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Stability Concepts

There are several classes of problems for which we would like to prove stability:

• Stability under Arbitrary Switching
I Sometimes called Differential Inclusions
I Similar to Time-Varying uncertainty, but discrete

ẋ(t) ∈ {A1x(t), A2x(t)}
• Stability under State-Dependent Switching

I Alternatively, Does there exist a stabilizing switching law?
I Often used to stabilize systems such as the inverted pendulum.

• Stability under Arbitrary Switching with Dwell-Time restrictions
I Places a lower limit on τi+1 − τi.
I Often used for hysteresis (e.g. Thermostat problem)

There are three tools we will use

• Quadratic Stability

• Common non-quadratic Lyapunov functions
I or Multiple (state-dependent) Lyapunov functions (w/ continuity)

• Switched Lyapunov functions.

M. Peet Lecture 20: 1 / 18



2 Non-intuitive Facts About Switched Stability

Fact 1: Stability of each subsystem {A1, A2} does not guarantee stability under
arbitrary switching.

Figure: 2 Unstable Systems (a,b) can be Stabilized (c) or Destabilized (d)

Fact 2: Smart switching can stabilize two unstable subsystems {A1, A2}.

Figure: 2 Stable Systems (a,b) can be Stabilized (c) or Destabilized (d)
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Stability under Arbitrary Switching
Quadratic Stability

Theorem 1.

The switched system ẋ(t) ∈ {A1x(t), A2x(t)} is stable under arbitrary switching
if there exists some P > 0 such that

AT1 P + PA1 < 0 and

AT2 P + PA2 < 0

This implies that BOTH A1 and A2 are Hurwitz (Necessity).

• But A1 and A2 Hurwitz is not Sufficient.

For example, consider

A1 =

[
−1 −1
1 −1

]
, A2 =

[
−1 −10
.1 −1

]
• A1 and A2 are both Hurwitz.
• ẋ(t) ∈ {A1x(t), A2x(t)} is stable under arbitrary switching
• There is no common quadratic Lyapunov function for A1 and A2!
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Stability under Arbitrary Switching
Quadratic Stability and Commuting Matrices

Commuting Matrices: If A1, A2 are Hurwitz and commute, we have quadratic
Stability.

• Sufficient, not necessary for quadratic stability.

• Also for larger sets, {Ai} if all pairs commute.

• Easier to check than the LMI

Simply Test if
Ai is Hurwitz

and
AiAj −AjAi = 0 ∀i, j.
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Stability under Arbitrary Switching
Common Non-Quadratic Lyapunov Functions

Theorem 2.

The switched system ẋ(t) ∈ {f1(x(t)), f2(x(t))} is stable under arbitrary
switching if there exists some V (x) > α‖x‖2 such that

∇V (x)T f1(x) < 0 ∀x and

∇V (x)T f1(x) < 0 ∀x

Converse Result: If ẋ = fp(x(t)) is asymptotically stable and fp is locally
Lipschitz, then there exists a common Lyapunov function.

• If ẋ ∈ {Aix(t)}i, then V can be chosen to have the form

V (x) = max
i

(cTi x)
2

However, this is difficult to enforce, and an easier approach is to use SOS:
Find V such that

V (x)− ε(
∑
i

x6i ) is SOS

−∇V (x)T fi(x) is SOS for all i
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Stability under Arbitrary Switching
Common Non-Quadratic Lyapunov Functions

Example: Consider the System (Boyd)

ẋ(t) ∈ Co{A1, A2}

A1 =

[
−100 0
0 −1

]
, A2 =

[
8 −9
120 −18

]
This system is stable, but not Quadratically Stable.

• Stability can be proven using the Lyapunov function

V (x) := max{xTP1z, x
TP2x}

P1 =

[
14 −1
−1 1

]
, P2 =

[
0 0
0 1

]
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Stability under State-Dependent Switching
Multiple Lyapunov Functions with Continuity

Quadratic Stability is mostly useless for Analysis of state-dependent switching.

• Since it establishes stability under arbitrary switching

Consider a simple model:

ẋ(t) =
{
fi(x(t)), x(t) ∈ Di.

where the Di are disjoint except at the Guard sets G(i,j) for (i, j) ∈ E.

• Recall E := {ei} is the set of possible transitions from domain i to j.

Theorem 3.

Suppose there exist Lyapunov functions Vi(x) such that Vi(x) ≥ ε‖x‖2 for all i
and

∇Vi(x)T fi(x) ≤ 0 for all x ∈ Di, i = 1, · · · , k
and

Vi(x) = Vj(x) for all x ∈ G(i,j)for all i, j : (i, j) ∈ E

Basically V (x) =
{
Vi(x), x ∈ Di

is a common, continuous, non-quadratic Lyapunov function.
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Multiple Lyapunov Functions with Continuity

Consider the System:

ẋ(t) =

{
A1x(t), if x1 ≥ 0

A2x(t), otherwise.

A1 =

[
γ −1
2 γ

]
, A2 =

[
γ −2
1 γ

]
where γ < 0 implies each subsystem is stable

• There is no global common quadratic Lyapunov function.

However, if we define

P1 =

[
2 0
0 1

]
P2 =

[
1
2 0
0 1

]
Then V1(x) = xTP1x = xTP2x = V2(x) when x1 = 0.

• Furthermore, AT1 P1 + P1A1 < 0 and AT2 P2 + P2A2 < 0.
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Multiple Lyapunov Functions with Continuity
The S-Procedure... Again

Our goal is to find V1(x) = xTP1x and V2(x) = xTP2x with P1, P2 > 0 such
that

xTP1x− xTP2x = 0 ∀x ∈ {x : x1 = 0

xT (AT1 P1 + P1A1)x ≤ 0 ∀x ∈ {x : xTSx ≤ 0}
xT (AT2 P2 + P2A2)x ≤ 0 ∀x ∈ {x : xTSx ≥ 0}

Of course, we could use the P-Satz...
• But lets put away the big guns for now...
• Lets consider the constraints separately.

Instead, recall the S-procedure:
S-Procedure: xTPx ≥ 0 for all x such that xTSx ≥ 0 if there exists a τ > 0
such that P − τS ≥ 0.
So...

−xT (AT1 P1 + P1A1)x ≥ 0 ∀x ∈ {x : xTSx ≤ 0}
if there exists τ > 0 such that

AT1 P1 + P1A1 + τS < 0
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Multiple Lyapunov Functions with Continuity
The S-Procedure... Nullstellensatz Form!

Now, lets examine the constraint

xTP1x− xTP2x = 0 ∀x ∈ {x : cTx = 0}

If
P1 − P2 + tcT + ctT = 0

Then

xT (P1 − P2)x = xT (P1 − P2 + tcT + ctT )x = 0 when cTx = 0

Therefore, if we can divide the guard set into lines, then we can enforce
continuity
Consider: x : x1x2 = 0

• This can be represented as the union of x1 = 0 and x2 = 0.
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Stabilization by State-Dependent Switching

Theorem 4.

Suppose there exists some α ∈ [0, 1] such that

αA1 + (1− α)A2 is Hurwitz

then there exists a state-dependent switching law which quadratically stabilizes
the systems.

Note: This is also Necessary for Quadratic Stabilization.
Switching Law: To test the condition, we find some P > 0 such that

α(AT1 P + PA1) + (1− α)(AT2 P + PA2) < 0

This is bilinear in α and P but can be done by gridding α.
• Since α > and (1− α) > 0 this implies that for any x, either

xT (AT1 P + PA1)x < 0 or xT (AT1 P + PA1)x < 0

Then choose the switching law

ẋ(t) =

{
A1x(t) xT (AT1 P + PA1)x < 0

A2x(t) otherwise
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Stabilization by State-Dependent Switching
Multiple Subsystems

Can be extended to multiple subsystems:

• Find λi such that
∑
i λi = 1, λi ≥ 0 and∑

i

αiAi is Hurwitz

• No subsystem need be stable.
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Arbitrary Switching with Dwell-Time Restrictions
Multiple Lyapunov Functions without Continuity

We can extend the concept of multiple Lyapunov functions to relax continuity.

• Associate one Lyapunov function to each mode.

• Require that each function is decreasing at sequential points of activation.

Theorem 5.

Let each mode ẋ = fq(x) be globally asymptotically stable with Lyapunov
functions Vq. The switched system is stable if for every execution (I, T, p, C)

Vq(x(τj))− Vq(x(τk)) < 0

for every i, j ∈ I such that pi = pj = q and pk 6= q for any i < k < j.
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Arbitrary Switching with Dwell-Time Restrictions

This only works if we can:

• Bound the decrease during interval Ti = [τi, τi+1]

• Bound the increase during intervals Ti+1, · · · , Tj−1
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Controlling Uncontrollable Systems by Switching
The Inverted Pendulum

The inverted pendulum cannot be stabilized by continuous
feedback.

• The Domain (circle) is not a contractible set.
I Requires a continuous function with H(0, θ) = θ and
H(1, θ) = 0.

I A Smooth path from any point to the origin.

Model:
ẍ = u

Jθ̈ = mgl sin θ −ml cos θu

Instead, we define 2 control laws

1. Energy maximization when θ is large (bottom)

2. Linearized Control when θ is small (top)
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The Inverted Pendulum
Energy Maximization

To get to the top, pendulum needs 2mgl of Energy.
Ignoring the cart, the Energy of the System is

E =
1

2
Jθ̇2 +mgl (1 + cos θ)

Taking the derivative
Ė = −mlθ̇ cos θu

The input which maximizes this energy gain is

u(t) = sat(u)sign(θ̇ cos θ)

where sat(u) is the maximum acceleration.

• Discontinuous, due to sign function.

• Ė = 0 if cos θ = 0

• May require multiple swings.
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The Inverted Pendulum
Multiple Swings and Multiple Pendula

The Controller is:
u(t) = sat(u)sign(θ̇ cos θ)

If Energy 2mgl is not achieved prior to |θ| = π
2 , we need multiple swings.

• Controller reverses when θ̇ = 0.

• Don’t Forget Linear Control at the top!

Multi-Swing Geometry:

ϕ+θ0
θ0

y

x

ϕ

A

C

B

Fig. 1 Geometric illustration of a simple swing-up strategy.

ation should be reversed when the pendulum is hor-
izontal. Also notice that it must be required that it
is possible to maintain maximum acceleration during
the full swing.

5. SINGLE-SWING BEHAVIOR

The behavior of the swing up depends critically on the
maximum acceleration of the pivot. If the parameter
n is sufficiently large the required energy is obtained
very quickly, and the pendulum can be brought up in
one swing, but many swings are required if n is small.

Double-Switch Control

If the available acceleration is sufficiently large, the
pendulum can be swung up simply by using the
maximum acceleration until the desired energy is
obtained and then setting acceleration to zero. With
this strategy the control signal switches from zero
to its largest value and then back to zero again.
This motivates the name of the strategy. To find this
strategy we will consider a coordinate system fixed
to the pivot of the pendulum and regard the force
due to the acceleration of the pivot as an external
force. In this coordinate system the center of mass
of the pendulum moves along a circular path with
radius l. It follows from Equation (4) that the desired
energy must be reached before the pendulum reaches
the horizontal position. If the acceleration of the pivot
is kept at its maximum value ng until it reaches the
horizontal, the energy supplied to the pendulum by
the acceleration of the pivot is nmgl. To swing up
the pendulum its energy must be increased by 2mgl
and we thus find that the maximum acceleration
must be at least 2g. When the acceleration is 2g
the pendulum is accelerated until it is horizontal and

0 2 4 6
−3

−1

Angle n=2.1

0 2 4 6
−2

−1

0 Normalized Energy

0 2 4 6
0

1

2
Control Signal

Fig. 2 Simulation of a single-swing double-switch strategy. The
parameters are n � 2.1, ω 0 � 1 and k � 100.

the control signal is then zero. If the acceleration
is larger than 2g the acceleration will be switched
off when the pendulum has swung the angle φ . The
energy supplied to the pendulum is then nmgl sinφ .
Equating this with 2mgl gives sinφ � 2/n. The
single-switch double-switch strategy is illustrated in
Figure 2 which shows the angle, the angular velocity,
and the control signal for the case n � 2.1. Notice
that maximum control action is used until the desired
energy is reached. This happens shortly before the
pendulum is horizontal.

Large Accelerations

If the available acceleration is much larger than 2g,
it is possible to find approximate expressions for the
switching times. We will consider the case when the
pendulum starts in the downward position. If the
acceleration is so large that the desired energy can
be obtained for small angles the equation of motion
(1) can be approximated by

Jp
d2θ
dt2 � mnlg (5)

This equation has the solution θ � (ω0t)2/2. The
energy increase of the pendulum is thus

E � mngl sinθ � mnglθ � mgl
(ω0t)2

2

Requiring this to be equal to the swing-up energy
2mgl we find that the time for full acceleration is

t � 2
nω0

where ω0 is the frequency of small oscillations of the
pendulum. The pendulum changes the angle θ � 2/n,

3

Link: Double Inverted
Pendulum

Link: Triple Inverted
Pendulum
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http://www.youtube.com/watch?v=B6vr1x6KDaY
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http://www.youtube.com/watch?v=cyN-CRNrb3E
http://www.youtube.com/watch?v=cyN-CRNrb3E


Conclusion!

Stuff we didn’t get to:

• Systems with Delay.

• Control of PDE Systems.

• The rest of Nonlinear Control, Hybrid
Systems, etc.

For more details on these and other topics,
consult the recommended texts and references
therein.

I hope you have enjoyed this class.
• Please support our ability to teach this and similar courses by completing

your student evaluations online.
• These evaluations are taken seriously by the University and Administration.

Thank You For Your Support!
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