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Aircraft Dynamics
Lecture 7

In this Lecture we will cover:

Numerical Example

• How to design an aircraft for steady-level flight.

• To take into account
I L=w
I

∑
M = CM = 0

I CMα < 0

I CM0 > 0

Directional Stability

• CNβ > 0 means stability.

• Most aircraft need a tail - CNβ,wf < 0.

• How to size a tail so that CNβ > 0.

• The effect of rudder on yawing moment - CNδr

• How to estimate aircraft parameters from video.
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Example
Scale Model Airplane

For a 1

25
scale model of an airplane, the following geometric data applies

S 1.50ft2 (.139m2)
c̄ 6.145in (.1561m)
lt 15.29in (.3884m)
St .368ft2 (.0342m2)

Aerodynamic Data:

CLα,wf .077 deg−1 CM0,wf -.018

ε0 .72 deg CLα,t .064 deg−1

η 1 dε
dα

.30

ρ 2.377E − 3slug − ft−3 Xac

c̄
.25

Now suppose we have an Actual Aircraft of mass 1552.8slugs (22, 680kg).

1. Find the limits on CG position (XCG) and tail angle measured relative to
wing (itr = iwf − it) to ensure static stability and nose-up.

2. For steady-level flight with δe = 0, plot the required itr vs. XCG at
v = 239knots (123m/s).

M. Peet Lecture 7: Numerical Example 3 / 28



Example
Scale Model Airplane

Solution: Note that

VH =
ltSt

c̄S
=

15.29 ∗ .368

6.145 ∗ 1.5
= .6104

CLα = CLα,wf + ηCLα,t

St

S

(

1−
dε

dα

)

= .077 + 1 ∗ .064 ∗
.368

1.5
(1− .3) = .088 deg−1

We need CMα < 0.

CMα = CLα

(

XCG

c̄
−

XAC

c̄

)

− ηVHCLα,t

(

1−
dε

dα

)

= .088 ∗

(

XCG

c̄
− .25

)

− .064 ∗ .6104 ∗ (1− .3) < 0

which means

XCG

c̄
< .5607
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Example
Scale Model Airplane

For nose-up flight, we want CM0 > 0

CM0 = CM0,wf + ηCLα,tVH (ε0 + iwf − it)

[

1− η
CLα,t

CLα

St

S

(

1−
dε

dα

)]

= −.018 + 1 ∗ .064 ∗ .6104 ∗ (.72 + itr) ∗

(

1− 1 ∗
.064

.088

.368

1.5
(1− .3)

)

> 0

or,
itr = iwf − it > .193 deg

For Part 2, ignoring CL0, we have from L =W ,

αeq =
W

QSCLα

Now, to go from 1/25-scale to full scale, we have m→ 25m, so

Sfull = 25 ∗ 25 ∗ .139m2 = 86.875m2
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Example
Scale Model Airplane

Meanwhile,
W = 22, 680kg ∗ 9.81m/s2 = 222.491kN,

from which we can find the desired α.

α =
222491

1

2
1.225 ∗ 1232 ∗ 86.875 ∗ .088

= 3.141 deg

Finally, for moment equilibrium, we need CM = CM0 + CMαα = 0.

Plugging in the above values and solving for itr yields

itr = 4.33− 8.07
Xcg

c̄
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Example
Scale Model Airplane

We can draw a region with three constraints.
• itr = 4.33− 8.07

Xcg

c̄
for steady-level flight.

• itr > .193 deg for nose-up.
•

XCG

c̄
< .5607 for stability.
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Directional Stability
Stability of Motion in the x-y Plane

First, let us recall the definition of sideslip angle using free-stream velocity ~V .

β ∼=
Vy
Vx

=
v

u

Yawing moment is denoted by

N = CNQbS

where

• Q is dynamic pressure.

• b is span of the aircraft (tip to tip).

• S is surface area of the wing.

CN has the form

CN = CN0 + CNββ

Typically, CN0 = 0. Exceptions?
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Directional Stability
Stability of Motion in the x-y Plane

As with longitudinal stability, the equations of motion are easily characterized.

βeq = −

CN0

CNβ

By definition, +β is a negative yaw rotation.

ψ(t) = −β(t)

Thus
I3
QSb

∆ψ̈(t) = −CNβ∆ψ(t).

This implies

• Stability if CNβ > 0.

• Instability if CNβ < 0.
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Directional Stability
Moment Contributions

There are two main moment contributions to directional stability

1. wing+fuselage contribution.

2. vertical stabilizer
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Directional Stability
Moment Contributions

The Wing-Fuselage contribution is difficult to characterize because it is not a
ideal lifting surface. However, an approximation can be found as

CNβ,wf = −knkR
Sfslf
Swb

where

• kn corresponds to geometry.

• kR corresponds to flight condition.

• Sfs is the surface area of the side view of the airplane.

• lf is the length of the plane

The key point is that all these quantities are typically positive. Hence
CNβ,wf < 0.

Conclusion: The wing-fuselage by itself is usually Unstable.

Why?

M. Peet Lecture 7: Directional Stability 11 / 28



Directional Stability
Vertical Stabilizer

• The Wing-Fuselage contribution is usually destabilizing because the net
force acts to the fore of the CG, creating positive moment.

• To correct, we want to add force aft of the CG.
I This is done via a lifting surface on the tail.
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Directional Stability
Vertical Stabilizer

As with all lifting surfaces, we express the Lift
force as

Yv = −CL,vQsSv

where Qs and Sv are dynamic pressure at and
surface are of the vertical stabilizer.

CL,v = CLα,vαv

• αv is the sideslip angle of the tail,
expressed as

αv = β + σ

I σ is the downwash effect due to the wing
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Directional Stability
Moment Coefficient of Vertical Stabilizer

The moment coefficient can now be found as

Cn,v =
lvSv

Sb

Qv

Qw

CLα,v(β + σ)

= VvηvCLα,v(β + σ)

where

• lv is the distance from CG to the Aerodynamic Center of the Vertical
Stabilizer.

• Vv = lvSv/(Sb) is the volume ratio

• ηv = Qv/Qw is the efficiency factor.

Again, we assume σ = 0 at β = 0 and so we have:

Cn,v = VvηvCLα,v

(

1 +
dσ

dβ

)

= Cnβ,vβ
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Directional Stability
Total Moment

Combining the effects of the wing-fuselage and the tail, we have

CN = Cn0,wf + (Cnβ,v + Cnβ,wf )β

= Cn0,total + Cnβ,totalβ

where typically Cn0,total = Cn0,wf = 0 and

Cnβ,total = Cnβ,wf + VvηvCLα,v

(

1 +
dσ

dβ

)

For stability, we design Vv = lvSv/(Sb) so that

Vv > −

Cnβ,wf

ηvCLα,v

(

1 + dσ
dβ

)

=
knkR

Sfslf
Swb

ηvCLα,v

(

1 + dσ
dβ

)
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Directional Stability
Example: Piper Navajo

M. Peet Lecture 7: Directional Stability 16 / 28



Directional Stability
Example: Gulfstream 3
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Directional Stability
Example: F/A-16
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Directional Stability
Example: Flying Car
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Directional Stability
Example: A-10
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Directional Control
Rudder Moment

The rudder is a control surface attached to the vertical tail.

A Positive deflection produces a Negative Yawing moment.

Nr = −lvYr

where

Yr = QvSv

dCL,v

dα

dα

dδr
δr
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Directional Control
Rudder Moment

Define Cn,r := Nr

QSb
. Then as for all lifting surfaces:

Cn,r = −

Qv

Q

lvSv

Sb
CLα,v

dα

dδr
δr

= −ηvVvCLα,vτδr

= Cn,δrδr

where τ is as defined for elevator deflection

Cn,δr = −ηvVvCLα,vτ
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Directional Control
Example: Sideslip Landing
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Directional Control
Example: Sideslip Landing

Question: In the movie, a rudder deflection of ∼= 30 deg produces a stable
sideslip angle of ∼= 50 deg. Estimate Cnβ,wf . Neglect Downwash, use ηv = 1,
CLα,v = .1 deg−1, Sr

St
= .6 and Vv = .8.

Answer: The moment equation is given by

CN = CNββ + CNδrδr

where
CNδr = −ηvVvCLα,vτ,

and
CNβ = Cnβ,wf + VvCLα,v

Now, fixing δr, the equilibrium is when CN = 0, so

βeq
δr

= −

CNβ

CNδr

=
Cnβ,wf + VvCLα,v

VvCLα,vτ
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Directional Control
Example: Sideslip Landing

• In the movie, a negative rudder deflection caused a negative βeq. This
implies CNβ > 0 since CNδr is always negative. Thus the aircraft is stable.

• Notice that since βeq > δr, Cnβ,wf must be almost positive, or almost
stable without the tail.

Continuing, we solve for

Cnβ,wf =

(

βeq
δr
τ − 1

)

VvCLα,v

Thus the wing-fuselage is stable if βeqτ > δr. In this case, have Sr

St
= .6 implies

τ ∼= .7 from the plot
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Directional Control
Example: Sideslip Landing

Finally, we conclude

βeqτ = 50 ∗ .7 = 35 deg and δr = 30 deg

Hence, we have the wing-fuselage is stable. Additionally, estimate VH = .8 and
CLα,v = .1. Then

Cnβ,wf = .17 ∗ .8 ∗ .1 = +.013 deg−1
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Conclusion

In this Lecture, you learned:

The Design Process

• How to design an aircraft for steady-level flight.

• To take into account
I L=w
I

∑
M = CM = 0

I CMα < 0

I CM0 > 0

Directional Stability

• CNβ > 0 means stability.

• Most aircraft need a tail - CNβ,wf < 0.

• How to size a tail so that CNβ > 0.

• The effect of rudder on yawing moment - CNδr

• How to estimate aircraft parameters from video.
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Next Lecture: Axial Stability and beyond

We will wrap up static stability with a discussion of axial stability

• Fuselage Contribution

• Dihedral Effect

• Aileron Control

We will then move on to

• 3-D stability

• Equations of motion in a rotating reference frame.
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