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Mathematical Optimization and Curly’s Law

Curly: Do you know what the secret of life is?
Curly: One thing (metric). Just one thing. You stick to
that (metric) and the rest don't mean ****

i : bject t
min flx) subject to

Variables: x ¢ F

® The things you must choose.
e TF represents the set of possible choices for the variables.
® Can be vectors, matrices, functions, systems, locations, colors...
» However, computers prefer vectors or matrices.
Objective: f(x)
® A function which assigns a scalar value to any choice of variables.
> eg. [x1,22] — x1 —x2; red — 4; et c.
Constraints: g(z) <0; h(z) =0
® Defines what is a minimally acceptable choice of variables (Feasible).
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Formulating Optimization Problems

What do we need to know?

Formulating Constraints
® Tricks of the Trade for expressing constraints.

® Converting everything to equality and inequality constraints.

Equivalence:
® How to Recognize if Two Optimization Problems are Equivalent.

® May be true despite different variables, constraints and objectives

Knowing which Problems are Solvable
® The Convex Ones.

® Some others, if the problem is relatively small.
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Least Squares

Unconstrained Optimization

Problem: Given a bunch of data in the form Lol
® |nputs: a; g_
® Qutputs: b; 8

Find the function f(a) = b which best fits the data. 7

For Least Squares: Assume f(a) = z%a + zy where
z € R™ 2y € R are the variables with objective 0 1 2 3 4 s

mlnh Z|fal—b\2 Z|z ai + zo — bil?

The Optlmlzatlon Problem is:

min || Az — b||?
z€ER™

where
a{ 1 bl
A= b:=|:
(Z% 1 bK
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L Least Squares

Boring/Conservative/Grumpy (Monarchist).

One of the greatest mathematicians
e Professor of Astronomy in Gottingen
e Motto: “pauca sed matura” (few but ripe)

Discovered
e Gaussian Distributions

e Gauss' Law (collaboration with Weber)

e Non-Euclidean Geometry (maybe)

o Least Squares (maybe)
Legendre published the first solution to the Least Squares problem in 1805
e In typical fashion, Carl Friedrich Gauss claimed to have solved the problem
in 1795 and published a more rigorous solution in 1809.

e This more rigorous solution first introduced the normal probability
distribution (or Gaussian distribution)



Discovery and Rediscovery of Ceres

The pseudo-planet Ceres was discovered
by G. Piazzi
® Observed 12 times between Jan. 1
and Feb. 11, 1801
® Planet was then lost.

Complication: —

e Observation was only declination oria! perio: 4.3
and right-ascension.

® Observations were only spread over
1% of the orbit.

» No ranging info.

C. F. Gauss applied Least Squares and
correctly predicted the location.

Orbit of 1 Ceres

15 September 2006

® Planet was re-found on Dec 31, 1801 in the correct location.
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Solution to the Least Squares Problem

The Least Squares Problem is:

min || Az — b|?
z€R™

where
a,{ 1 b1
A= : b:=|:
CL%; 1 bK

Least squares problems are easy-ish to solve.
¢ = (ATA)"1ATD

Note that A is assumed to be skinny.

® More rows than columns.

® More data points than inputs (dimension of a; is small).
The term (AT A)~t AT is referred to variously as

® The Moore-Penrose Inverse

® The pseudoinverse
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Integer Programming Example
MAX-CUT

Optimization of a graph.
® Graphs have Nodes and Edges.

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index x; = —1 or xz; = 1 to maximize overall cost.
® The cost if z; and x; do not share the same index is w;;.
® The cost if they share an index is 0

® The weights w;; are given.
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Integer Programming Example

MAX-CUT
Goal: Assign each node 7 an index z; = —1 or z; = 1 to maximize overall cost.
Variables: z € {—1,1}" o
® Referred to as Integer Variables or Binary
Variables.

® Binary constraints can be incorporated explicitly:

2 _
r; =1

Integer/Binary variables may be declared directly in YALMIP:
> x = intvar(n);
> y = binvar(n);
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Integer Programming Example
MAX-CUT

Objective: We use the trick:

® (1 —=;x;) =0if z; and z; have the same sign
Together).

(

® (1 —ux;x;) =2if x; and z; have the opposite sign
(Apart).

Then the objective function is

min — g wi; (1 —zx5)

The optimization problem is the integer program:

max E w” xlx]
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MAX-CUT

The optimization problem is the integer program:
1
max s D wij(1 — zi;)
i,j

Consider the MAX-CUT problem with 5 nodes
Wiz = W23 = Wys = Wi = W34 = .5 and wiy = wag = was =0

where w;; = wy;.

An Optimal Cut IS:

o r1=x3=x4=1

® 1y =x5=—1

This cut has objective value o o e

f(x) = 2.5— 5z 29— .brows—.5r304—. 52425 — 51205 = 4
Figure: An Optimal Cut

M. Peet Lecture 02: Optimization 10 / 32



Optimization with Dynamics
Open-Loop Case (Dynamic Programming)

Objective Function: Lets minimize a quadratic cost
z(N)T'Sz(N) + Z ) Qx(k) + u(k)” Ru(k)

Variables: The sequence of states x(k) and inputs, u(k).
Constraint: The dynamics define how u — x.

x(k+ 1) = Az(k) + Bu(k), k=0,---,N
z(0)=1

Optimization Formulation of DP:

N-1
153111151 z(N)TSz(N) + (z(k)" Qx(k) + u(k)" Ru(k))
k=1
z(k+1) = Az(k) + Bu(k), k=0,--- N
z(0) =1
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LOptimization with Dynamics

Dynamic Programming has been around since the 1950's and can be solved
recursively using Bellman's equation

Actually, a nested sequence of optimization problems.
Solution relies on the “Principle of Optimality”

The principle of Optimality says that if we start anywhere along the
optimal trajectory, that solution will still be optimal if we re-started the
optimization problem from that point.

Implies that the optimal input (for separable objectives) is always a
function of the current state.

The principle of optimality is also what underlies Djikstra's algorithm

Djikstra's algorithm is what enables internet packet routing and the
route-finding in Google (Apple) maps.



Optimization with Dynamics
Closed-Loop Case (LQR)

Objective Function: Lets minimize a quadratic Cost
z(N)T'Sz(N) + Z ) Qx(k) + u(k)” Ru(k)

Variables: We want a fixed po//cy (gam matrix, K') which determines u(k)
based on z(k) as u(k) = Kx(k).
Constraint: The dynamics define how u — .
x(k+1) = Az(k) + Bu(k), k=0,---,N
u(k) = Kx(k), z(0)=1

Optimization Formulation of LQR'
min  z(N)TSz(N) + Z (k)" Qa(k) + u(k)” Ru(k))
;10(/{—&—1):14:6()—&—Bu(k)7 k=0,---,N
u(k) = Kz(k), z(0) =1
Are the Closed-Loop and Open-Loop Problems Equivalent?

M. Peet Lecture 02: Optimization 12 /32



2021-03-03

Lecture 02
Optimization

I—Optimization with Dynamics

LQR stands for Least Quadratic Regulator
e Least Quadratic refers to the quadratic cost function
e Regulator refers to feedback

By Equivalent, can we assume the optimal input is a static function of the current
state?

e Bellman's equation says the optimal input for separable objectives is
always a function of the current state.

e |n the quadratic case, the resulting function is static



Formulating Optimization Problems

Equivalence

Definition 1.
Two optimization problems are Equivalent if a solution (algorithm/black box)
to one can be used to construct a solution to the other.

Example 1: Equivalent Objective Functions

Problem 1:  min f(x) subject to ATz > b

Problem 2:  min10f(x) — 12 subject to ATz >b
1
Problem 3: max subject to ATz >0
= f(z)

In this case ] = 25 = x3. Proof:
® For any = # 7 (both feasible), since z7 |s optlmal we have f(z) > f(x7).
Thus 10f(z) — 12 > 10f(z7) — 12 and (z) < f(l,*) i.e z is suboptimal

for all.
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l—Formulating Optimization Problems

Here z; is the solution to problem 7

ating Optimization Problems




Formulating Optimization Problems

Equivalence in Variables

Example 2: Equivalent Variables

Problem 1:  min f(z) subject to
Problem 2:  min f(T'z +¢) subject to

Here 27 = T + c and 23 = T~ (2} — ¢).

ATz > b

(TT" ATz >b— Ac

® Change of variables is invertible. (given x # 2%, you can show it is

suboptimal)

Example 3: Variable Separability

Problem 1:  min f(z) + g(y) subject to
z.y

Problem 2:  min f(x) subject to
x

Problem 3: ming(y) subject to
y

Here 27 = 25 and y = y3.

ATz > by, ATy > by
AF{I Z bl

ALy > by

® Neither feasibility nor minimality are coupled (Objective fn. is Separable).

M. Peet
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l—Formulating Optimization Problems

e If you add redundant variables (7 is fat), the problems may still be
equivalent.

e Variable Separability is what allows us to solve Dynamic Programming.



Formulating Optimization Problems

Constraint Equivalence

Example 4: Constraint/Objective Equivalence

Problem 1:  min f(z) subject to
x

Problem 2: mitn t subject to
X,

Here 27 = 5 and t5 = f(x7).

Some other Equivalences:
® Redundant Constraints
> {zeR: z>1}vs. {z€R: z> 1,z >0}
® Polytopes (Vertices vs. Hyperplanes)

> {zeR": z=3, Aias,p s =1} vs. {x € R": Cz > b}
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l—Formulating Optimization Problems

The set constraint € S is what matters, not the

Optimization Problems

representation of that set



Machine Learning

Classification and Support-Vector Machines

In Classification we have inputs (data) (z;), each of which has a binary label
(i € {=1,+1})
® y;, = +1 means the output of x; belongs to group 1

® y; = —1 means the output of z; belongs to group 2

We want to find a rule (a classifier) which takes
the data x and predicts which group it is in.
® Our rule has the form of a function
f(z) =wTz —b. Then
> zisin group 1if f(z) = wz —b> 0.
> 2 isin group 2 if f(z) = wTz —b<0.

Question: How to find the best w and 577 . i
Figure: We want to find a rule

which separates two sets of data.
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Machine Learning

Classification and Support-Vector Machines

K(x.x) = 47(x)8(x)
£=1 Margin = 2/ VTw

Misclassified #, i

point ™

Support Vector ¢

w"'a)(x)*b:--—l
wig+b=0
W) + b=+l -

Definition 2.

® A Hyperplane is the generalization of the concept of line/plane to multiple
dimensions. {zx eR" : = = 0}
® Half-Spaces are the parts above and below a Hyperplane.
{zeR™ : wlz—b>0} OR {zeR™ : wlz -b< 0}
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Machine Learning

Classification and Support-Vector Machines

We want to separate the data into disjoint half-spaces and maximize the

distance between these half-spaces

Kixx) = ¢M(x)¢(x)

Variables: w € R™ and b define the hyperplane
Constraint: Each existing data point should be

% Margin =2/ \wTw

correctly labelled.

e wlz —b>1wheny, =+1 and
wlz —b< —1 when y; = —1 el
(Strict Separation) ws 50

* Alternatively: y;(w'z; —b) > 1.

wTei(x)’b:--—l

Figure: Maximizing the distance
These two constraints are Equivalent. between two sets of Data

Objective: The distance between Hyperplanes {z : wTz —b =1} and

{z : wlz —b=—1}is 1
f(w,b) = 2——=
wTw
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Machine Learning
Unconstrained Form (Soft-Margin SVM)

Machine Learning algorithms solve

1 .
min _ —wlw, subject to
weRP beR 2

yiltwTz; —b)>1, Vi=1,.. K.

Soft Margin Problems T
The hard margin problem can be relaxed to i <
maximize the distance between hyperplanes

PLUS the magnitude of classification errors | \\\\

m w|?4¢ Y max(0, 1—(wlz;—b)y;). o o
weRPbeRQH [ 2; (W zi=by:).
K3
Figure: Data separation using
soft-margin metric and distances
to associated hyperplanes
Link:
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Geometric vs. Functional Constraints

These Problems are all equivalent:

The Classical Representation:

i : bject t
Inin f(z) subject to

Gi(z) <0 i=1,k

The Geometric Representation is:

min f(z) : subject to zes
zER™

where S:={z e R" : ¢g;(z) <0, i=1,---,k}.

The Pure Geometric Representation (x is eliminated!):

min 7y : subject to
v

Sy #0 (S, has at least one element)

where S, :={z € R" : v — f(z) >0, g;(z) <0, i=1,--- ,k}.

Proposition: Optimization is only as hard as determining feasibility!
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I—Geometric vs. Functional Constraints

In the pure geometric interpretation, we are finding the smallest v such that
there exists a feasible point, = with f(z) <~



Solving by Bisection (Do you have an Oracle?)

Assume you can test feasibility of a set S,
Optimization Problem:
~* = max v :
v

subject to S, # 0)

Bisection Algorithm (Convexity??7?):
1 Initialize infeasible v, = b

Initialize feasible v, = a

Set’y:%ﬂ—l

2
3
5 If S, feasible, set v, = “TW
4 If S, infeasible, set v, = %‘“
6 k=k+1

7 Goto 3

Then v* € [y,7.] and |y, — v < 1)2__’;1

Bisection with oracle also solves the
Primary Problem. (min~y: S, = 0)

M. Peet
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Computational Complexity

In Computer Science, we focus on Complexity of the PROBLEM
® NOT complexity of the algorithm.

On a Turing machine, the # of steps is a fn of
problem size (number of variables)

® NL: A logarithmic # (SORT)

® P: A polynomial # (LP)

® NP: A polynomial # for verification (TSP)
NP HARD: at least as hard as NP (TSP)

NP COMPLETE: A set of Equivalent* NP
problems (MAX-CUT, TSP)

EXPTIME: Solvable in 2P(") steps.
p polynomial. (Chess)

® EXPSPACE: Solvable with 2°(") memory.

EXPSPACE
2

EXPTIME

el
PSPACE

*Equivalent means there is a polynomial-time reduction from one to the other.
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How Hard is Optimization?

The Classical Representation:

i : bject t
;relﬁ{ghf(w) subject to

gi(z) <0 i=1,---k
hi(z)=0  i=1,---k

Answer: Easy (P) if f, g; are all Convex and h; are affine.

The Geometric Representation:

min f(x): subject to zes
mGR’”

Answer: Easy (P) if f is Convex and S is a Convex Set.

The Pure Geometric Representation:

max y: subject to
v, cER™

(v,x) €9
Answer: Easy (P) if S’ is a Convex Set.
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Convex Functions

Definition 3.

An OBJECTIVE FUNCTION or CONSTRAINT function is convex if
FOzr+ (1 = XN)w2) < Af(z1) + (1 = N) f(x2) for all X € [0,1].

Useful Facts:
® e ||z| are convex. ™ (n>1orn <0), —logz are convex on x >0
If f1 is convex and fs is convex, then f3(z) := fi(x) + f2(x) is convex.
A f is convex if the Hessian V2 f(z) is positive semidefinite for all z.
If f1, fo are convex, then f3(x) := max(fi(z), f2(x)) is convex.
If f1, fo are convex, and fi is increasing, then f3(z) := f1(f2(z)) is convex.
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Convex Sets

Definition 4.
A FEASIBLE SET is convex if for any z,y € Q,
{pe+(1-py:pe01}ca.

The line connecting any two points lies in the set.

-

Convex set Non-convex set

Facts:
e If fis convex, then {z : f(x) < 0} is convex.
® The intersection of convex sets is convex.
> If Si and Sy are convex, then Sy := {z : = € S1, x € S2} is convex.
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Descent Algorithms (Why Convex Optimization is Easy)

Unconstrained Optimization

All descent algorithms are iterative, with a search direction (Az € R™) and step

size (t > 0). Thi1 = T+ tAT
Gradient Descent Newton's /—\Igorithgm: :
Az = -V f(x) Az =—(V f(z))" Vf(z)
Tries to solve the equation V f(z) = 0.
J(w) Initial / _— Gradient

Method of finding the roots of a function
y

weight \

1
’
1

/ Global cost minimum

-2

X3= X2 =
w s f(X2)

Both converge for sufficiently small step size.
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L Descent Algorithms (Why Convex Optimization is
Easy)

e If Vf(z) =0, then f has a minimum or maximum at z.

e In unconstrained optimization, the solution will occur at this inflection
point.

e For a convex function, there is only one point where V f(z) = 0, which is
the global minimum.



Descent Algorithms

Dealing with Constraints

Method 1: Gradient Projection

whE) VE®)

Tangent Plane

Constraint Surface
h®) =0

Figure: Must project step (tAz) onto feasible Set

Method 2: Barrier Functions
min f(z) + log(g(x))

Converts a Constrained problem to an unconstrained problem.
(Interior-Point Methods)
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Non-Convexity and Local Optima

1. For convex optimization problems, Descent Methods always find the global
optimal point.

2. For non-convex optimization, Descent Algorithms may get stuck at local
optima.

4 x2 Inequality

Starting pt. iax <=b

Optimization
Direction ¢

Local minima

Xoptimal

Global minima
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Important Classes of Optimization Problems

Linear Programming

Linear Programming (LP)

T

minc’ x : subject to

zER" 5
Ax <b .
Ax=V

e EASY: Simplex/Ellipsoid Algorithm (P)
® Can solve for >10,000 variables

Link:
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I—Important Classes of Optimization Problems

e The Ellipsoidal algorithm solves LP in polynomial time.
e The Simplex algorithm is not actually worst-case polynomial time.

e However, the simplex algorithm outperforms the ellipsoidal algorithm in
almost all cases.



http://plato.asu.edu/bench.html

Important Classes of Optimization Problems

Quadratic Programming

Quadratic Programming (QP)
m]iRn 2TQr+ T subject to
TER™

Ax <b

* EASY (P): If Q > 0.
* HARD (NP-Hard): Otherwise
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Important Classes of Optimization Problems

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) ‘i

1Popt he=coi1)
. T . 3
minc’ z : subject to Ay
rER™ )
Ax <b
3x+2y<=12

€7  i=1,K

* HARD (NP-Hard)

o

Mixed-Integer NonLinear Programming (MINLP)

féﬁ{lf(m) : subject to
g9i(x) <0

€7  i=1,K

® Very Hard
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* HARD (NP-Hard)

I—Important Classes of Optimization Problems St e

e CPLEX and Gurobi will allow you to solve very large MILPs.

e However, the result may not be truly optimal.



Next Time:

Positive Matrices, SDP and LMIs
® Also a bit on Duality, Relaxations.
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