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Stability Concepts

There are several classes of problems for which we would like to prove stability:
e Stability under Arbitrary Switching

» Sometimes called Differential Inclusions
» Similar to Time-Varying uncertainty, but discrete

z(t) € {Ar12(¢), Axz(t)}
e Stability under State-Dependent Switching

> Alternatively, Does there exist a stabilizing switching law?
» Often used to stabilize systems such as the inverted pendulum.

e Stability under Arbitrary Switching with Dwell-Time restrictions

> Places a lower limit on 7541 — 75.
» Often used for hysteresis (e.g. Thermostat problem)

There are three tools we will use
e Quadratic Stability

e Common non-quadratic Lyapunov functions
» or Multiple (state-dependent) Lyapunov functions (w/ continuity)

e Switched Lyapunov functions.
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2 Non-intuitive Facts About Switched Stability

Fact 1: Stability of each subsystem {A;, A2} does not guarantee stability under
arbitrary switching.

Sl

Figure: 2 Unstable Systems (a,b) can be Stabilized (c) or Destabilized (d)

Fact 2: Smart switching can stabilize two unstable subsystems {A;, A2}.

% = L L I\
I

Figure: 2 Stable Systems (a,b) can be Stabilized (c) or Destabilized (d)
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Stability under Arbitrary Switching

Quadratic Stability

Theorem 1.

The switched system ©(t) € {A1x(t), A2x(t)} is stable under arbitrary switching
if there exists some P > 0 such that =

ATP 4+ PA <0 and
ATP+PA; <0

This implies that BOTH A; and Ay are Hurwitz (Necessity).
e But A; and A5 Hurwitz is not Sufficient.
For example, consider

-1 -1 -1 -10
Al_[l —1}’ AZ_[.l —1]
e Ay and A, are both Hurwitz.
o i(t) € {A1x(t), Ax(t)} is stable under arbitrary switching

e There is no common quadratic Lyapunov function for A; and As!
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Stability under Arbitrary Switching

Quadratic Stability and Commuting Matrices

Commuting Matrices: If A, A are Hurwitz and commute, we have quadratic
Stability.

e Sufficient, not necessary for quadratic stability.

e Also for larger sets, {A;} if all pairs commute.

e Easier to check than the LMI

Simply Test if
A; is Hurwitz

and
AA; —AjA =0 Vi, j.
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Stability under Arbitrary Switching

Common Non-Quadratic Lyapunov Functions

Theorem 2.
The switched system #(t) € {f1(z(t)), f2(z(t))} is stable under arbitrary
switching if there exists some V (x) > a|x||? such that

VV(z)' fi(x) <0 Vax  and

VV(z)T fi(z) <0 Va

Converse Result: If & = f,(z(t)) is asymptotically stable and f,, is locally
Lipschitz, then there exists a common Lyapunov function.
o If & € {A;x(t)};, then V can be chosen to have the form

V(z) = max(c! x)?
1
However, this is difficult to enforce, and an easier approach is to use SOS:

Find V such that
Viz)—e()_a¥)  isSOS

—VV ()T f;(x)  is SOS for all i
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Stability under Arbitrary Switching

Common Non-Quadratic Lyapunov Functions

Example: Consider the System (Boyd)
l‘(t) S CO{A17A2}

—100 0 8 -9
A= [ 0 —1] A= {120 —18]

This system is stable, but not Quadratically Stable.
e Stability can be proven using the Lyapunov function

V(z) := max{zT Pz, 27 Pa}

4 -1 0 0
Sl BRI R
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Stability under State-Dependent Switching

Multiple Lyapunov Functions with Continuity
Quadratic Stability is mostly useless for Analysis of state-dependent switching.
e Since it establishes stability under arbitrary switching
Consider a simple model:
&(t) = {fi(x(t)), z(t) € D;.
where the D; are disjoint except at the Guard sets G ; ;) for (7, j) € E.
e Recall E :={e;} is the set of possible transitions from domain i to j.

Theorem 3.

Suppose there exist Lyapunov functions V;(z) such that V;(z) > e||x||? for all i

and
VVi(z) fi(x) <0  forallze D;, i=1,---,k

and
Vi(z) = Vj(z) for all x € G jyforall i,j : (i,j) € E
Basically Viz) = {Vq',(ZC), z €D,

is a common, continuous, non-quadratic Lyapunov function.
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Multiple Lyapunov Functions with Continuity

Consider the System:

A t y if >0 /” \\
()= A T2 PR S
Asx(t), otherwise. / , C Vo
] i | |
i v 2 \ \ -
A= |:2 'Y:|7 Ao |:1 7:| \\\ \\\\_“‘ A //‘

N i /

\\ ———t 7

where v < 0 implies each subsystem is stable el 0

e There is no global common quadratic Lyapunov function.
However, if we define

20 [5 0
S R I T
Then Vi(z) = 27 Pz = 27 Pya = V() when 1 = 0.
e Furthermore, AT P, + PiA; <0 and ATP, + P,A; < 0.
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Multiple Lyapunov Functions with Continuity
The S-Procedure... Again

Our goal is to find Vi(z) = 27 Pyx and Va(x) = 27 Pox with Py, P, > 0 such
that
2T Pz — 2T Poxr =0 Vee{r : 21=0

2T(ATP + PLA)z <0 Voze{z : TSz <0}
2T (AT P, + P, AY)z <0 Ve e {zx : 7Sz >0}

Of course, we could use the P-Satz...

e But lets put away the big guns for now...

e Lets consider the constraints separately.
Instead, recall the S-procedure:
S-Procedure: zT Px > 0 for all z such that 7Sz > 0 if there exists a 7 > 0
such that P — 75 > 0.
So...

—2T (AT Py + P Az >0 Vo e{zx : 278z <0}
if there exists 7 > 0 such that
ATP +PiA +75 <0
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Multiple Lyapunov Functions with Continuity

The S-Procedure... Nullstellensatz Form!

Now, lets examine the constraint

2T Pz —aTPox =0 Vo € {z : 'z =0}

Pl—P2+tCT+CtT:0
Then
(P, — Pz =27 (P, — Py +tc" +ctT)z =0 when ¢’z =0

Therefore, if we can divide the guard set into lines, then we can enforce
continuity
Consider: z : 2120 =0

e This can be represented as the union of ;1 =0 and z5 = 0.
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Stabilization by State-Dependent Switching

Theorem 4.
Suppose there exists some « € [0, 1] such that
al + (1 —a)As is Hurwitz

then there exists a state-dependent switching law which quadratically stabilizes
the systems.

Note: This is also Necessary for Quadratic Stabilization.
Switching Law: To test the condition, we find some P > 0 such that

a(ATP + PA) + (1 —a)(AL P4+ PAy) <0

This is bilinear in o and P but can be done by gridding a.
e Since @ > and (1 — «) > 0 this implies that for any z, either

2T (ATP+PANx <0 or  2T(ATP+ PA)z <0
Then choose the switching law
(1) Ayx(t) 2T (ATP+ PA)z <0
x =
Asx(t) otherwise
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Stabilization by State-Dependent Switching

Multiple Subsystems

Can be extended to multiple subsystems:
e Find \; such that Y. \; =1, A\; > 0 and

Z a; A; is Hurwitz
i

e No subsystem need be stable.
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Arbitrary Switching with Dwell-Time Restrictions

Multiple Lyapunov Functions without Continuity

We can extend the concept of multiple Lyapunov functions to relax continuity.
e Associate one Lyapunov function to each mode.

e Require that each function is decreasing at sequential points of activation.
Theorem 5.

Let each mode & = f,(z) be globally asymptotically stable with Lyapunov
functions V. The switched system is stable if for every execution (I,T,p,C)

Va(a (7)) = Vo(a(mk)) <0
for every i, j € I such that p; = p; = q and py, # q for any i < k < j.

Vo (t) Voo (t)

~

S

o=1 0=2 0=1 0=2 o=1 o=2 oml cmd oml cma et
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Arbitrary Switching with Dwell-Time Restrictions

Vo) (t) Vo) (t)

AN

.\\~ 2 ‘,;4\4".‘ "'\“’i.&“‘k :

t t t t t t t t t t t
o=1 0=2 o=1 0=2 o=1 o=2 o=1 0=2 0=1 0=2 0=1 0=2

This only works if we can:
e Bound the decrease during interval T; = [7;, 7511]

e Bound the increase during intervals Tj4q, -+ ,T;_1
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Controlling Uncontrollable Systems by Switching

The Inverted Pendulum

The inverted pendulum cannot be stabilized by continuous P NN
feedback.

e The Domain (circle) is not a contractible set.
» Requires a continuous function with H(0,6) = 6 and

H(1,0)=0.
> A Smooth path from any point to the origin. 0
Model:
T=1u

Jb = mgl sin @ — ml cos Ou

Instead, we define 2 control laws
1. Energy maximization when 6 is large (bottom)

2. Linearized Control when 6 is small (top)
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The Inverted Pendulum

Energy Maximization

To get to the top, pendulum needs 2mgl of Energy.
Ignoring the cart, the is

1 .
E = §J92 + mgl (1 + cosb)

Taking the derivative ) ]
E = —mlf cosOu
The input which maximizes this energy gain is

u(t) = sat(u)sign(d cos 0)

where sat(u) is the maximum acceleration.
e Discontinuous, due to sign function.
o E=0ifcosf =0
e May require multiple swings.
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The Inverted Pendulum
Multiple Swings and Multiple Pendula

The Controller is: _
u(t) = sat(u)sign(d cos )

If Energy 2mgl is not achieved prior to |f| = 7, we need multiple swings.

e Controller reverses when 6 = 0.

e Don't Forget Linear Control at the top!
Multi-Swing Geometry: Link: Link:

y
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http://www.youtube.com/watch?v=B6vr1x6KDaY
http://www.youtube.com/watch?v=B6vr1x6KDaY
http://www.youtube.com/watch?v=cyN-CRNrb3E
http://www.youtube.com/watch?v=cyN-CRNrb3E

Conclusion!

Stuff we didn’t get to: e The rest of Nonlinear Control, Hybrid
Systems, etc. )
e Systems with Delay. For more details on these and other topics,
consult the recommended texts and references

e Control of PDE Systems.

therein.

| hope you have enjoyed this class.
o Please support our ability to teach this and similar courses by completing
your student evaluations online.
o These evaluations are taken seriously by the University and Administration.

Thank You For Your Support!
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