(x_{1}, x_{2}, \alpha, \zeta\right)^{T} f\left(x_{1}, x_{2}, \alpha, \zeta\right) \leq 0 \quad \forall x \in B_{r}, \quad \alpha, \zeta \in \Delta
$$

SOSTOOLS Code for Robust Nonlinear Stability Analysis

> pvar $x 1$ x2 z a
$>\operatorname{zmin}=.8 ; \mathrm{zmax}=1.2 ; \operatorname{amin}=1.8 ; \operatorname{amax}=2.2 ; \mathrm{g} 1=\mathrm{r}-\left(\mathrm{x} 1^{2}+\mathrm{x} 2^{2}\right)$;
$>\mathrm{r}=.3 ; \mathrm{g} 2=(\operatorname{amax}-\mathrm{a})(\mathrm{a}-\operatorname{amin}) ; \mathrm{g} 3=(\mathrm{zmax}-\mathrm{z})(\mathrm{z}-\mathrm{zmin}) ;$
$>\mathrm{f}=\left[2 * \mathrm{z} *\left(1-\mathrm{a} * \mathrm{x} 2^{2}\right) * \mathrm{x} 2-\mathrm{x} 1 ; \mathrm{x} 1\right]$;
> vartable=[x1 x2 a z];
> prog=sosprogram(vartable);
> Z1=monomials(vartable,0:1); Z2=monomials(vartable,0:2);
> Z3=monomials(vartable,0:3);
$>$ [prog, V0]=sossosvar(prog,Z2);
> [prog,r1]=sossosvar(prog,Z1); [prog,r2]=sossosvar(prog,Z1);
$>$ [prog,r3]=sossosvar (prog,Z1);
$>\mathrm{V}=\mathrm{V} 0+.001 *\left(\mathrm{x} 1^{2}+\mathrm{x} 2^{2}\right)+\mathrm{g} 1 * \mathrm{r} 1+\mathrm{g} 2 * \mathrm{r} 2+\mathrm{g} 3 * \mathrm{r} 3$;
> prog=soseq(prog, subs(V,[x1, x2]', [0, 0]'));
$>$ nablaV=[diff(V,x1); diff(V,x2)];
$>\mathrm{P}=\mathrm{S} 0+\mathrm{g} 1 * \mathrm{~S} 1+\mathrm{g} 2 * \mathrm{~S} 2+\mathrm{g} 3 * \mathrm{~S} 3+.00001 *$ eye (2) ;
> [prog,s1]=sossosvar(prog,Z2); [prog,s2]=sossosvar(prog,Z2);
> [prog,s3]=sossosvar(prog,Z2);
> prog=sosineq(prog,-nablaV'*f-s1*g1-s2*g2-s3*g3);
> prog=sossolve(prog);

Integer Programming Example MAX-CUT

Figure: Division of a set of nodes to maximize the weighted cost of separation
Goal: Assign each node i an index $x_{i}=-1$ or $x_{j}=1$ to maximize overall cost.

- The cost if x_{i} and x_{j} do not share the same index is $w_{i j}$.
- The cost if they share an index is 0
- The weight $w_{i, j}$ are given.
- Thus the total cost is

$$
\frac{1}{2} \sum_{i, j} w_{i, j}\left(1-x_{i} x_{j}\right)
$$

MAX-CUT

The optimization problem is the integer program:

$$
\max _{x_{i}^{2}=1} \frac{1}{2} \sum_{i, j} w_{i, j}\left(1-x_{i} x_{j}\right)
$$

The MAX-CUT problem can be reformulated as

$$
\min \gamma:
$$

$$
\gamma \geq \max _{x_{i}^{2}=1} \frac{1}{2} \sum_{i, j} w_{i, j}\left(1-x_{i} x_{j}\right) \quad \text { for all } \quad x \in\left\{x: x_{i}^{2}=1\right\}
$$

We can compute a bound on the max cost using the Nullstellensatz

$$
\begin{aligned}
& \min _{p_{i} \in \mathbb{R}[x], s_{0} \in \Sigma_{s}} \gamma: \\
& \gamma-\frac{1}{2} \sum_{i, j} w_{i, j}\left(1-x_{i} x_{j}\right)+\sum_{i} p_{i}(x)\left(x_{i}^{2}-1\right)=s_{0}(x)
\end{aligned}
$$

MAX-CUT

Consider the MAX-CUT problem with 5 nodes

$$
w_{12}=w_{23}=w_{45}=w_{15}=.5 \quad \text { and } \quad w_{14}=w_{24}=w_{25}=w_{34}=0
$$

where $w_{i j}=w_{j i}$. The objective function is

$$
f(x)=2.5-.5 x_{1} x_{2}-.5 x_{2} x_{3}-.5 x_{3} x_{4}-.5 x_{4} x_{5}-.5 x_{1} x_{5}
$$

We use SOSTOOLS and bisection on γ to solve

$$
\begin{aligned}
& \min _{p_{i} \in \mathbb{R}[x], s_{0} \in \Sigma_{s}} \gamma: \\
& \gamma-f(x)+\sum_{i} p_{i}(x)\left(x_{i}^{2}-1\right)=s_{0}(x)
\end{aligned}
$$

We achieve a least upper bound of $\gamma=4$.

However!

- we don't know if the optimization problem achieves this objective.
- Even if it did, we could not recover the values of $x_{i} \in[-1,1]$.

MAX-CUT

Figure: A Proposed Cut

Upper bounds can be used to VERIFY optimality of a cut. We Propose the Cut

- $x_{1}=x_{3}=x_{4}=1$
- $x_{2}=x_{5}=-1$

This cut has objective value

$$
f(x)=2.5-.5 x_{1} x_{2}-.5 x_{2} x_{3}-.5 x_{3} x_{4}-.5 x_{4} x_{5}-.5 x_{1} x_{5}=4
$$

Thus verifying that the cut is optimal.

MAX-CUT code

```
pvar x1 x2 x3 x4 x5;
vartable = [x1; x2; x3; x4; x5];
prog = sosprogram(vartable);
gamma = 4;
f = 2.5 - . 5*x1*x2 - . 5*x2*x3 - . 5*x3*x4 - . 5*x4*x5 - . 5*x5*x1;
bc1 = x1^2 - 1 ;
bc2 = x2^2 - 1 ;
bc3 = x3^2 - 1 ;
bc4 = x4^2 - 1 ;
bc5 = x5^2 - 1;
for i = 1:5
[prog, p{1+i}] = sospolyvar(prog,Z);
end;
expr = (gamma-f) +p{1}*bc1+p{2}*bc2+p{3}*bc3+p{4}*bc4+p{5}*bc5;
prog = sosineq(prog,expr);
prog = sossolve(prog);
```


The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured singular value.

$$
\boldsymbol{\Delta}=\left\{\Delta=\operatorname{diag}\left(\delta_{1} I_{n 1}, \cdots, \delta_{s} I_{n s}: \delta_{i} \in \mathbb{R}\right\}\right.
$$

- δ_{i} represent unknown parameters.

Definition 7.

Given system $M \in \mathcal{L}\left(L_{2}\right)$ and set $\boldsymbol{\Delta}$ as above, we define the Structured Singular Value of (M, Δ) as

$$
\mu(M, \boldsymbol{\Delta})=\frac{1}{\inf } \underset{I-M \Delta \in \text { is singular }_{\Delta}^{\Delta}\|\Delta\|}{ }
$$

The fundamental inequality we have is $\boldsymbol{\Delta}_{\gamma}=\left\{\operatorname{diag}\left(\delta_{i}\right),: \sum_{i} \delta_{i}^{2} \leq \gamma\right\}$. We want to find the largest γ such that $I-M \Delta$ is stable for all $\Delta \in \boldsymbol{\Delta}_{\gamma}$

The Structured Singular Value, μ

The system

$$
\begin{aligned}
\dot{x}(t) & =A_{0} x(t)+M p(t), \quad p(t)=\Delta(t) q(t), \\
q(t) & =N x(t)+Q p(t), \quad \Delta \in \boldsymbol{\Delta}
\end{aligned}
$$

is stable if there exists a $P(\delta) \in \Sigma_{s}$ such that

$$
\dot{V}=x^{T} P(\delta)\left(A_{0} x+M p\right)+\left(A_{0} x+M p\right)^{T} P(\delta) x<\epsilon x^{T} x
$$

for all x, p, δ such that

$$
(x, p, \delta) \in\left\{x, p, \delta: p=\operatorname{diag}\left(\delta_{i}\right)(N x+Q p), \sum_{i} \delta_{i}^{2} \leq \gamma\right\}
$$

Proposition 1 (Lower Bound for μ).

$\mu \geq \gamma$ if there exist polynomial $h \in \mathbb{R}[x, p, \delta]$ and $s_{i} \in \Sigma_{s}$ such that

$$
\begin{aligned}
& x^{T} P(\delta)\left(A_{0} x+M p\right)+\left(A_{0} x+M p\right)^{T} P(\delta) x-\epsilon x^{T} x \\
& =-s_{0}(x, p, \delta)-\left(\gamma-\sum_{i} \delta_{i}^{2}\right) s_{1}(x, p, \delta)-\left(p-\operatorname{diag}\left(\delta_{i}\right)(N x+Q p)\right) h(x, p, \delta)
\end{aligned}
$$

