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Introduction

In this Lecture, you will learn:

Sphere of Influence
o Definition

Escape and Re-insertion
e The light and dark of the Oberth Effect

Patched Conics
e Heliocentric Hohmann

Planetary Flyby
e The Gravity Assist
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The Sphere of Influence Model

Three-Body Motion

Consider a Simple Earth-Moon Trajectory.
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. . . Spacecra Separaton
Establish Parking Orbit e b2

Ha = 36,786 km
i=2397

Centaur Second Bum Start

Escape Trajectory
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Arrive at Destination

Transfer Ortit

AR

Circularize or Depart Destination

Spacecraft Injection into

Parting O
Geostationary Orbit iaeg £V

Hp = 167 km
Ha = 22442 ki
i=24.83

The big difference is that now there are 3 bodies.
e We only know how to solve the 2-body problem.
e Solving the 3-body problem is beyond us.
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Patched Conics

For interplanetary travel, the problem is even more complicated.

Consider the Figure

e The motion is elliptic
about the sun.

e The motion is affected by or
the planets o
> Interference only occurs

in the green bands.
» Motion about planets is
hyperbolic. ol

The solution is to break the mission into segments.
e During each segment we use two-body motion.
e The third body is a
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Sphere of influence
The Wrong Definition

Question: Who is in charge??
e The Sphere of Influence of A stops when A is no longer the dominant force.
e What do we mean by dominant?

Wrong Definition:

The Sphere of Influence of A is
the region A exerts the largest
gravitational force.

This would imply the moon is
not in earth’'s Sphere of
Influence!!!
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Sphere of influence

The Sun’s Perspective

Sun Perspective: Lets group the forces as central and disturbing.
Consider motion of a spacecraft relative to the sun:
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Sphere of influence

The Planet’s Perspective

Planet Perspective: The motion of the spacecraft relative to the planet is
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Sphere of influence

Definition

Definition 1.
An object is in the Sphere of Influence(SOIl) of body 1 if

| Fiist. | - | Fiist 2|

||ﬁcentral,1 || ||ﬁcentral,2||
for any other body 2.

That is, the ratio of disturbing force to central force determines which planet is
in control.

For planets, an approximation for determining the SOI of a planet of mass m,,
at distance d,, from the sun is

o\ 2/5
R501§<mp> dp

S
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Sphere of influence

Table 7.1 Sphere of Influence Radii

Celestial Body ~ Equatorial Radius ~ SOI Radius

SOI Radius

(km) (km) (body radii)
Mercury 2487 1.13x 10° 45
Venus 6187 6.17x 10° 100
Earth 6378 9.24 x 105 145
Mars 3380 5.74 % 10° 170
Jupiter 71370 4.83 x 107 677
Neptune 22320 8.67 x 107 3886
Moon 1738 6.61 x 104 38
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Example: Lunar Lander

Problem: Suppose we want to plan a lunar-lander mission. Determine the
spheres of influence to consider for a patched-conic approach.

e The moon orbits at a distance of 384,000km.

e The Sphere of influence of the earth is of radius 924,000km.

e The sphere of influence of the moon is of radius 66,100km.

Solution: The spacecraft will transition to the lunar sphere at distance
r = 384,000 — 66,100 = 317,900km

Thus we will need a plane change. A reasonable
mission design is

1. Depart earth on a Hohmann transfer to
radius 317,900 km.

2. Perform inclination change near apogee.
3. Enter sphere of influence of the moon.
4. Establish parking orbit.
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Example: Lunar Lander

Additionally, a Plane Change is needed.

o Note that the lunar orbit is inclined at about 5.8° to the ecliptic plane.

e The inclination of the lunar orbit is almost fixed with respect to the ecliptic.

o Not fixed but not the equatorial plane.

e Inclination to equator varies by 21.3° 4= 5.8° every 18 years.

X

€
vernal equinox ?&\
direction ™
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5 Stage Lunar Intercept Mission

First Stage Lunar Tug Assist

N
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Lunar_Trajectory.mp4
Media File (video/mp4)


Interplanetary Mission Planning

Every mission is different.
e It is impossible to cover every scenario
Instead, Let’s go through an example.

e Can serve as a template.

Problem: Design an Earth-Venus rendez-vous. North Celestial Pole
Final Venus orbit should be posigrade of
altitude 500km.

Solution: We begin in an initial parking orbit.
e Orbital plane aligned with ecliptic plane
> 522 23°
e Circular orbit.

» Radius r = 6578km [nrgifgr:m.l:hq
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Interplanetary Hohmann Transfer

Design a Hohmann transfer from Earth to Venus.

Naturally, the perigee and apogee velocities of
the transfer ellipse are

2 le

Up = sun~_ ;.\

P K ro(re +70)

Vg = sun_ .\
H Te(Te + 74)

Note that because Venus is an inner planet,
apogee velocity occurs at Earth

v%‘—-—-—><—— Voo
—
V2
The Hohmann transfer is defined using the Sphere of Influence of the Sun

e Velocities are in the Heliocentric Frame!
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Interplanetary Hohmann Transfer

We can use the Hohmann transfer because the voyage will take place exclusively
in the sun’s frame of reference.

o The earth orbits at radius lau = 1.5 - 103km = 23, 518ER.

e The SOI of the earth is only 145ER, or .5%.
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Interplanetary Hohmann Transfer

Injection (vq)

Problem: How to achieve the initial v,?

The initial velocities v, and v, are in the Heliocentric frame.

e To achieve v, requires an initial Av
e Initial Av will be in the Geocentric frame. nf

> Preferably in low orbit ( )

In the Geocentric Frame, we require

Voo T+ Ve = VUq

ve is velocity of the earth in heliocentric frame. Thus the expression for vy is

R 20

UDQ = =
E ! Tpark

where vy is the speed at injection and 7,4, is the parking radius.
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Injection

Interplanetary Hohmann Transfer

Hsun = 1.327- 1011; Gearth = 1.49 - 108

It is now easy to compute

: Not to scale ;1'%_:
Voo = Up — Ve = IIl E.:_
27.34 — 29.84 = —2.48km/s ‘\\ | 3\

We can now solve for v;.

2
vf:\/(vp—ve)2+ s

Tpark

To calculate the initial Av, use v; = \/p/Tpark for velocity of the parking orbit.

Avy = vy —v; = 11.28km/s — 7.78km /s = 3.5km/s
M. Peet
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Arrival at Venus

R, = 6187km, 1, = 324859,  ayenus = 1.08 - 10%
Our incoming velocity in the Venus-frame is

Voo,w = Up — Uy = 37.81km/s — 35.09km/s = 2.71km/s

Because the velocity is positive, we will enter from the back door.

iy T‘ V=g
‘ A
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Arrival at Venus

For orbital insertion, we want to perform a retrograde burn at periapse.

e We need our periapse to be

5/2\5-"/‘ T VeoQ
Tdes = 668Tkm. |
e The a of the injected orbit is A
by Lo
2 =F= 2vlnf,v

e a cannot be modified.

o We calculate a = —1, /v7, ;. , = —44,232.
e To achieve r, = a(1 — €), we need
e=1-2—-115
a
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Arrival at Venus

To achieve the desired e = 1.15, we control the conditions at the Patch Point.
e We do through the angular momentum, h.

We can control the Target Radius, A through small adjustments far from the
planet. Angular momentum can be controlled exactly through target radius, A.

hy = Avsg
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Arrival at Venus

Recall that p is defined only by angular momentum

h2 A%,
p=—= 2
1Y o
O_"ijLW'{T ———————————————————
y\
target L
i planet, /’\\_
. Yp
Since
p=a(l— 62)
and a is fixed, we can solve for A,
a(l —
L o _ 95 190km
UOO v

)
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Messenger Probe to Mercury

N
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Messenger_Probe.mp4
Media File (video/mp4)


Gravity Assist Trajectories

The same approach can be used to design gravity assist trajectories. In
2-dimensions, this is

’Uf = Rl (5) (771 - Uplanet) + Uplanet

AVFB

Example: If § = 180° and ¢; = [_02] km/s and v, = B] km/s, then

vy = R(180°) hﬂ km/s + m ks — [3] km /s + m ks — m km /s

Thus the probe was able to triple its velocity!
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Gravity Assist Trajectories

To achieve the desired turning angle, we must control the geometry

The turning angle § is given by
1

2cos ™! -

e

Recall

a= _,uplanet/HUi - ﬁplanetHQ

Then the eccentricity can be fixed by the target radius as

a(]- - 62)Mplanet
||771 - 'Uplanet ||2

A— = 25,120km

In 3 dimensions, the calculations are more complex.
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Trajectories for Voyager 1 and Voyager 2 Spacecraft

N
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Voyager12.mp4
Media File (video/mp4)


Trajectories for Voyager 1, Voyager 2, and Pioneer
Spacecraft

Neptuni

Uranus
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Summary

This Lecture you have learned:

SPACECRAFT DYNAMICS

Next Lecture: Final Exam.
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