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Introduction

In this Lecture, you will learn:

Sphere of Influence

• Definition

Escape and Re-insertion

• The light and dark of the Oberth Effect

Patched Conics

• Heliocentric Hohmann

Planetary Flyby

• The Gravity Assist
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The Sphere of Influence Model
Three-Body Motion

Consider a Simple Earth-Moon Trajectory.

1. Launch

2. Establish Parking Orbit

3. Escape Trajectory

4. Arrive at Destination

5. Circularize or Depart Destination

The big difference is that now there are 3 bodies.

• We only know how to solve the 2-body problem.

• Solving the 3-body problem is beyond us.
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Patched Conics

For interplanetary travel, the problem is even more complicated.

Consider the Figure

• The motion is elliptic
about the sun.

• The motion is affected by
the planets

I Interference only occurs
in the green bands.

I Motion about planets is
hyperbolic.

The solution is to break the mission into segments.

• During each segment we use two-body motion.

• The third body is a disturbance.
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Sphere of influence
The Wrong Definition

Question: Who is in charge??

• The Sphere of Influence of A stops when A is no longer the dominant force.

• What do we mean by dominant?

Wrong Definition:

The Sphere of Influence of A is
the region A exerts the largest
gravitational force.

This would imply the moon is
not in earth’s Sphere of
Influence!!!
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Sphere of influence
The Sun’s Perspective

Sun Perspective: Lets group the forces as central and disturbing.
Consider motion of a spacecraft relative to the sun:

~̈rsv +
G(ms +mv)

‖~rsv‖3
~rsv = −Gmp

[

~rpv
‖~rpv‖3

+
~rsp

‖~rsp‖3

]

where p denotes planet, v denotes vehicles and s denotes sun.

The Central Force is

~Fcentral,s =
G(ms +mv)

‖~rsv‖3
~rsv

The Disturbing Force is

~Fdist,s = −Gmp

[

~rpv
‖~rpv‖3

+
~rsp

‖~rsp‖3

]
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Sphere of influence
The Planet’s Perspective

Planet Perspective: The motion of the spacecraft relative to the planet is

~̈rpv +
G(mp +mv)

‖~rpv‖3
~rpv = −Gms

[

~rsv
‖~rsv‖3

+
~rsp

‖~rsp‖3

]

The Central Force for the planet is

~Fcentral,p =
G(mp +mv)

‖~rpv‖3
~rpv

The Disturbing Force for the planet is

~Fdist,p = −Gms

[

~rsv
‖~rsv‖3

+
~rsp

‖~rsp‖3

]

M. Peet Lecture 12: Spacecraft Dynamics 7 / 27



Sphere of influence
Definition

Definition 1.

An object is in the Sphere of Influence(SOI) of body 1 if

‖ ~Fdist,1‖

‖ ~Fcentral,1‖
<

‖ ~Fdist,2‖

‖ ~Fcentral,2‖

for any other body 2.

That is, the ratio of disturbing force to central force determines which planet is
in control.

For planets, an approximation for determining the SOI of a planet of mass mp

at distance dp from the sun is

RSOI
∼=

(

mp

ms

)2/5

dp
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Sphere of influence
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Example: Lunar Lander

Problem: Suppose we want to plan a lunar-lander mission. Determine the
spheres of influence to consider for a patched-conic approach.

• The moon orbits at a distance of 384,000km.
• The Sphere of influence of the earth is of radius 924,000km.
• The sphere of influence of the moon is of radius 66,100km.

Solution: The spacecraft will transition to the lunar sphere at distance

r = 384, 000− 66, 100 = 317, 900km

Thus we will need a plane change. A reasonable
mission design is

1. Depart earth on a Hohmann transfer to
radius 317, 900 km.

2. Perform inclination change near apogee.

3. Enter sphere of influence of the moon.

4. Establish parking orbit.
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Example: Lunar Lander

Additionally, a Plane Change is needed.
• Note that the lunar orbit is inclined at about 5.8◦ to the ecliptic plane.

• The inclination of the lunar orbit is almost fixed with respect to the ecliptic.
• Not fixed but not the equatorial plane.
• Inclination to equator varies by 21.3◦ ± 5.8◦ every 18 years.
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5 Stage Lunar Intercept Mission
First Stage Lunar Tug Assist
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Lunar_Trajectory.mp4
Media File (video/mp4)



Interplanetary Mission Planning

Every mission is different.

• It is impossible to cover every scenario

Instead, Let’s go through an example.

• Can serve as a template.

Problem: Design an Earth-Venus rendez-vous.
Final Venus orbit should be posigrade of
altitude 500km.

Solution: We begin in an initial parking orbit.

• Orbital plane aligned with ecliptic plane
I i ∼= 23

◦

• Circular orbit.
I Radius r ∼= 6578km
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Interplanetary Hohmann Transfer

Design a Hohmann transfer from Earth to Venus.

Naturally, the perigee and apogee velocities of
the transfer ellipse are

vp =

√

2µsun
re

rv(re + rv)

va =

√

2µsun
rv

re(re + rv)

Note that because Venus is an inner planet,
apogee velocity occurs at Earth

The Hohmann transfer is defined using the Sphere of Influence of the Sun

• Velocities are in the Heliocentric Frame!

M. Peet Lecture 12: Spacecraft Dynamics 14 / 27



Interplanetary Hohmann Transfer

We can use the Hohmann transfer because the voyage will take place exclusively
in the sun’s frame of reference.

• The earth orbits at radius 1au = 1.5 · 108km = 23, 518ER.
• The SOI of the earth is only 145ER, or .5%.
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Interplanetary Hohmann Transfer
Injection (va)

Problem: How to achieve the initial va?

The initial velocities va and vp are in the Heliocentric frame.

• To achieve va requires an initial ∆v

• Initial ∆v will be in the Geocentric frame.
I Preferably in low orbit (Oblerth Effect)

In the Geocentric Frame, we require

v∞ + ve = va

ve is velocity of the earth in heliocentric frame. Thus the expression for v∞ is

v∞ =

√

−
µ

E
=

√

v2f −
2µ

rpark

where vf is the speed at injection and rpark is the parking radius.
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Interplanetary Hohmann Transfer
Injection

µsun = 1.327 · 1011, aearth = 1.49 · 108

It is now easy to compute

v∞ = vp − ve =

27.34− 29.84 = −2.48km/s

We can now solve for vf .

vf =

√

(vp − ve)2 +
2µ

rpark

To calculate the initial ∆v, use vi =
√

µ/rpark for velocity of the parking orbit.

∆v1 = vf − vi = 11.28km/s− 7.78km/s = 3.5km/s
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Arrival at Venus

Rv = 6187km, µv = 324859, avenus = 1.08 · 108

Our incoming velocity in the Venus-frame is

v∞,v = vp − vv = 37.81km/s− 35.09km/s = 2.71km/s

Because the velocity is positive, we will enter from the back door.
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Arrival at Venus

For orbital insertion, we want to perform a retrograde burn at periapse.

• We need our periapse to be
rdes = 6687km.

• The a of the injected orbit is

−
µv

2a
= E =

1

2
v2inf,v

• a cannot be modified.

• We calculate a = −µv/v
2

inf,v = −44, 232.

• To achieve rp = a(1− e), we need

e = 1−
rp
a

= 1.15
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Arrival at Venus

To achieve the desired e = 1.15, we control the conditions at the Patch Point.

• We do through the angular momentum, h.

We can control the Target Radius, ∆ through small adjustments far from the
planet. Angular momentum can be controlled exactly through target radius, ∆.

hv = ∆v∞,v
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Arrival at Venus

Recall that p is defined only by angular momentum

p =
h2

µ
=

∆2v2
∞,v

µv

Since
p = a(1 − e2)

and a is fixed, we can solve for ∆,

∆ =

√

pµv

v2
∞,v

=

√

a(1− e2)µv

v2
∞,v

= 25, 120km
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Messenger Probe to Mercury

M. Peet Lecture 12: Spacecraft Dynamics 22 / 27


Messenger_Probe.mp4
Media File (video/mp4)



Gravity Assist Trajectories

The same approach can be used to design gravity assist trajectories. In
2-dimensions, this is

~vf = R1(δ) (~vi − vplanet) + ~vplanet

Example: If δ = 180◦ and ~vi =

[

−2
0

]

km/s and ~vp =

[

2
0

]

km/s, then

vf = R(180◦)

[

−4
0

]

km/s+

[

2
0

]

km/s =

[

4
0

]

km/s+

[

2
0

]

km/s =

[

6
0

]

km/s

Thus the probe was able to triple its velocity!
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Gravity Assist Trajectories

To achieve the desired turning angle, we must control the geometry

The turning angle δ is given by

2 cos−1
1

e

Recall

a = −µplanet/‖~vi − ~vplanet‖
2

Then the eccentricity can be fixed by the target radius as

∆ =

√

a(1− e2)µplanet

‖~vi − ~vplanet‖2
= 25, 120km

In 3 dimensions, the calculations are more complex.
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Trajectories for Voyager 1 and Voyager 2 Spacecraft
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Voyager12.mp4
Media File (video/mp4)



Trajectories for Voyager 1, Voyager 2, and Pioneer

Spacecraft
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Summary

This Lecture you have learned:

SPACECRAFT DYNAMICS

Next Lecture: Final Exam.
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