Spacecraft and Aircraft Dynamics

Matthew M. Peet Illinois Institute of Technology

Lecture 7: Example and Directional Control

Aircraft Dynamics

Lecture 7

In this Lecture we will cover:

Numerical Example

- How to design an aircraft for steady-level flight.
- To take into account
 - ▶ L=w
 - $\sum M = C_M = 0$
 - $ightharpoonup \overline{C}_{M\alpha} < 0$
 - $C_{M0} > 0$

Directional Stability

- $C_{N\beta} > 0$ means stability.
- Most aircraft need a tail $C_{N\beta,wf} < 0$.
- How to size a tail so that $C_{N\beta} > 0$.
- The effect of rudder on yawing moment $C_{N\delta_r}$
- How to estimate aircraft parameters from video.

Scale Model Airplane

For a $\frac{1}{25}$ scale model of an airplane, the following geometric data applies

$$\begin{array}{ll} S & 1.50 ft^2 \ (.139 m^2) \\ \bar{c} & 6.145 in \ (.1561 m) \\ l_t & 15.29 in \ (.3884 m) \\ S_t & .368 ft^2 \ (.0342 m^2) \end{array}$$

Aerodynamic Data:

$C_{L\alpha,wf}$	$.077\mathrm{deg}^{-1}$	$C_{M0,wf}$	018
ε_0	$.72\deg$	$C_{L\alpha,t}$	$.064\mathrm{deg}^{-1}$
η	1	$\frac{d\varepsilon}{d\alpha}$.30
ρ	2.377E - 3slug - j	$ft^{-3} \mid \frac{X_{ac}}{\bar{c}}$.25

Now suppose we have an *Actual Aircraft* of mass 1552.8slugs (22,680kg).

- 1. Find the limits on CG position (X_{CG}) and tail angle measured relative to wing $(i_{tr} = i_{wf} i_t)$ to ensure static stability and nose-up.
- 2. For steady-level flight with $\delta_e=0$, plot the required i_{tr} vs. X_{CG} at v=239knots (123m/s).

M. Peet Lecture 7: Numerical Example 3 / 28

Scale Model Airplane

Solution: Note that

$$V_H = \frac{l_t S_t}{\bar{c}S} = \frac{15.29 * .368}{6.145 * 1.5} = .6104$$

$$C_{L\alpha} = C_{L\alpha,wf} + \eta C_{L\alpha,t} \frac{S_t}{S} \left(1 - \frac{d\epsilon}{d\alpha} \right)$$

$$= .077 + 1 * .064 * \frac{.368}{1.5} (1 - .3) = .088 \, \text{deg}^{-1}$$

We need $C_{M\alpha} < 0$.

$$C_{M\alpha} = C_{L\alpha} \left(\frac{X_{CG}}{\bar{c}} - \frac{X_{AC}}{\bar{c}} \right) - \eta V_H C_{L\alpha,t} \left(1 - \frac{d\varepsilon}{d\alpha} \right)$$
$$= .088 * \left(\frac{X_{CG}}{\bar{c}} - .25 \right) - .064 * .6104 * (1 - .3) < 0$$

which means

$$\frac{X_{CG}}{\bar{c}} < .5607$$

Scale Model Airplane

For nose-up flight, we want $C_{M0} > 0$

$$C_{M0} = C_{M0,wf} + \eta C_{L\alpha,t} V_H \left(\varepsilon_0 + i_{wf} - i_t \right) \left[1 - \eta \frac{C_{L\alpha,t}}{C_{L\alpha}} \frac{S_t}{S} \left(1 - \frac{d\varepsilon}{d\alpha} \right) \right]$$

$$= -.018 + 1 * .064 * .6104 * (.72 + i_{tr}) * \left(1 - 1 * \frac{.064}{.088} \frac{.368}{1.5} (1 - .3) \right) > 0$$

or,

$$i_{tr} = i_{wf} - i_t > .193 \deg$$

For Part 2, ignoring C_{L0} , we have from L=W,

$$\alpha_{eq} = \frac{W}{QSC_{L\alpha}}$$

Now, to go from 1/25-scale to full scale, we have $m \to 25m$, so

$$S_{full} = 25 * 25 * .139m^2 = 86.875m^2$$

M. Peet

Scale Model Airplane

Meanwhile,

$$W = 22,680kg * 9.81m/s^2 = 222.491kN,$$

from which we can find the desired α .

$$\alpha = \frac{222491}{\frac{1}{2}1.225*123^2*86.875*.088} = 3.141\deg$$

Finally, for moment equilibrium, we need $C_M = C_{M0} + C_{M\alpha}\alpha = 0$.

Plugging in the above values and solving for i_{tr} yields

$$i_{tr} = 4.33 - 8.07 \frac{X_{cg}}{\bar{c}}$$

Scale Model Airplane

We can draw a region with three constraints.

- $i_{tr}=4.33-8.07\frac{X_{cg}}{\bar{c}}$ for steady-level flight.
- $i_{tr} > .193 \deg$ for nose-up.
- $\frac{X_{CG}}{\bar{c}} < .5607$ for stability.

M. Peet Lecture 7: Numerical Example

Stability of Motion in the x-y Plane

First, let us recall the definition of sideslip angle using free-stream velocity $\vec{V}.$

$$\beta \cong \frac{V_y}{V_x} = \frac{v}{u}$$

Yawing moment is denoted by

$$N = C_N Q b S$$

where

- ullet Q is dynamic pressure.
- b is span of the aircraft (tip to tip).
- S is surface area of the wing.

 C_N has the form

$$C_N = C_{N0} + C_{N\beta}\beta$$

Typically, $C_{N0} = 0$. Exceptions?

Stability of Motion in the x-y Plane

As with longitudinal stability, the equations of motion are easily characterized.

$$\beta_{eq} = -\frac{C_{N0}}{C_{N\beta}}$$

By definition, $+\beta$ is a *negative* yaw rotation.

$$\psi(t) = -\beta(t)$$

Thus

$$\frac{I_3}{QSb}\Delta\ddot{\psi}(t) = -C_{N\beta}\Delta\psi(t).$$

This implies

- Stability if $C_{N\beta} > 0$.
- Instability if $C_{N\beta} < 0$.

Moment Contributions

There are two main moment contributions to directional stability

- 1. wing+fuselage contribution.
- 2. vertical stabilizer

M. Peet Lecture 7: Directional Stability 10 / 28

Moment Contributions

The **Wing-Fuselage** contribution is difficult to characterize because it is not a ideal lifting surface. However, an approximation can be found as

$$C_{N\beta,wf} = -k_n k_R \frac{S_{fs} l_f}{S_w b}$$

where

- k_n corresponds to geometry.
- k_R corresponds to flight condition.
- S_{fs} is the surface area of the side view of the airplane.
- l_f is the length of the plane

The key point is that all these quantities are typically **positive**. Hence $C_{N\beta,wf}<0$.

Conclusion: The wing-fuselage by itself is usually Unstable.

Why?

M. Peet Lecture 7: Directional Stability 11 / 28

Vertical Stabilizer

- The Wing-Fuselage contribution is usually destabilizing because the net force acts to the fore of the CG, creating positive moment.
- To correct, we want to add force aft of the CG.
 - This is done via a lifting surface on the tail.

Vertical Stabilizer

As with all lifting surfaces, we express the Lift force as

$$Y_v = -C_{L,v}Q_sS_v$$

where Q_s and S_v are dynamic pressure at and surface are of the vertical stabilizer.

$$C_{L,v} = C_{L\alpha,v}\alpha_v$$

• α_v is the sideslip angle of the tail, expressed as

$$\alpha_n = \beta + \sigma$$

 $ightharpoonup \sigma$ is the downwash effect due to the wing

Moment Coefficient of Vertical Stabilizer

The moment coefficient can now be found as

$$C_{n,v} = \frac{l_v S_v}{Sb} \frac{Q_v}{Q_w} C_{L\alpha,v}(\beta + \sigma)$$
$$= V_v \eta_v C_{L\alpha,v}(\beta + \sigma)$$

where

- ullet l_v is the distance from CG to the Aerodynamic Center of the Vertical Stabilizer.
- $V_v = l_v S_v/(Sb)$ is the volume ratio
- $\eta_v = Q_v/Q_w$ is the efficiency factor.

Again, we assume $\sigma=0$ at $\beta=0$ and so we have:

$$C_{n,v} = V_v \eta_v C_{L\alpha,v} \left(1 + \frac{d\sigma}{d\beta} \right)$$
$$= C_{n\beta,v} \beta$$

14 / 28

M. Peet Lecture 7: Directional Stability

Total Moment

Combining the effects of the wing-fuselage and the tail, we have

$$C_N = C_{n0,wf} + (C_{n\beta,v} + C_{n\beta,wf})\beta$$
$$= C_{n0,total} + C_{n\beta,total}\beta$$

where typically $C_{n0,total} = C_{n0,wf} = 0$ and

$$C_{n\beta,total} = C_{n\beta,wf} + V_v \eta_v C_{L\alpha,v} \left(1 + \frac{d\sigma}{d\beta} \right)$$

For stability, we design $V_v = l_v S_v/(Sb)$ so that

$$V_{v} > -\frac{C_{n\beta,wf}}{\eta_{v}C_{L\alpha,v}\left(1 + \frac{d\sigma}{d\beta}\right)}$$
$$= \frac{k_{n}k_{R}\frac{S_{fs}l_{f}}{S_{w}b}}{\eta_{v}C_{L\alpha,v}\left(1 + \frac{d\sigma}{d\beta}\right)}$$

Example: Piper Navajo

Piper PA-31 Navajo USA

Type: light sports aircraft

Accommodation: two pilots, four passengers

Dimensions: Length: 32 ft 7 in (9.9 m) Wingspan: 40 ft 8 in (12.4 m) Height: 13 ft (3.9 m)

Weights: Empty: 3991 lb (1810 kg) Payload: 350 lb (159 kg)

Performance: Max speed: 261 mph

(420 kmh) Range: 1065 nm (1973 km) Power plant: two Lycoming TIO-540-A2C piston engines

Variants: Navaio C/R: Pressurized Navaio: Navaio Chieftain stretched version

Thrust: 620 hp (231 kW)

Max T/O: 6500 lb (2948 kg) Notes: First flown in 1964, the Navajo has gone through a number of modifications, the Navajo Chieftain being the most recognizable.

Example: Gulfstream 3

Gulfstream III USA

Type: long-range executive transport

Accommodation: two pilots; optional cabin attendant; 19 passengers

Dimensions:

Length: 83 ft 1 in (25.3 m) Wingspan: 77 ft 10 in (23.7 m) Height: 24 ft 4 in (7.4 m)

Weights:

Empty: 38 000 lb (17 236 kg) Max T/O: 69 700 lb (31 615 kg)

Payload: 1600 lb (726 kg)

Performance:

Max speed: 576 mph (928 kmh) Range: 4100 nm (7598 km)

Power plant: two Rolls-Royce Spey Mk511-8 turbofans Thrust: 22 800 lb (101.4 kN)

Variants:

Il earlier version; IV advanced version; SRA-4 special missons version; C-20 VIP transport; SMA-3 fisheries protection and SAR aircraft

Notes: C-20 used by US armed services and Swedish Air Force (Tp 102). SRA-4s can be fitted with ventral canoe housing ECM, ESM, comms intercept or SLAR. Gulfstream IIs have no winglets, although many refitted with III wing.

M. Peet Lecture 7: Directional Stability 17 / 28

Example: F/A-16

General Dynamics F-16 Fighting Falcon USA

*

Type: multi-role fighter

Accommodation: one pilot

Dimensions:

Length: 49 ft 4 in (15.03 m) Wingspan: 31 ft (9.45 m) Height: 16 ft 4 in (5.09 m)

Weights:

Empty: GE - 19 517 lb (8853 kg); PW - 18 726 lb (8494 kg) Max T/O: 37 500 lb (17 010 kg)

Performance:

Max Speed: above Mach 2

Range: 1480 nm (2642 km) Powerplant: one General Electric F100-GE-100 or one Pratt & Whitney F100-PW-220 turbofan

Thrust: GE - 29 588 lb (131.6 kN); PW - 29 100 lb (129.4 kN)

Armament:

one 20 mm M61A1 Vulcan cannon; six hardpoints, two wingtip rails; 12 000 lb (5443kg) warload; AIM-120 AMRAAM, AIM-7, AIM-9, Rafael Python 3 AAMs; 30 mm gun pod; AGM-65A; AGM-88 HARM; Harpoon, Penguin; LGBs: bombs; rockets

Variants:

F-16A single-seater; F-16A (ADF); F-16B/D operational trainer; FS-X Japanese licence built derivative

Notes: Specification applies to F-16C. Israeli F-16Ds have a box-like spine fairing housing additional ECM equipment.

Example: Flying Car

Example: A-10

Fairchild A-10A Thunderbolt USA

本

Type: close support aircraft

Accommodation: one pilot

Dimensions:

Length: 53 ft 4 in (16.26 m) Wingspan: 57 ft 6 in (17.53 m) Height: 14 ft 8 in (4.47 m)

Weights:

Empty: 23 370 lb (10 710 kg) Max T/O: 47 400 lb (21 500 kg)

Performance: Max Speed: 449 mph (722

Max Speed: 449 mph (722 kmh) Range: 1080 nm (2000 km) Powerplant: two General

Powerplant: two General Electric TF34-GE-100 high bypass ratio turbofans Thrust: 18 130 lb (80.6 kN)

Armament:

one 30 mm GAU-8/A sevenbarrelled cannon; 11 hardpoints; 16 000 lb (7257 kg) warload; AGM-65A Maverick; wide range of bombs

Variants:

OA-10A Fast FAC aircraft

Notes: The pilot is protected by a titanium 'bathtub' capable of withstanding 23 mm gun fire.

M. Peet Lecture 7: Directional Stability

Rudder Moment

The rudder is a *control surface* attached to the vertical tail.

A Positive deflection produces a Negative Yawing moment.

$$N_r = -l_v Y_r$$

where

$$Y_r = Q_v S_v \frac{dC_{L,v}}{d\alpha} \frac{d\alpha}{d\delta_r} \delta_r$$

Rudder Moment

Define $C_{n,r}:=\frac{N_r}{QSb}$. Then as for all lifting surfaces:

$$C_{n,r} = -\frac{Q_v}{Q} \frac{l_v S_v}{Sb} C_{L\alpha,v} \frac{d\alpha}{d\delta_r} \delta_r$$
$$= -\eta_v V_v C_{L\alpha,v} \tau \delta_r$$
$$= C_{n,\delta_r} \delta_r$$

where au is as defined for elevator deflection

$$C_{n,\delta_r} = -\eta_v V_v C_{L\alpha,v} \tau$$

M. Peet Lecture 7: Directional Stability 22 / 28

Example: Sideslip Landing

Example: Sideslip Landing

Question: In the movie, a rudder deflection of $\cong 30\deg$ produces a stable sideslip angle of $\cong 50\deg$. Estimate $C_{n\beta,wf}$. Neglect Downwash, use $\eta_v=1$, $C_{L\alpha,v}=.1\deg^{-1}$, $\frac{S_r}{S_t}=.6$ and $V_v=.8$.

Answer: The moment equation is given by

$$C_N = C_{N\beta}\beta + C_{N\delta_r}\delta_r$$

where

$$C_{N\delta_r} = -\eta_v V_v C_{L\alpha,v} \tau,$$

and

$$C_{N\beta} = C_{n\beta,wf} + V_v C_{L\alpha,v}$$

Now, fixing δ_r , the equilibrium is when $C_N=0$, so

$$\frac{\beta_{eq}}{\delta_r} = -\frac{C_{N\beta}}{C_{N\delta_n}} = \frac{C_{n\beta,wf} + V_v C_{L\alpha,v}}{V_v C_{L\alpha,v} \tau}$$

M. Peet Lecture 7: Directional Stability

24 / 28

Example: Sideslip Landing

- In the movie, a negative rudder deflection caused a negative $\beta_e q$. This implies $C_{N\beta}>0$ since $C_{N\delta_r}$ is always negative. Thus the aircraft is stable.
- Notice that since $\beta_{eq} > \delta_r$, $C_{n\beta,wf}$ must be almost positive, or almost stable without the tail.

Continuing, we solve for

$$C_{n\beta,wf} = \left(\frac{\beta_{eq}}{\delta_r}\tau - 1\right)V_vC_{L\alpha,v}$$

Thus the wing-fuselage is stable if $\beta_{eq}\tau > \delta_r$. In this case, have $\frac{S_r}{S_t} = .6$ implies $\tau \cong .7$ from the plot

Example: Sideslip Landing

Finally, we conclude

$$\beta_{eq}\tau = 50 * .7 = 35\deg$$
 and $\delta_r = 30\deg$

Hence, we have the wing-fuselage is stable. Additionally, estimate $V_H=.8$ and $C_{L\alpha,v}=.1$. Then

$$C_{n\beta,wf} = .17 * .8 * .1 = +.013 \,\mathrm{deg}^{-1}$$

Conclusion

In this Lecture, you learned:

The Design Process

- How to design an aircraft for steady-level flight.
- To take into account
 - ▶ L=w
 - $\sum M = C_M = 0$
 - $C_{M\alpha} < 0$
 - $C_{M0} > 0$

Directional Stability

- $C_{N\beta} > 0$ means stability.
- Most aircraft need a tail $C_{N\beta,wf} < 0$.
- How to size a tail so that $C_{N\beta} > 0$.
- The effect of rudder on yawing moment $C_{N\delta_r}$
- How to estimate aircraft parameters from video.

M. Peet Lecture 7: Directional Stability 27

Next Lecture: Axial Stability and beyond

We will wrap up static stability with a discussion of axial stability

- Fuselage Contribution
- Dihedral Effect
- Aileron Control

We will then move on to

- 3-D stability
- Equations of motion in a rotating reference frame.