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MMAE441: Spacecraft and Aircraft Dynamics
Syllabus

Instructor: Matthew Peet
Office: E1 - 252B
Teaching Assistant: TBD
Schedule: MW 1:50-3:05
Grades: Approximately:

• Homework (30%)

• Aircraft Exam (35%)

• Spacecraft Exam (35%)

Prereqs:

Matrix Analysis:

• eigenvalues and eigenvectors

Dynamical Systems:

• Differential Equations

• Eigenvalues, eigenvectors and the
characteristic equation

• State-Space

Texts:

“Orbital Mechanics”, J. Prussing and B.
Conway
“Flight Stability and Automatic Control”, R.
Nelson
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Introduction to Aircraft Dynamics
Overview of Course Objectives

• Finding Equations of Motion

ẍ(t) = Ax(t) +Bẋ(t)

I Identify Frames of Reference (Body-fixed,
etc.)

I Determine Coefficients (effects of wings,
tail, etc.)

I Combine effects to get EOM

• Determine Stability of Motion
I Find natural modes (phugoid mode, etc.)
I Relate to physical motion.
I Determine stability.
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Introduction to Spacecraft Dynamics
Overview of Course Objectives

• Determining Orbital Elements
I Know Kepler’s Laws of motion, Frames of

Reference (ECI, ECEF, etc.)
I Given position and velocity, determine

orbital elements.
I Given orbital elements and time,

determine position + velocity.

• Plan Earth-Orbit Transfers
I Identify Required Orbit.
I Find Optimal Transfer.
I Determine Thrust and Timing.

• Plan Interplanetary Transfers
I Design Gravity-Assist Maneuvers.
I Use Patched-Conics.
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Aircraft Dynamics
Slideshow: Boeing 777
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Aircraft Dynamics
Slideshow: F/A-18
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Aircraft Dynamics
Slideshow: NASA Space Shuttle
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Aircraft Dynamics
Slideshow: Piper Cherokee

M. Peet S and A Dynamics: 8 / 28



Aircraft Dynamics
Slideshow: NASA X-29
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Aircraft Dynamics
Slideshow: SAAB Grippen Failure

(Downloading...)

M. Peet S and A Dynamics: 10 / 28


Saab_Grippen_Crash_PIO.avi
Media File (video/avi)



Review: Equations of Motion
Differential Equations

The motion of dynamical systems can usually be specified using ordinary
differential equations. e.g.

dx

dt
(t) = f(x(t))

Where

• This is a first-order differential equation

• x is the quantity of interest.
I position, heading, velocity, etc.

• f is a possibly nonlinear function.

Note: Usually, the equation is higher order or there are multiple quantities of
interest.
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Review: Equations of Motion
Linear Equations

For Aircraft Dynamics, our equations of motion will be linear. e.g.

ẋ = ax(t)

where

• a is a constant scalar.

• in this case f(x) = ax.

Linear equations are preferable because

• The motion of linear systems is much easier to visualize.

• Stability of linear systems is easy to determine
I ẋ = ax is stable if a < 0 and unstable if a ≥ 0.
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Review: Equations of Motion
Higher Orders or Multiple Variables

Most often, the dynamics will be either
Be coupled with another variable:

ẋ = ax+ by

ẏ = cx+ dy

where

• The motion of x affects the motion of y and vice-versa.

Be higher order:

ẍ = aẋ+ bx

where

• Commonly obtained from Newton’s Third law.

F = ma
or, in other words

ẍ = F/m.
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Review: Equations of Motion
Higher Order Dynamics

When we have higher order dynamics,

ẍ = aẋ+ bx

We often want first order dynamics if

• There are multiple variables.

• We need state-space.

Procedure:

• Define a new variable for every Higher Order Term (HOT) except for the
the highest.

I e.g. ẍ = y and ẋ = z.

• Add a new first order differential equation for each variable.
I e.g. ẋ = z and ż = y

Finally we have for our example

ẋ = y

ẏ = ay + bx
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Review: Equations of Motion
State-Space

State-Space is a way of writing first order differential equation using matrices.
We write

~̇x = A~x

where ~x is a vector and A ∈ R
n×n is a square matrix.

Example:

d

dt





x1

x2

x3



 =





−1 0 1
2 0 0
0 −1 1









x1

x2

x3





Is equivalent to writing the three differential equations

ẋ1 = −x1 + x3 (1)

ẋ2 = 2x1 (2)

ẋ3 = −x2 + x3 (3)

Writing equations in state-space has many advantages
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Review: Equations of Motion
Multiple Variables and State-Space

Consider the system

ẋ = ax+ by

ẏ = cx+ dy

When we have multiple coupled equations, the best option is: Convert to

State-Space:

d

dt

[

x
y

]

=

[

a b
c d

] [

x
y

]

Which is easily expressed as
ẋ = Ax

where

• x is a vector.

• A is a matrix.

The equation describes the motion of the vector.
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Review: Equations of Motion
Introduction to Stability

Roughly Speaking: A system of differential equations is Stable if

• small inputs produce small outputs (Bounded-Input Bounded-Output)

• Disturbances tend to decay (Asymptotic Stability)

For aircraft, we will also define Static Stability and Dynamic Stability.
However, the terms Static and Dynamic refer to which equations of motion we
use, and not properties of the motion itself.
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Review: Equations of Motion
Characteristic Equation for Scalars

• Both higher-order and state-space systems have a Characteristic Equation.

The Characteristic Equation is found by using the Laplace Transform.

• x(t) → x(s)

• ẋ(t) → sx(s)

• ẍ(t) → s2x(s)

•
...
x (t) → s3x(s)

• · · ·
Thus for a scalar equation,

...
x (t) = aẍ(t) + bẋ(t) + cx(t)

becomes
(s3 − as2 − bs− c)x(s) = 0

Therefore the characteristic equation is s3 − as2 − bs− c = 0
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Review: Equations of Motion
Characteristic Equation and Stability

The roots of the characteristic equation determine the motion of the differential
equation.
The roots will be Complex, and so will have form

s0 = a+ bı

where ı =
√
−1.

Stability:
Stable Roots all have negative real part
Unstable At least one root has positive real part

Oscillation:
Not Oscillate All roots are real
Oscillate At least one root has nonzero imaginary part
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Review: Equations of Motion
Characteristic Equation and Stability: Example

A Useful Tool:

Remember the Quadratic Formula: as2 + bs+ c has roots

s1,2 =
−b±

√
b2 − 4ac

2a

Example: s2 + s+ 1 = 0 has roots

s1 = −1

2
+
√
3ı

and

s1 = −1

2
−
√
3ı.

Hence

• Re(s1) = Re(s2) = −1, so system is stable.

• Im(s1) 6= 0, Im(s2) 6= 0, so system is oscillatory.

M. Peet S and A Dynamics: 20 / 28



Review: Equations of Motion
Characteristic Equation for State-Space

ẋ(t) = Ax(t)

For state space, we also apply the Laplace transform to get.

(sI −A)x(s) = 0

Because sI −A is matrix-valued, the characteristic equation is actually

det(sI −A) = 0

Recall how to compute the determinant:

det

[

a b
c d

]

= ad− bc

and

det





a b c
d e f
g h i



 = a · det
[

e f
h i

]

− b · det
[

d f
g i

]

+ c · det
[

d e
g h

]
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Review: Equations of Motion
Example

A Spring-mass system:
F = −kx− cv

Use k = 50, c = 15, and mass m = 1. Then v = ẋ and F = ma = ẍ so

ẍ(t) = −15ẋ(t)− 50x(t)

which has characteristic equation

s2 + 15s+ 50 = 0

which has roots at s = −5 and s = −10. Hence the system is stable, non
oscillatory.
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Review: Equations of Motion
Example, continued

Putting this example in state-space, we use ẍ = v̇ and ẋ = v to get

[

ẋ
v̇

]

=

[

0 1
−50 −15

] [

x
v

]

For the characteristic equation

det(sI −A) = det

[

s −1
50 s+ 15

]

= s(s+ 15) + 50 = s2 + 15s+ 50

So the characteristic equation is s2 + 15s+ 50, which, of course, has roots at
−5,−10
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Review: Equations of Motion
Characteristic Equation and Eigenvalues

In state-space, there is an easier way to find the roots of the characteristic
equation: Eigenvalues.

• Any n× n matrix, A, has n eigenvalues. Call them λi

• Associated with each eigenvalue, λi, there is an eigenvector, xi.

• Eigenvalues and eigenvectors of A satisfy

Axi = λixi

• The xi are the “natural” directions of A.

• The λi are the action of A on xi.
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Review: Equations of Motion
Characteristic Equation and Eigenvalues continued

For the dynamical system
ẋ(t) = Ax(t),

• The eigenvalues of A are the roots of the characteristic equation
det(sI −A).

• The properties of the eigenvalue λi describe the motion in the direction xi.

Eigenvalues and Eigenvector are easily computed using the Matlab command:

[V L]=eigs(M)

where

• The columns of L are the eigenvectors of M .

• The diagonals of V are the eigenvalues of M listed in the same order as
the eigenvectors were.
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Review: Equations of Motion
Characteristic Equation and Eigenvalues, Example

Example: Take the randomly generated system

ẋ =





3 2 1
3 −4 5
5 −6 0





has λ1 = −1.74 and λ2,3 = −2.63± 3.86ı with eigenvectors

v1 =





.78

.59
−.2



 , v2,3 =





−.3
.04
.68



±





.23

.63
0



 ı

Stability:

• The system is stable because all eigenvalues have negative real part.

Oscillation:

• The system will oscillate about the direction

Re(v2,3) =





−.3
.04
.68
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Review: Equations of Motion
Summary

For this course, you need to know:

Matrix Analysis:

• eigenvalues and eigenvectors

Dynamical Systems:

• Differential Equations

• Eigenvalues, eigenvectors and the characteristic equation

• State-Space

You Will Be Responsible For All This Material
Throughout the Class!!!

Any Questions?

M. Peet S and A Dynamics: 27 / 28



Next Class: Aircraft Dynamics
The Body-Fixed Frame and Roll-Pitch-Yaw

Next time, we will learn about:
The different frames of reference used for aircraft. This will:

• Define the variables of interest. (e.g. Yaw-Pitch-Roll)

• Determine how we construct our equations of motion.

• Allow us to convert from one frame to another.

Lift and Pitching Moment. This will:

• Develop a framework for writing equations of motion.
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