
LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 02: Optimization (Convex and Otherwise)

Mathematical Optimization and Curly’s Law
Curly: Do you know what the secret of life is?
Curly: One thing (metric). Just one thing. You stick to
that (metric) and the rest don’t mean ****.

min
x∈F

f(x) : subject to

gi(x) ≤ 0 i = 1, · · ·K1

hi(x) = 0 i = 1, · · ·K2

Variables: x ∈ F
• The things you must choose.
• F represents the set of possible choices for the variables.
• Can be vectors, matrices, functions, systems, locations, colors...

I However, computers prefer vectors or matrices.

Objective: f(x)
• A function which assigns a scalar value to any choice of variables.

I e.g. [x1, x2] 7→ x1 − x2; red 7→ 4; et c.

Constraints: g(x) ≤ 0; h(x) = 0
• Defines what is a minimally acceptable choice of variables (Feasible).

M. Peet Lecture 02: Optimization 2 / 32

Formulating Optimization Problems
What do we need to know?

Topics to Cover:

Formulating Constraints

• Tricks of the Trade for expressing constraints.

• Converting everything to equality and inequality constraints.

Equivalence:

• How to Recognize if Two Optimization Problems are Equivalent.

• May be true despite different variables, constraints and objectives

Knowing which Problems are Solvable

• The Convex Ones.

• Some others, if the problem is relatively small.

M. Peet Lecture 02: Optimization 3 / 32

Least Squares
Unconstrained Optimization

Problem: Given a bunch of data in the form

• Inputs: ai
• Outputs: bi

Find the function f(a) = b which best fits the data.

For Least Squares: Assume f(a) = zTa+ z0 where
z ∈ Rn, z0 ∈ R are the variables with objective

min
z,z0

h(z) :=

K∑
i=1

|f(ai)− bi|2 =

K∑
i=1

|zTai + z0 − bi|2

The Optimization Problem is:

min
z∈Rn
‖Az − b‖2

where

A :=

a
T
1 1
...

aTK 1

 b :=

 b1...
bK

M. Peet Lecture 02: Optimization 4 / 32

Least Squares
Unconstrained Optimization

Problem: Given a bunch of data in the form

• Inputs: ai
• Outputs: bi

Find the function f(a) = b which best fits the data.

For Least Squares: Assume f(a) = zTa+ z0 where
z ∈ Rn, z0 ∈ R are the variables with objective

min
z,z0

h(z) :=

K∑
i=1

|f(ai)− bi|2 =

K∑
i=1

|zTai + z0 − bi|2

The Optimization Problem is:

min
z∈Rn
‖Az − b‖2

where

A :=

a
T
1 1
...

aTK 1

 b :=

 b1...
bK

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Least Squares

Boring/Conservative/Grumpy (Monarchist).

One of the greatest mathematicians

� Professor of Astronomy in Göttingen

� Motto: “pauca sed matura” (few but ripe)

Discovered

� Gaussian Distributions

� Gauss’ Law (collaboration with Weber)

� Non-Euclidean Geometry (maybe)

� Least Squares (maybe)

Legendre published the first solution to the Least Squares problem in 1805

� In typical fashion, Carl Friedrich Gauss claimed to have solved the problem
in 1795 and published a more rigorous solution in 1809.

� This more rigorous solution first introduced the normal probability
distribution (or Gaussian distribution)

Discovery and Rediscovery of Ceres

The pseudo-planet Ceres was discovered
by G. Piazzi

• Observed 12 times between Jan. 1
and Feb. 11, 1801

• Planet was then lost.

Complication:

• Observation was only declination
and right-ascension.

• Observations were only spread over
1% of the orbit.
I No ranging info.

C. F. Gauss applied Least Squares and
correctly predicted the location.

• Planet was re-found on Dec 31, 1801 in the correct location.

M. Peet Lecture 02: Optimization 5 / 32

Solution to the Least Squares Problem

The Least Squares Problem is:

min
z∈Rn
‖Az − b‖2

where

A :=

a
T
1 1
...

aTK 1

 b :=

 b1...
bK

Least squares problems are easy-ish to solve.

z∗ = (ATA)−1AT b

Note that A is assumed to be skinny.

• More rows than columns.

• More data points than inputs (dimension of ai is small).

The term (ATA)−1AT is referred to variously as

• The Moore-Penrose Inverse

• The pseudoinverse

M. Peet Lecture 02: Optimization 6 / 32

Integer Programming Example
MAX-CUT

Optimization of a graph.

• Graphs have Nodes and Edges.

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index xi = −1 or xi = 1 to maximize overall cost.

• The cost if xi and xj do not share the same index is wij .

• The cost if they share an index is 0

• The weights wij are given.

M. Peet Lecture 02: Optimization 7 / 32

Integer Programming Example
MAX-CUT

Goal: Assign each node i an index xi = −1 or xj = 1 to maximize overall cost.

Variables: x ∈ {−1, 1}n
• Referred to as Integer Variables or Binary

Variables.

• Binary constraints can be incorporated explicitly:

x2i = 1

Integer/Binary variables may be declared directly in YALMIP:
> x = intvar(n);

> y = binvar(n);

M. Peet Lecture 02: Optimization 8 / 32

Integer Programming Example
MAX-CUT

Objective: We use the trick:

• (1− xixj) = 0 if xi and xj have the same sign
(Together).

• (1− xixj) = 2 if xi and xj have the opposite sign
(Apart).

Then the objective function is

min
1

2

∑
i,j

wij(1− xixj)

The optimization problem is the integer program:

max
x2
i=1

1

2

∑
i,j

wij(1− xixj)

M. Peet Lecture 02: Optimization 9 / 32

MAX-CUT

The optimization problem is the integer program:

max
x2
i=1

1

2

∑
i,j

wij(1− xixj)

Consider the MAX-CUT problem with 5 nodes

w12 = w23 = w45 = w15 = w34 = .5 and w14 = w24 = w25 = 0

where wij = wji.

An Optimal Cut IS:

• x1 = x3 = x4 = 1

• x2 = x5 = −1

This cut has objective value

f(x) = 2.5−.5x1x2−.5x2x3−.5x3x4−.5x4x5−.5x1x5 = 4

1

1

2

3 4

5

Figure: An Optimal Cut

M. Peet Lecture 02: Optimization 10 / 32

Optimization with Dynamics
Open-Loop Case (Dynamic Programming)

Objective Function: Lets minimize a quadratic cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: The sequence of states x(k), and inputs, u(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
x(0) = 1

Optimization Formulation of DP:

min
x,u

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

x(0) = 1

M. Peet Lecture 02: Optimization 11 / 32

Optimization with Dynamics
Open-Loop Case (Dynamic Programming)

Objective Function: Lets minimize a quadratic cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: The sequence of states x(k), and inputs, u(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
x(0) = 1

Optimization Formulation of DP:

min
x,u

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

x(0) = 1

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Optimization with Dynamics

Dynamic Programming has been around since the 1950’s and can be solved
recursively using Bellman’s equation

� Actually, a nested sequence of optimization problems.

� Solution relies on the “Principle of Optimality”

� The principle of Optimality says that if we start anywhere along the
optimal trajectory, that solution will still be optimal if we re-started the
optimization problem from that point.

� Implies that the optimal input (for separable objectives) is always a
function of the current state.

� The principle of optimality is also what underlies Djikstra’s algorithm

� Djikstra’s algorithm is what enables internet packet routing and the
route-finding in Google (Apple) maps.

Optimization with Dynamics
Closed-Loop Case (LQR)

Objective Function: Lets minimize a quadratic Cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: We want a fixed policy (gain matrix, K) which determines u(k)
based on x(k) as u(k) = Kx(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
u(k) = Kx(k), x(0) = 1

Optimization Formulation of LQR:

min
x,u

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

u(k) = Kx(k), x(0) = 1

Question: Are the Closed-Loop and Open-Loop Problems Equivalent?
M. Peet Lecture 02: Optimization 12 / 32

Optimization with Dynamics
Closed-Loop Case (LQR)

Objective Function: Lets minimize a quadratic Cost

x(N)TSx(N) +

N−1∑
k=1

x(k)TQx(k) + u(k)TRu(k)

Variables: We want a fixed policy (gain matrix, K) which determines u(k)
based on x(k) as u(k) = Kx(k).
Constraint: The dynamics define how u 7→ x.

x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N
u(k) = Kx(k), x(0) = 1

Optimization Formulation of LQR:

min
x,u

x(N)TSx(N) +

N−1∑
k=1

(
x(k)TQx(k) + u(k)TRu(k)

)
x(k + 1) = Ax(k) +Bu(k), k = 0, · · · , N

u(k) = Kx(k), x(0) = 1

Question: Are the Closed-Loop and Open-Loop Problems Equivalent?

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Optimization with Dynamics

LQR stands for Least Quadratic Regulator

� Least Quadratic refers to the quadratic cost function

� Regulator refers to feedback

By Equivalent, can we assume the optimal input is a static function of the current
state?

� Bellman’s equation says the optimal input for separable objectives is
always a function of the current state.

� In the quadratic case, the resulting function is static

Formulating Optimization Problems
Equivalence

Definition 1.

Two optimization problems are Equivalent if a solution (algorithm/black box)
to one can be used to construct a solution to the other.

Example 1: Equivalent Objective Functions

Problem 1: min
x
f(x) subject to ATx ≥ b

Problem 2: min
x

10f(x)− 12 subject to ATx ≥ b

Problem 3: max
x

1

f(x)
subject to ATx ≥ b

In this case x∗1 = x∗2 = x∗3. Proof:

• For any x 6= x∗1 (both feasible), since x∗1 is optimal, we have f(x) > f(x∗1).
Thus 10f(x)− 12 > 10f(x∗1)− 12 and 1

f(x) <
1

f(x∗
1)

. i.e x is suboptimal

for all.

M. Peet Lecture 02: Optimization 13 / 32

Formulating Optimization Problems
Equivalence

Definition 1.

Two optimization problems are Equivalent if a solution (algorithm/black box)
to one can be used to construct a solution to the other.

Example 1: Equivalent Objective Functions

Problem 1: min
x
f(x) subject to ATx ≥ b

Problem 2: min
x

10f(x)− 12 subject to ATx ≥ b

Problem 3: max
x

1

f(x)
subject to ATx ≥ b

In this case x∗1 = x∗2 = x∗3. Proof:

• For any x 6= x∗1 (both feasible), since x∗1 is optimal, we have f(x) > f(x∗1).
Thus 10f(x)− 12 > 10f(x∗1)− 12 and 1

f(x) <
1

f(x∗
1)

. i.e x is suboptimal

for all.

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Formulating Optimization Problems

Here x∗i is the solution to problem i

Formulating Optimization Problems
Equivalence in Variables

Example 2: Equivalent Variables

Problem 1: min
x
f(x) subject to ATx ≥ b

Problem 2: min
x
f(Tx+ c) subject to (TTA)Tx ≥ b−AT c

Here x∗1 = Tx∗2 + c and x∗2 = T−1(x∗1 − c).
• Change of variables is invertible. (given x 6= x∗2, you can show it is

suboptimal)

Example 3: Variable Separability

Problem 1: min
x,y

f(x) + g(y) subject to AT1 x ≥ b1, AT2 y ≥ b2

Problem 2: min
x
f(x) subject to AT1 x ≥ b1

Problem 3: min
y
g(y) subject to AT2 y ≥ b2

Here x∗1 = x∗2 and y∗1 = y∗3 .
• Neither feasibility nor minimality are coupled (Objective fn. is Separable).

M. Peet Lecture 02: Optimization 14 / 32

Formulating Optimization Problems
Equivalence in Variables

Example 2: Equivalent Variables

Problem 1: min
x
f(x) subject to ATx ≥ b

Problem 2: min
x
f(Tx+ c) subject to (TTA)Tx ≥ b−AT c

Here x∗1 = Tx∗2 + c and x∗2 = T−1(x∗1 − c).
• Change of variables is invertible. (given x 6= x∗2, you can show it is

suboptimal)

Example 3: Variable Separability

Problem 1: min
x,y

f(x) + g(y) subject to AT1 x ≥ b1, AT2 y ≥ b2

Problem 2: min
x
f(x) subject to AT1 x ≥ b1

Problem 3: min
y
g(y) subject to AT2 y ≥ b2

Here x∗1 = x∗2 and y∗1 = y∗3 .
• Neither feasibility nor minimality are coupled (Objective fn. is Separable).

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Formulating Optimization Problems

� If you add redundant variables (T is fat), the problems may still be
equivalent.

� Variable Separability is what allows us to solve Dynamic Programming.

Formulating Optimization Problems
Constraint Equivalence

Example 4: Constraint/Objective Equivalence

Problem 1: min
x

f(x) subject to g(x) ≤ 0

Problem 2: min
x,t

t subject to g(x) ≤ 0, t ≥ f(x)

Here x∗1 = x∗2 and t∗2 = f(x∗1).

Some other Equivalences:

• Redundant Constraints
I {x ∈ R : x > 1} vs. {x ∈ R : x > 1, x > 0}

• Polytopes (Vertices vs. Hyperplanes)
I {x ∈ Rn : x =

∑
iAiαi,

∑
i αi = 1} vs. {x ∈ Rn : Cx > b}

M. Peet Lecture 02: Optimization 15 / 32

Formulating Optimization Problems
Constraint Equivalence

Example 4: Constraint/Objective Equivalence

Problem 1: min
x

f(x) subject to g(x) ≤ 0

Problem 2: min
x,t

t subject to g(x) ≤ 0, t ≥ f(x)

Here x∗1 = x∗2 and t∗2 = f(x∗1).

Some other Equivalences:

• Redundant Constraints
I {x ∈ R : x > 1} vs. {x ∈ R : x > 1, x > 0}

• Polytopes (Vertices vs. Hyperplanes)
I {x ∈ Rn : x =

∑
iAiαi,

∑
i αi = 1} vs. {x ∈ Rn : Cx > b}

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Formulating Optimization Problems

The set constraint x ∈ S is what matters, not the representation of that set

Machine Learning
Classification and Support-Vector Machines

In Classification we have inputs (data) (xi), each of which has a binary label
(yi ∈ {−1,+1})
• yi = +1 means the output of xi belongs to group 1

• yi = −1 means the output of xi belongs to group 2

We want to find a rule (a classifier) which takes
the data x and predicts which group it is in.

• Our rule has the form of a function
f(x) = wTx− b. Then
I x is in group 1 if f(x) = wTx− b > 0.
I x is in group 2 if f(x) = wTx− b < 0.

Question: How to find the best w and b??
-2 0 2 4 6 8 10

0

2

4

6

8

10
y=+1

y=-1

H
w

H
w1

H
w2

Figure: We want to find a rule
which separates two sets of data.

M. Peet Lecture 02: Optimization 16 / 32

Machine Learning
Classification and Support-Vector Machines

Definition 2.

• A Hyperplane is the generalization of the concept of line/plane to multiple
dimensions. {x ∈ Rn : wTx− b = 0}

• Half-Spaces are the parts above and below a Hyperplane.

{x ∈ Rn : wTx− b ≥ 0} OR {x ∈ Rn : wTx− b ≤ 0}

M. Peet Lecture 02: Optimization 17 / 32

Machine Learning
Classification and Support-Vector Machines

We want to separate the data into disjoint half-spaces and maximize the
distance between these half-spaces

Variables: w ∈ Rn and b define the hyperplane
Constraint: Each existing data point should be
correctly labelled.

• wTx− b > 1 when yi = +1 and
wTx− b < −1 when yi = −1
(Strict Separation)

• Alternatively: yi(w
Txi − b) ≥ 1.

These two constraints are Equivalent.
Figure: Maximizing the distance
between two sets of Data

Objective: The distance between Hyperplanes {x : wTx− b = 1} and
{x : wTx− b = −1} is

f(w, b) = 2
1√
wTw

M. Peet Lecture 02: Optimization 18 / 32

Machine Learning
Unconstrained Form (Soft-Margin SVM)

Machine Learning algorithms solve

min
w∈Rp,b∈R

1

2
wTw, subject to

yi(w
Txi − b) ≥ 1, ∀i = 1, ...,K.

Soft Margin Problems
The hard margin problem can be relaxed to
maximize the distance between hyperplanes
PLUS the magnitude of classification errors

min
w∈Rp,b∈R

1

2
‖w‖2+c

n∑
i=1

max(0, 1−(wTxi−b)yi).
-2 0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9
Soft Margin SVM Problem

data with y=-1

data with y=+1

H
w

H
w1

H
w2

H
ξ

Figure: Data separation using
soft-margin metric and distances
to associated hyperplanes

Link: Repository of Interesting Machine Learning Data Sets
M. Peet Lecture 02: Optimization 19 / 32

http://archive.ics.uci.edu/ml/

Geometric vs. Functional Constraints

These Problems are all equivalent:

The Classical Representation:

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0 i = 1, · · · k

The Geometric Representation is:

min
x∈Rn

f(x) : subject to x ∈ S

where S := {x ∈ Rn : gi(x) ≤ 0, i = 1, · · · , k}.

The Pure Geometric Representation (x is eliminated!):

min
γ

γ : subject to

Sγ 6= ∅ (Sγ has at least one element)

where Sγ := {x ∈ Rn : γ − f(x) ≥ 0, gi(x) ≤ 0, i = 1, · · · , k}.

Proposition: Optimization is only as hard as determining feasibility!
M. Peet Lecture 02: Optimization 20 / 32

Geometric vs. Functional Constraints

These Problems are all equivalent:

The Classical Representation:

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0 i = 1, · · · k

The Geometric Representation is:

min
x∈Rn

f(x) : subject to x ∈ S

where S := {x ∈ Rn : gi(x) ≤ 0, i = 1, · · · , k}.

The Pure Geometric Representation (x is eliminated!):

min
γ

γ : subject to

Sγ 6= ∅ (Sγ has at least one element)

where Sγ := {x ∈ Rn : γ − f(x) ≥ 0, gi(x) ≤ 0, i = 1, · · · , k}.

Proposition: Optimization is only as hard as determining feasibility!

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Geometric vs. Functional Constraints

In the pure geometric interpretation, we are finding the smallest γ such that

there exists a feasible point, x with f(x) ≤ γ

Solving by Bisection (Do you have an Oracle?)
Assume you can test feasibility of a set Sγ

Optimization Problem:

γ∗ = max
γ

γ :

subject to Sγ 6= ∅

Bisection Algorithm (Convexity???):

1 Initialize infeasible γu = b

2 Initialize feasible γl = a

3 Set γ = γu+γl
2

5 If Sγ feasible, set γl = γu+γl
2

4 If Sγ infeasible, set γu = γu+γl
2

6 k = k + 1

7 Goto 3

Then γ∗ ∈ [γl, γu] and |γu − γl| ≤ b−a
2k

.

Bisection with oracle also solves the
Primary Problem. (min γ : Sγ = ∅)

γ
L

γ
u

γ
1

γ
2

S
γ
=∅

γ
4 γ

3

S
γ
≠∅

S
γ
≠∅

γ
5

S
γ
=∅

S
γ
≠∅

S
γ
≠∅

S
γ
≠∅

M. Peet Lecture 02: Optimization 21 / 32

Computational Complexity

In Computer Science, we focus on Complexity of the PROBLEM

• NOT complexity of the algorithm.

On a Turing machine, the # of steps is a fn of
problem size (number of variables)

• NL: A logarithmic # (SORT)

• P: A polynomial # (LP)

• NP: A polynomial # for verification (TSP)

• NP HARD: at least as hard as NP (TSP)

• NP COMPLETE: A set of Equivalent* NP
problems (MAX-CUT, TSP)

• EXPTIME: Solvable in 2p(n) steps.
p polynomial. (Chess)

• EXPSPACE: Solvable with 2p(n) memory.

*Equivalent means there is a polynomial-time reduction from one to the other.

M. Peet Lecture 02: Optimization 22 / 32

How Hard is Optimization?

The Classical Representation:

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0 i = 1, · · · k
hi(x) = 0 i = 1, · · · k

Answer: Easy (P) if f, gi are all Convex and hi are affine.

The Geometric Representation:

min
x∈Rn

f(x) : subject to x ∈ S

Answer: Easy (P) if f is Convex and S is a Convex Set.

The Pure Geometric Representation:

max
γ,x∈Rn

γ : subject to

(γ, x) ∈ S′

Answer: Easy (P) if S′ is a Convex Set.
M. Peet Lecture 02: Optimization 23 / 32

Convex Functions

Definition 3.

An OBJECTIVE FUNCTION or CONSTRAINT function is convex if
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all λ ∈ [0, 1].

Useful Facts:
• eax, ‖x‖ are convex. xn (n ≥ 1 or n ≤ 0), − log x are convex on x ≥ 0
• If f1 is convex and f2 is convex, then f3(x) := f1(x) + f2(x) is convex.
• A f is convex if the Hessian ∇2f(x) is positive semidefinite for all x.
• If f1, f2 are convex, then f3(x) := max(f1(x), f2(x)) is convex.
• If f1, f2 are convex, and f1 is increasing, then f3(x) := f1(f2(x)) is convex.

M. Peet Lecture 02: Optimization 24 / 32

Convex Sets

Definition 4.

A FEASIBLE SET is convex if for any x, y ∈ Q,

{µx+ (1− µ)y : µ ∈ [0, 1]} ⊂ Q.

The line connecting any two points lies in the set.

Facts:
• If f is convex, then {x : f(x) ≤ 0} is convex.
• The intersection of convex sets is convex.

I If S1 and S2 are convex, then S2 := {x : x ∈ S1, x ∈ S2} is convex.

M. Peet Lecture 02: Optimization 25 / 32

Descent Algorithms (Why Convex Optimization is Easy)
Unconstrained Optimization

All descent algorithms are iterative, with a search direction (∆x ∈ Rn) and step
size (t ≥ 0). xk+1 = xk + t∆x

Gradient Descent

∆x = −∇f(x)

Newton’s Algorithm:

∆x = −(∇2f(x))−1∇f(x)

Tries to solve the equation ∇f(x) = 0.

Both converge for sufficiently small step size.
M. Peet Lecture 02: Optimization 26 / 32

Descent Algorithms (Why Convex Optimization is Easy)
Unconstrained Optimization

All descent algorithms are iterative, with a search direction (∆x ∈ Rn) and step
size (t ≥ 0). xk+1 = xk + t∆x

Gradient Descent

∆x = −∇f(x)

Newton’s Algorithm:

∆x = −(∇2f(x))−1∇f(x)

Tries to solve the equation ∇f(x) = 0.

Both converge for sufficiently small step size.

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Descent Algorithms (Why Convex Optimization is
Easy)

� If ∇f(x) = 0, then f has a minimum or maximum at x.

� In unconstrained optimization, the solution will occur at this inflection
point.

� For a convex function, there is only one point where ∇f(x) = 0, which is
the global minimum.

Descent Algorithms
Dealing with Constraints

Method 1: Gradient Projection

Figure: Must project step (t∆x) onto feasible Set

Method 2: Barrier Functions

min
x
f(x) + log(g(x))

Converts a Constrained problem to an unconstrained problem.
(Interior-Point Methods)

M. Peet Lecture 02: Optimization 27 / 32

Non-Convexity and Local Optima

1. For convex optimization problems, Descent Methods always find the global
optimal point.

2. For non-convex optimization, Descent Algorithms may get stuck at local
optima.

M. Peet Lecture 02: Optimization 28 / 32

Important Classes of Optimization Problems
Linear Programming

Linear Programming (LP)

min
x∈Rn

cTx : subject to

Ax ≤ b
A′x = b′

• EASY: Simplex/Ellipsoid Algorithm (P)

• Can solve for >10,000 variables

2 - 13 Convexity and Duality S. Lall, Stanford 2004.08.30.01

Linear Programming (LP)

In a linear program, the objective and constraint functions are affine.

minimize cTx

subject to Ax = b

Cx ≤ d

Example

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20

Link: A List of Solvers, Performance and Benchmark Problems

M. Peet Lecture 02: Optimization 29 / 32

http://plato.asu.edu/bench.html

Important Classes of Optimization Problems
Linear Programming

Linear Programming (LP)

min
x∈Rn

cTx : subject to

Ax ≤ b
A′x = b′

• EASY: Simplex/Ellipsoid Algorithm (P)

• Can solve for >10,000 variables

2 - 13 Convexity and Duality S. Lall, Stanford 2004.08.30.01

Linear Programming (LP)

In a linear program, the objective and constraint functions are affine.

minimize cTx

subject to Ax = b

Cx ≤ d

Example

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20

Link: A List of Solvers, Performance and Benchmark Problems2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Important Classes of Optimization Problems

� The Ellipsoidal algorithm solves LP in polynomial time.

� The Simplex algorithm is not actually worst-case polynomial time.

� However, the simplex algorithm outperforms the ellipsoidal algorithm in
almost all cases.

http://plato.asu.edu/bench.html

Important Classes of Optimization Problems
Quadratic Programming

Quadratic Programming (QP)

min
x∈Rn

xTQx+ cTx : subject to

Ax ≤ b

• EASY (P): If Q ≥ 0.

• HARD (NP-Hard): Otherwise

M. Peet Lecture 02: Optimization 30 / 32

Important Classes of Optimization Problems
Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP)

min
x∈Rn

cTx : subject to

Ax ≤ b
xi ∈ Z i = 1, · · ·K

• HARD (NP-Hard)

Mixed-Integer NonLinear Programming (MINLP)

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0

xi ∈ Z i = 1, · · ·K

• Very Hard

M. Peet Lecture 02: Optimization 31 / 32

Important Classes of Optimization Problems
Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP)

min
x∈Rn

cTx : subject to

Ax ≤ b
xi ∈ Z i = 1, · · ·K

• HARD (NP-Hard)

Mixed-Integer NonLinear Programming (MINLP)

min
x∈Rn

f(x) : subject to

gi(x) ≤ 0

xi ∈ Z i = 1, · · ·K

• Very Hard

2
0

2
1

-0
3

-0
3

Lecture 02
Optimization

Important Classes of Optimization Problems

� CPLEX and Gurobi will allow you to solve very large MILPs.

� However, the result may not be truly optimal.

Next Time:

Positive Matrices, SDP and LMIs

• Also a bit on Duality, Relaxations.

M. Peet Lecture 02: Optimization 32 / 32

	Optimization

