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Summary

Powerful New Tools

• Convex Optimization
I LMIs
I Sum-of-Squares

Many old problems have been solved

• H∞ and H2 optimal control

• Nonlinear stability analysis

• Analysis and Control of delayed and PDE systems

Many questions are still unresolved

• Control of nonlinear Systems

• Nonlinear Programming (partially resolved)

Question: What is meant by a “solution”?
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Outline

Lectures 1-2

1. Linear Systems

2. Convex Optimization and Linear Matrix Inequalities

3. Optimal Control

4. LMI Solutions to the H∞ and H2 Optimal Control Problems
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Signal Spaces
L2 space

Definition 1.

L2[0,∞) is the Hilbert space of functions f : R+ → Rn with inner product

〈u, y〉L2
=

1

2π

∫ ∞

0

u(t)T v(t)dt

L2[0,∞) inherits the norm

‖u‖2L2
=

∫ ∞

0

‖u(t)‖2dt
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Operator Theory
Linear Operators

Definition 2.

The normed space of bounded linear operators from X to Y is denoted
L(X,Y) with norm

‖P‖L(X,Y ) := sup
x∈X
x 6=0

‖Px‖Y
‖x‖X

= K

• Satisfies the properties of a norm

• This type of norm is called an “induced” norm

• Notation: L(X) := L(X,X)

• If X is a Banach space, then L(X,Y ) is a Banach space

Properties: Suppose G1 ∈ L(X,Y ) and G2 ∈ L(Y, Z)

• Then G2 �G1 ∈ L(X,Z).

• ‖G2 �G1‖L(X,Z) ≤ ‖G2‖L(Y,Z)‖G1‖L(X,Y ).

• Composition forms an algebra.
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Laplace Transform

Definition 3.

Given u ∈ L2[0,∞), the Laplace Transform of u is û = Λu, where

û(s) = (Λu)(s) = lim
T→∞

∫ T

0

u(t)e−stdt

if this limit exists.

Λ is a bounded linear operator - Λ ∈ L(L2, H2).

• Λ : L2 → H2.

• The norm ‖Λ‖L(L2,H2) is

‖Λ‖ = sup
u∈L2

‖Λu‖H2

‖u‖L2

=???
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H2 - A Space of Integrable Analytic Functions

Definition 4.

A complex function is analytic if it is continuous and bounded.

A function is analytic if the Taylor series converges everywhere in the domain.

Definition 5.

A function û : C̄+ → Cn is in H2 if

1. û(s) is analytic on the Open RHP (denoted C+)

2. For almost every real ω,

lim
σ→0+

û(σ + ıω) = û(ıω)

I Which means continuous on the imaginary axis

3. ∫ ∞

−∞
sup
σ≥0
‖û(σ + ıω)‖22 <∞

I Which means integrable on every vertical line.
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The Maximum Modulus Principle

Theorem 6 (Maximum Modulus).

An analytic function cannot obtain its extrema in the interior of the domain.

Hence if û satisfies 1) and 2), then

∫ ∞

−∞
sup
σ≥0
‖û(σ + ıω)‖22 =

∫ ∞

−∞
‖û(ıω)‖22dω

We equip H2 with a norm and inner product

‖û‖H2
=

∫ ∞

−∞
‖û(ıω)‖22dω, 〈û, ŷ〉H2

=
1

2π

∫ ∞

−∞
û(ıω)∗v̂(ıω)dω
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Paley-Wiener

Theorem 7.

1. If u ∈ L2[0,∞), then Λu ∈ H2.

2. If û ∈ H2, then there exists a u ∈ L2[0,∞) such that û = Λu ( Onto).

• Shows that H2 is exactly the image of Λ on L2[0,∞)

• Shows the map is invertible

Definition 8.

The inverse of the Laplace transform, Λ−1 : H2 → L2[0,∞) is

u(t) = (Λ−1û)(t) =
1

2π

∫ ∞

−∞
eσt · eıωtû(σ + ıω)dω

where σ can be any real number.
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Corollary

Lemma 9.

〈Λu,Λy〉H2
= 〈u, y〉L2

• Thus Λ is unitary.

• L2[0,∞) and H2 are isomorphic.

‖Λ‖ = sup
u∈L2

‖Λu‖H2

‖u‖L2

=???
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H∞ - A Space of Bounded Analytic Functions

Definition 10.

A function Ĝ : C̄+ → Cn×m is in H∞ if

1. Ĝ(s) is analytic on the CRHP, C+.

2.
lim
σ→0+

Ĝ(σ + ıω) = Ĝ(ıω)

3.
sup
s∈C+

σ̄(Ĝ(s)) <∞

• A Banach Space with norm

‖Ĝ‖H∞ = ess sup
ω∈R

σ̄(Ĝ(ıω))
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H∞ (A Signal Space) and Multiplier Operators

Every element of H∞ defines a multiplication operator.

Definition 11.

Given Ĝ ∈ H∞ , define MĜ ∈ L(H∞)

(MĜû)(s) = Ĝ(s)û(s)

for û ∈ H2.

Functions vs. Operators

• Ĝ is a function of a complex variable.

• MĜ is an operator (a function of functions...).
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Causal LTI Systems map to H∞

For any analytic functions, û and Ĝ, the function

ŷ(s) = Ĝ(s)û(s)

is analytic.

• Thus MĜ : H2 → H2.

• Thus Λ−1MĜΛ maps L2[0,∞)→ L2[0,∞).

Theorem 12.

G is a Causal, Linear, Time-Invariant Operator on L2 if and only if there exists
some Ĝ ∈ H∞ such that G = Λ−1MĜΛ.

(ΛGu)(ıω) = Ĝ(ıω)û(ıω)

H∞ is the space of transfer functions for linear time-invariant systems.
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H∞ - The space of “Transfer Functions”

From Paley-Wiener, if G = Λ−1MĜΛ

Theorem 13.

‖G‖L(L2) = ‖MĜ‖L(H2) = ‖Ĝ‖H∞

The Gain of the system G can be calculated as ‖Ĝ‖H∞
• This is the motivation for H∞ control

• minimize supu
‖Gu‖L2

‖u‖L2
.

I minimize maximum energy of the output.

Conclusion: H∞ provides a complete parametrization of the space of causal
bounded linear time-invariant operators.
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Rational Transfer Functions (RH∞)

The space of bounded analytic functions, H∞ is infinite-dimensional.

• this makes it hard to design optimal controllers.

We usually restrict ourselves to state-space systems and state-space controllers.

Definition 14.

The space of rational functions is defined as

R :=

{
p(s)

q(s)
: p, q are polynomials

}

We define the following rational subspaces.

RH2 = R ∩H2

RH∞ = R ∩H∞

Note that RH2 and RH∞ are not complete(Banach) spaces.
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Rational Transfer Functions (RH∞)

RH∞ is the set of proper rational functions with no poles in the closed right
half-plane (CRHP).

Definition 15.

• A rational function r(s) = p(s)
q(s) is Proper if the degree of p is less than or

equal to the degree of q.

• A rational function r(s) = p(s)
q(s) is Strictly Proper if the degree of p is less

than the degree of q.

Proposition 1.

1. Ĝ ∈ RH∞ if and only if Ĝ is proper with no poles on the closed right
half-plane.
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State-Space Systems

Define a State-Space System G : L2 → L2 by y = Gu if

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).

Theorem 16.
• For any stable state-space system, G, there exists some Ĝ ∈ RH∞ such

that
G = Λ−1MĜΛ

• For any Ĝ ∈ RH∞, the operator G = Λ−1MĜΛ can be represented in
state-space for some A,B,C and D where A is Hurwitz.

For state-space system, (A,B,C,D),

Ĝ(s) = C(sI −A)−1B +D

State-Space is NOT Unique. For any invertible T ,

• Ĝ = C(sI −A)−1B +D = CT−1(sI − TAT−1)−1TB +D.
I (A,B,C,D) and (TAT−1, TB,CT−1, D) both represent the system G.
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Optimal Control Framework
2-input 2-output Framework

12 - 2 LFTs and stability 2001.11.07.04

2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

We introduce the control framework by separating internal signals from external
signals.
Output Signals:

• z: Output to be controlled/minimized
I Regulated output

• y: Output used by the controller
I Measured in real-time by sensor

The same signal may appear in both outputs.

• e.g. if you can measure what you want to minimize.
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2-input 2-output Framework12 - 2 LFTs and stability 2001.11.07.04

2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

Input Signals:

• w: Disturbance, Tracking Signal, etc.
I exogenous input

• u: Output from controller
I Input to actuator
I Not related to external input
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The Optimal Control Framework

The controller closes the loop from y to u.

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

For a linear system P , we have 4 subsystems.
[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]

P11 : w 7→ z P12 : u 7→ z

P21 : w 7→ y P22 : u 7→ y

Note that all Pij can themselves be MIMO.
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The Regulator
nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D




12 - 4 LFTs and stability 2001.11.07.04

Example: the regulator

If we define q = w1 + u and r = P0q, then

z =

[
z1

z2

]
=

[
yp
u

]
w =

[
w1

w2

]
=

[
ηproc
ηsensor

]

y =
[
y1

]
= r + w2

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D




12 - 4 LFTs and stability 2001.11.07.04

Example: the regulator
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The Regulator

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0





w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D




12 - 4 LFTs and stability 2001.11.07.04

Example: the regulator

The reconfigured plant P is given by



z1(t)
z2(t)
y(t)


 =



P0 0 P0

0 0 I
P0 I P0





w1(t)
w2(t)
u(t)




If P0 = (A,B,C,D), then

P =




A B 0 B

C
0
C

D 0 D
0 0 I
D I D



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Diagnostics12 - 3 LFTs and stability 2001.11.07.04

Command inputs and diagnostic outputs

wsystemzsystem

diagnostic outputscommand inputs

ysystem usystem

System

Controller

Formulate the above as

wsystem

wcommands

zsystem

zdiag

ysystem

ycommands

usystem

udiag

System

Plant

Controller

12 - 3 LFTs and stability 2001.11.07.04

Command inputs and diagnostic outputs

wsystemzsystem

diagnostic outputscommand inputs

ysystem usystem

System

Controller

Formulate the above as

wsystem

wcommands

zsystem

zdiag

ysystem

ycommands

usystem

udiag

System

Plant

Controller
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Tracking Control
12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−

Define q = nproc + u, then

z =

[
z1

z2

]
=

[
e
u

]
e = r − P0q

y =

[
y1

y2

]
=

[
r

nsensor + P0q

]
w =



w1

w2

w3


 =




r
nproc
nsensor




e = tracking error r = tracking input

nproc = process noise nsensor = sensor noise
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Tracking Control

12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−

P =




I −P0 0 −P0

0 0 0 I
I 0 0 0
0 P0 I P0




z1 = r − P0(nproc + u)

z2 = u

y1 = r

y2 = w3 + P0(nproc + u)

M. Peet Lecture 01: 24 / 135



Linear Fractional Transformation

Close the loop

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK
CK DK

]
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Linear Fractional Transformation

z = P11w + P12u

y = P21w + P22u

u = Ky

Solving for u,
u = KP21w +KP22u

Thus

(I −KP22)u = KP21w

u = (I −KP22)−1KP21w

Now we solve for z:

z =
[
P11 + P12(I −KP22)−1KP21

]
w
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Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P,K), denoted

S(P,K) := P11 + P12(I −KP22)−1KP21

AKA: Lower Star Product

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21
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Other Fractional Transformations

Lower LFT:

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

S(P,K) := P11+P12(I−KP22)−1KP21

Upper LFT:

Lower LFT

S(P,K) = P11+P12K(I−P22K)−1P21

wz

y u
P

K

Upper LFT

S(P,K) = P22+P21Q(I −P11Q)−1P12

wz

y u
P

Q

Star Product

w1

w2

z1

z2

y u

K

P

S(P,K) =[
S(P,K11) P12(I −K11P22)

−1K12

K21(I − P22K11)
−1P21 S(K,P22)

]

12 - 8 LFTs and stability 2001.11.07.04

Linear fractional transformations

S̄(P,K) := P22+P21Q(I−P11K)−1P12
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Other Fractional Transformations

Star Product:Lower LFT

S(P,K) = P11+P12K(I−P22K)−1P21

wz

y u
P

K

Upper LFT

S(P,K) = P22+P21Q(I −P11Q)−1P12

wz

y u
P

Q

Star Product

w1

w2

z1

z2

y u

K

P

S(P,K) =[
S(P,K11) P12(I −K11P22)

−1K12

K21(I − P22K11)
−1P21 S(K,P22)

]

12 - 8 LFTs and stability 2001.11.07.04

Linear fractional transformations

S(P,K) :=

[
S(P,K11) P12(I −K11P22)−1K12

K21(I − P22K11)−1P21 S̄(K,P22)

]
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Well-Posedness

The interconnection doesn’t always make sense. Suppose

P =




A B1 B2

C1

C2

D11 D12

D21 D22


 and K =

[
AK BK
CK DK

]
.

Definition 17.

The interconnection S(P,K) is well-posed if for any smooth w and any x(0)
and xK(0), there exist functions x, xK , u, y, z such that

ẋ(t) = Ax(t) +B1w(t) +B2u(t) ẋK(t) = AKx(t) +BKy(t)

z(t) = C1x(t) +D11w(t) +D12u(t) u(t) = CKx(t) +DKy(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

Note: The solution does not need to be in L2.

• Says nothing about stability.
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Well-Posedness

In state-space format, the closed-loop system is:

[
ẋ(t)
ẋK(t)

]
=

[
A 0
0 AK

] [
x(t)
xK(t)

]
+

[
B2 0
0 BK

] [
u(t)
y(t)

]
+

[
B1

0

]
w(t)

z(t) =
[
C1 0

] [ x(t)
xK(t)

]
+
[
D12 0

] [u(t)
y(t)

]
+D11w(t)

From
u(t) = DKy(t) + CKxK(t)

y(t) = D22u(t) + C2x(t) +D21w(t)

We have [
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK
C2 0

] [
x(t)
xK(t)

]
+

[
0
D21

]
w(t)

Because the rest is state-space, the interconnection is well-posed if and only if

the matrix

[
I −DK

−D22 I

]
is invertible.
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Well-Posedness

Question: When is [
I −DK

−D22 I

]

invertible?
Answer: 2x2 matrices have a closed-form inverse

[
I −DK

−D22 I

]−1

=

[
I +DKQD22 DKQ

QD22 Q

]

where Q = (I −D22DK)−1.

Proposition 2.

The interconnection S(P,K) is well-posed if and only if (I −D22DK) is
invertible.

• Equivalently (I −DKD22) is invertible.

• Sufficient conditions: DK = 0 or D22 = 0.

• To optimize over K, we will need to enforce this constraint somehow.
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Optimal Control

Definition 18.

The Optimal H∞-Control Problem is

min
K∈H∞

‖S(P,K)‖H∞

• This is the Optimal H∞ Dynamic-Output-Feedback Control Problem

Another class of optimal control problem:

Definition 19.

The Optimal H2-Control Problem is

min
K∈H∞

‖S(P,K)‖H2
such that

S(P,K) ∈ H∞.
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Optimal Control

Choose K to minimize

‖P11 + P12(I −KP22)−1KP21‖H∞

Equivalently choose

[
AK BK
CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+

[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.

In either case, the problem is Nonlinear.
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Optimal Control

There are several ways to address the problem of nonlinearity.

‖P11 + P12(I −KP22)−1KP21‖H∞
Variable Substitution: The easiest way to make the problem linear is by
declaring a new variable R := (I −KP22)−1K

The optimization problem becomes: Choose R to minimize

‖P11 + P12RP21‖H∞12 - 15 LFTs and stability 2001.11.07.04

Realizability

w

uy

z P11

K

R

P12

P22

P21
+

+

wz P11

RP12 P21

+
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Optimal Control

We optimize

‖P11 + P12(I −KP22)−1KP21‖H∞ = ‖P11 + P12RP21‖H∞

Once, we have the optimal R, we can recover the optimal K as

K = R(I +RP22)−1

Problems:

• how to optimize ‖·‖H∞ .

• Is the controller stable?
I Does the inverse (I +RP22)

−1 exist? Yes.
I Is it a bounded linear operator?
I In which space?

• An important branch of control.
I Coprime factorization
I Youla parameterization

• We will sidestep this body of work.
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What is Optimization?

Optimization can be posed in functional form:

min
x∈F

objective function : subject to

inequality constraints

which may have the form

min
x∈F

f0(x) : subject to

fi(x) ≥ 0 i = 1, · · · k

Special Cases:
• Linear Programming

I fi(x) = Ax− b ( Affine functions with fi : Rn → Rm)
I EASY: Simplex/Ellipsoid Algorithm

• Polynomial Programming
I The fi : Rn → Rm are polynomials. (NP-HARD)

• Semidefinite Programming
I The fi : Rn → Rm×m are affine. (EASY)

For semidefinite programming, what does fi(x) ≥ 0 mean?
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How Hard is Optimization?

Why is Linear Programming easy and polynomial programming hard?

min
x∈F

f0(x) : subject to

fi(x) ≥ 0 i = 1, · · · k

The Geometric Representation is equivalent:

min
x∈F

f0(x) : subject to x ∈ S

where S := {x : fi(x) ≥ 0, i = 1, · · · , k}.

The Pure Geometric Representation:

min
γ,x∈F

γ : subject to

(γ, x) ∈ S′

where S′ := {(γ, x) : γ − f0(x) ≥ 0, fi(x) ≥ 0, i = 1, · · · , k}.
• Two optimization problems are Equivalent if a solution to one can be used

to construct a solution to the other.
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Convexity

Definition 20.

A set is convex if for any x, y ∈ Q,

{µx+ (1− µ)y : µ ∈ [0, 1]} ⊂ Q.

The line connecting any two points lies in the set.
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Convex Optimization

Convex Optimization:

Definition 21.

Consider the optimization problem

min
γ,x∈F

γ : subject to

(γ, x) ∈ S′.

The problem is Convex Optimization if the set
S′ is convex.

2 - 13 Convexity and Duality S. Lall, Stanford 2004.08.30.01

Linear Programming (LP)

In a linear program, the objective and constraint functions are affine.

minimize cTx

subject to Ax = b

Cx ≤ d

Example

minimize x1 + x2

subject to 3x1 + x2 ≥ 3

x2 ≥ 1

x1 ≤ 4

−x1 + 5x2 ≤ 20

x1 + 4x2 ≤ 20

Convex optimization problems have the property that the Gradient projection
algorithm (or Newton iteration with barrier functions) will always converge to
the global optimal.

The question is, of course, when is the set S′ convex?

• For polynomial optimization, a sufficient condition is that all functions fi
are convex.

I The level set of a convex function is a convex set.
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Non-Convexity and Local Optima

Newton’s Algorithm: Designed to solve f(x∗) = 0 (is min f(x) ≥ 0?)

xk+1 = xk − t
f(xk)

f ′(xk)

where t is the step-size. (From df/dx ∼= f(x)−f(x∗)
x−x∗ )

For non-convex optimization, Newton descent may get stuck at local optima.

For constrained optimization, constraints are represented by barrier functions.
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Convex Cones

Definition 22.

A set is a cone if for any x ∈ Q,

{µx : µ ≥ 0} ⊂ Q.

A subspace is a cone but not all cones are subspaces.
• If the cone is also convex, it is a convex cone.
• Cones are convex if they are closed under addition.

Note that the set of convex functions is a convex cone.M. Peet Lecture 01: 42 / 135



What is an Inequality Constraint?

Question: What does f(x) ≥ 0 mean.

• What does y ≥ 0 mean?

If y is a Scalar (y ∈ R), then y ≥ 0 if y ∈ [0,∞].

Question: What if y is a vector (y ∈ Rn)?

• Then we have several options...

Examples: Let y ∈ Rn.

• Positive Orthant: y ≥ 0 if yi ≥ 0 for i = 1, · · · , n.

• Half-space: y ≥ 0 if
∑
yi ≥ 0 (1T y ≥ 0).

I More generally, y ≥ 0 if aT y + b ≥ 0.

• Intersection of Half-spaces: y ≥ 0 if aTi y + bi ≥ 0 for i = 1, · · · , n.
I The positive orthant is the intersection of half-spaces with bi = 0 and
ai = ei (unit vectors).

Question: What if y is a matrix???
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Positivity

What is an inequality? What does ≥ 0 mean?

• An inequality implies a partial ordering:
I x ≥ y if x− y ≥ 0

• Any convex cone, C defines a partial ordering:
I x− y ≥ 0 if x− y ∈ C

• The ordering is only partial because x 6≤ 0 does not imply x ≥ 0
I −x 6∈ C does not imply x ∈ C.
I x may be indefinite.

Conclusion:

• Convex Optimization includes positivity induced from any partial ordering.

• In particular, we focus on Matrix Positivity.
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Matrix Positivity

Definition 23.

A symmetric matrix P ∈ Sn is Positive Semidefinite, denoted P ≥ 0 if

xTPx ≥ 0 for all x ∈ Rn

Definition 24.

A symmetric matrix P ∈ Sn is Positive Definite, denoted P > 0 if

xTPx > 0 for all x 6= 0

• P is Negative Semidefinite if −P ≥ 0

• P is Negative Definite if −P > 0

• A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.
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Positive Matrices

Lemma 25.

P ∈ Sn is positive definite if and only if all its eigenvalues are positive.

Things which are easy to prove:

• A Positive Definite matrix is invertible.

• The inverse of a positive definite matrix is positive definite.

• If P > 0, then TPTT ≥ 0 for any T . If T is invertible, then TPTT > 0.

Lemma 26.

For any P > 0, there exists a positive square root, P
1
2 > 0 such that

P = P
1
2P

1
2 .
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Semidefinite Programming - Dual Form

minimize traceCX

subject to traceAiX = bi for all i

X � 0

• The variable X is a symmetric matrix

• X � 0 means X is positive semidefinite

• The feasible set is the intersection of an affine set with the positive
semidefinite cone {

X ∈ Sn | X � 0
}

Recall traceCX =
∑
i,j Ci,jXj,i.
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SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give

minimize cTx

subject to F0 + x1F1 + x2F2 + · · ·+ xnFn � 0

where F0, F1, . . . , Fn are symmetric matrices.

The inequality constraint is called a Linear Matrix Inequality (LMI); e.g.,

x1 − 3 x1 + x2 −1
x1 + x2 x2 − 4 0
−1 0 x1


 � 0

which is equivalent to

−3 0 −1
0 −4 0
−1 0 0


+ x1




1 1 0
1 0 0
0 0 1


+ x2




0 1 0
1 1 0
0 0 0


 � 0
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Linear Matrix Inequalities

Linear Matrix Inequalities are often a Simpler way to solve control problems.
Common Form:

Find X :
∑

i

AiXBi +Q > 0

The most important Linear Matrix Inequality is the Lyapunov Inequality.

There are several very efficient LMI/SDP Solvers for Matlab:

• SeDuMi
I Fast, but somewhat unreliable.
I See http://sedumi.ie.lehigh.edu/

• LMI Lab (Part of Matlab’s Robust Control Toolbox)
I Universally disliked
I See http://www.mathworks.com/help/robust/lmis.html

• YALMIP (a parser for other solvers)
I See http://users.isy.liu.se/johanl/yalmip/

I recommend YALMIP with solver SeDuMi.
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Semidefinite Programming(SDP):
Common Examples in Control

Some Simple examples of LMI conditions in control include:
• Stability

ATX +XA ≺ 0

X � 0

• Stabilization

AX +BZ +XAT + ZTBT ≺ 0

X � 0

• H2 Synthesis

minTr(W )

[
A B2

] [X
Z

]
+
[
X ZT

] [AT
BT2

]
+B1B

T
1 ≺ 0

[
X (CX +DZ)T

(CX +DZ) W

]
� 0

We will go beyond these examples.
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Lyapunov Theory

LMIs unite time-domain and frequency-domain analysis

ẋ(t) = f(x(t))

Theorem 27 (Lyapunov).

Suppose there exists a continuously differentiable function V for which V (0) = 0
and V (x) > 0 for x 6= 0. Furthermore, suppose lim‖x‖→∞ V (x) =∞ and

lim
h→0+

V (x(t+ h))− V (x(t))

h
=

d

dt
V (x(t)) < 0

for any x such that ẋ(t) = f(x(t)). Then for any x(0) ∈ R the system of
equations

ẋ(t) = f(x(t))

has a unique solution which is stable in the sense of Lyapunov.

M. Peet Lecture 01: 51 / 135



The Lyapunov Inequality (Our First LMI)

Lemma 28.

A is Hurwitz if and only if there exists a P > 0 such that

ATP + PA < 0

Proof.

Suppose there exists a P > 0 such that ATP + PA < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x 6= 0 and V (0) = 0.

• Furthermore,

V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)TATPx(t) + x(t)TPAx(t)

= x(t)T
(
ATP + PA

)
x(t)

• Hence V̇ (x(t)) < 0 for all x 6= 0. Thus the system is globally stable.

• Global stability implies A is Hurwitz.
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The Lyapunov Inequality

Proof.

For the other direction, if A is Hurwitz, let

P =

∫ ∞

0

eA
T seAsds

• Converges because A is Hurwitz.

• Furthermore
PA =

∫ ∞

0

eA
T seAsAds

=

∫ ∞

0

eA
T sAeAsds =

∫ ∞

0

eA
T s d

ds

(
eAs
)
ds

=

[
eA

T seAs
]∞

0

−
∫ ∞

0

d

ds
eA

T seAs

= −I −
∫ ∞

0

AT eA
T seAs = −I −ATP

• Thus PA+ATP = −I < 0.

M. Peet Lecture 01: 53 / 135



The Lyapunov Inequality

Other Versions:

Lemma 29.

(A,B) is controllable if and only if there exists a X > 0 such that

ATX +XA+BBT ≤ 0

Lemma 30.

(C,A) is observable if and only if there exists a X > 0 such that

AX +XAT + CTC ≤ 0
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The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 31.

The Static State-Feedback Problem is to find a feedback matrix K such that

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t)

is stable

• Find K such that A+BK is Hurwitz.

Can also be put in LMI format:

Find X > 0, K :

X(A+BK) + (A+BK)TX < 0

Problem: Bilinear in K and X.

M. Peet Lecture 01: 55 / 135



The Static State-Feedback Problem

• The bilinear problem in K and X is a common paradigm.
• Bilinear optimization is not convex.
• To convexify the problem, we use a change of variables.

Problem 1:

Find X > 0,K :

X(A+BK) + (A+BK)TX < 0

Problem 2:

Find P > 0, Z :

AP +BZ + PAT + ZTBT < 0

Definition 32.

Two optimization problems are equivalent if a solution to one will provide a
solution to the other.

Theorem 33.

Problem 1 is equivalent to Problem 2.
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The Dual Lyapunov Equation

Problem 1:

Find X > 0, :

XA+ATX < 0

Problem 2:

Find Y > 0, :

Y AT +AY < 0

Lemma 34.

Problem 1 is equivalent to problem 2.

Proof.

First we show 1) solves 2). Suppose X > 0 is a solution to Problem 1. Let
Y = X−1 > 0.

• If XA+ATX < 0, then

X−1(XA+ATX)X−1 < 0

• Hence

X−1(XA+ATX)X−1 = AX−1 +X−1AT = AY + Y AT < 0

• Therefore, Problem 2 is feasible with solution Y = X−1.
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The Dual Lyapunov Equation

Problem 1:

Find X > 0, :

XA+ATX < 0

Problem 2:

Find Y > 0, :

Y AT +AY < 0

Proof.

Now we show 2) solves 1) in a similar manner. Suppose Y > 0 is a solution to
Problem 1. Let X = Y −1 > 0.

• Then

XA+ATX = X(AX−1 +X−1AT )X

= X(AY + Y AT )X < 0

Conclusion: If V (x) = xTPx proves stability of ẋ = Ax,

• Then V (x) = xTP−1x proves stability of ẋ = ATx.
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The Stabilization Problem

Thus we rephrase Problem 1

Problem 1:

Find P > 0,K :

(A+BK)P + P (A+BK)T < 0

Problem 2:

Find X > 0, Z :

AX +BZ +XAT + ZTBT < 0

Theorem 35.

Problem 1 is equivalent to Problem 2.

Proof.

We will show that 2) Solves 1). Suppose X > 0, Z solves 2). Let P = X > 0
and K = ZP−1. Then Z = KP and

(A+BK)P + P (A+BK)T = AP + PAT +BKP + PKTBT

= AP + PAT +BZ + ZTBT < 0

Now suppose that P > 0 and K solve 1). Let X = P > 0 and Z = KP . Then

AP + PAT +BZ + ZTBT = (A+BK)P + P (A+BK)T < 0
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The Stabilization Problem

The result can be summarized more succinctly

Theorem 36.

(A,B) is static-state-feedback stabilizable if and only if there exists some P > 0
and Z such that

AP + PAT +BZ + ZTBT < 0

with u(t) = ZP−1x(t).

Standard Format:

[
A B

] [P
Z

]
+
[
P ZT

] [AT
BT

]
< 0
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The Schur complement

Before we get to the main result, recall the Schur complement.

Theorem 37 (Schur Complement).

For any S ∈ Sn, Q ∈ Sm and R ∈ Rn×m, the following are equivalent.

1.

[
M R
RT Q

]
> 0

2. Q > 0 and M −RQ−1RT > 0

A commonly used property of positive matrices.
Also Recall: If X > 0,

• then X − εI > 0 for ε sufficiently small.
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The KYP Lemma (AKA: The Bounded Real Lemma)

The most important theorem in this lecture.

Lemma 38 (KYP Lemma).

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ‖G‖H∞ ≤ γ.

• There exists a X > 0 such that
[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

Can be used to calculate the H∞-norm of a system
• Originally used to solve LMI’s using graphs. (Before Computers)
• Now used directly instead of graphical methods like Bode.

The feasibility constraints are linear
• Can be combined with other methods.
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The KYP Lemma

Proof.

We will only show that ii) implies i). The other direction requires the
Hamiltonian, which we have not discussed.

• We will show that if y = Gu, then ‖y‖L2 ≤ γ‖u‖L2 .

• From the 1 x 1 block of the LMI, we know that ATX +XA < 0, which
means A is Hurwitz.

• Because the inequality is strict, there exists some ε > 0 such that

[
ATX +XA XB

BTX −(γ − ε)I

]
+

1

γ

[
CT

DT

] [
C D

]

=

[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
+

[
0 0
0 εI

]
< 0

• Let y = Gu. Then the state-space representation is

y(t) = Cx(t) +Du(t)

ẋ(t) = Ax(t) +Bu(t) x(0) = 0
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The KYP Lemma

Proof.

• Let V (x) = xTXx. Then the LMI implies
[
x(t)
u(t)

]T [[
ATX +XA XB

BTX −(γ − ε)I

]
+

1

γ

[
CT

DT

] [
C D

]
] [
x(t)
u(t)

]

=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ε)I

] [
x
u

]
+

1

γ

[
x
u

]T [
CT

DT

] [
C D

] [x
u

]

=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ε)I

] [
x
u

]
+

1

γ
yT y

= xT (ATX +XA)x+ xTXBu+ uTBTXx− (γ − ε)uTu+
1

γ
yT y

= (Ax+Bu)TXx+ xTX(Ax+Bu)− (γ − ε)uTu+
1

γ
yT y

= ẋ(t)TXx(t) + x(t)TXẋ(t)− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2

= V̇ (x(t))− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2 < 0
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The KYP Lemma

Proof.

• Now we have V̇ (x(t))− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2 < 0

• Integrating in time, we get

∫ T

0

(
V̇ (x(t))− (γ − ε)‖u(t)‖2 +

1

γ
‖y(t)‖2

)
dt

= V (x(T ))− V (x(0))− (γ − ε)
∫ T

0

‖u(t)‖2dt+
1

γ

∫ T

0

‖y(t)‖2
)
dt < 0

• Because A is Hurwitz, limT→∞ x(T ) = 0.

• Hence limT→∞ V (x(T )) = 0.

• Likewise, because x(0) = 0, we have V (x(0)) = 0.
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The KYP Lemma

Proof.

• Since V (x(0)) = V (x(∞)) = 0,

lim
T→∞

[
V (x(T ))− V (x(0))− (γ − ε)

∫ T

0

‖u(t)‖2dt+
1

γ

∫ T

0

‖y(t)‖2
)
dt

]

= 0− 0− (γ − ε)
∫ ∞

0

‖u(t)‖2dt+
1

γ

∫ ∞

0

‖y(t)‖2dt

= −(γ − ε)‖u‖2L2
+

1

γ
‖y‖2L2

dt < 0

• Thus
‖y‖2L2

dt < (γ2 − εγ)‖u‖2L2

• By definition, this means ‖G‖2H∞ ≤ (γ2 − εγ) < γ2 or

‖G‖H∞ < γ

M. Peet Lecture 01: 66 / 135



The Positive Real Lemma
A Passivity Condition

A Variation on the KYP lemma is the positive-real lemma

Lemma 39.

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• G is passive. i.e. (〈u,Gu〉L2 ≥ 0).

• There exists a P > 0 such that
[
ATP + PA PB − CT
BTP − C −DT −D

]
≤ 0
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Recall: Linear Fractional Transformation

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK
CK DK

]
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Optimal Control

Choose K to minimize

‖P11 + P12(I −KP22)−1KP21‖

Equivalently choose

[
AK BK
CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+

[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.
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Optimal Full-State Feedback Control

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21
For the full-state feedback case, we consider a controller of the form

u(t) = Fx(t)

Controller:
u = Ky where K =

[
0 0
0 F

]

Plant:
[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

I
D11 D12

0 0



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Optimal Full-State Feedback Control

Thus the closed-loop state-space representation is

S(P̂ , K̂) =

[
A+B2F B1

C1 +D12F D11

]

By the KYP lemma, ‖S(P̂ , K̂)‖H∞ < γ if and only if there exists some X > 0
such that

[
(A+B2F )TX +X(A+B2F ) XB1

BT1 X −γI

]

+
1

γ

[
(C1 +D12F )T

DT
11

] [
(C1 +D12F ) D11

]
< 0

This is a matrix inequality, but is nonlinear

• Quadratic (Not Bilinear)

• May NOT apply variable substitution trick.
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Schur Complement

The KYP condition is
[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

Recall the Schur Complement

Theorem 40 (Schur Complement).

For any S ∈ Sn, Q ∈ Sm and R ∈ Rn×m, the following are equivalent.

1.

[
M R
RT Q

]
< 0

2. Q < 0 and M −RQ−1RT < 0

In this case, let Q = − 1
γ I < 0,

M =

[
ATX +XA XB

BTX −γI

]
R =

[
C D

]T

Note we are making the LMI Larger.
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Schur Complement

The Schur Complement says that

[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

if and only if 

ATX +XA XB CT

BTX −γI DT

C D −γI


 < 0

This leads to the
Full-State Feedback Condition




(A+B2F )TX +X(A+B2F ) XB1 (C1 +D12F )T

BT1 X −γI DT
11

(C1 +D12F ) D11 −γI


 < 0

which is now bilinear in X and F .
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Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of
this LMI.

Lemma 41 (KYP Dual).

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ‖G‖H∞ ≤ γ.

• There exists a Y > 0 such that


Y AT +AY B Y CT

BT −γI DT

CY D −γI


 < 0
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Dual KYP Lemma

Proof.

Let X = Y −1. Then

Y AT +AY XB Y CT

BTX −γI DT

CY D −γI


 < 0 and Y > 0

if and only if X > 0 and

Y −1 0 0

0 I 0
0 0 I





Y AT +AY B Y CT

BT −γI DT

CY D −γI





Y −1 0 0

0 I 0
0 0 I




=



ATX +XA XB CT

BTX −γI DT

C D −γI


 < 0.

By the Schur complement this is equivalent to[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

By the KYP lemma, this is equivalent to ‖G‖H∞ ≤ γ.
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Full-State Feedback Optimal Control

We can now apply this result to the state-feedback problem.

Theorem 42.

The following are equivalent:

• There exists an F such that ‖S(P,K(0, 0, 0, F ))‖H∞ ≤ γ.

• There exist Y > 0 and Z such that


Y AT +AY + ZTBT2 +B2Z B1 Y CT1 + ZTDT

12

BT1 −γI DT
11

C1Y +D12Z D11 −γI


 < 0

One may use F = ZY −1.
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Full-State Feedback Optimal Control

Proof.

Suppose there exists an F such that ‖S(P,K(0, 0, 0, F ))‖H∞ ≤ γ. By the Dual
KYP lemma, this implies there exists a Y > 0 such that


Y (A+B2F )T + (A+B2F )Y B1 Y (C1 +D12F )T

BT1 −γI DT
11

(C1 +D12F )Y D11 −γI


 < 0

Let Z = FY . Then

Y AT + ZTBT2 +AY +B2Z B1 Y CT1 + ZTDT

12)T

BT1 −γI DT
11

C1Y +D12Z D11 −γI




=



Y AT + Y FTBT2 +AY +B2FY B1 Y CT1 + Y FTDT

12)T

BT1 −γI DT
11

C1Y +D12FY D11 −γI




=



Y (A+B2F )T + (A+B2F )Y B1 Y (C1 +D12F )T

BT1 −γI DT
11

(C1 +D12F )Y D11 −γI


 < 0.
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Full-State Feedback Optimal Control

Proof.

Now suppose there exists a Y > 0 and Z such that



Y AT + ZTBT2 +AY +B2Z B1 Y CT1 + ZTDT

12

BT1 −γI DT
11

C1Y +D12Z D11 −γI


 < 0

Let F = ZY −1. Then


Y (A+B2F )T + (A+B2F )Y B1 Y (C1 +D12F )T

BT1 −γI DT
11

(C1 +D12F )Y D11 −γI




=



Y AT + Y FTBT2 +AY +B2FY B1 Y CT1 + Y FTDT

12

BT1 −γI DT
11

C1Y +D12FY D11 −γI




=



Y AT + ZTBT2 +AY +B2Z B1 Y CT1 + ZTDT

12

BT1 −γI DT
11

C1Y +D12Z D11 −γI


 < 0
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Full-State Feedback Optimal Control

Therefore the following optimization problems are equivalent
Form A

min
F
‖S(P,K(0, 0, 0, F ))‖H∞

Form B

min
γ,Y,Z

γ :




−Y 0 0 0
0 Y AT +AY + ZTBT2 +B2Z B1 Y CT1 + ZTDT

12

0 BT1 −γI DT
11

0 C1Y +D12Z D11 −γI


 < 0

The optimal controller is given by F = ZY −1.
Next: Optimal Output Feedback

M. Peet Lecture 01: 79 / 135



Optimal Output Feedback
Recall: Linear Fractional Transformation

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK
CK DK

]
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Optimal Control

Choose K to minimize

‖P11 + P12(I −KP22)−1KP21‖

Equivalently choose

[
AK BK
CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK

C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+

[
D12 0

] [ I −DK

−D22 I

]−1 [
0 CK

C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.
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Optimal Control

Recall that [
I −DK

−D22 I

]−1

=

[
I +DKQD22 DKQ

QD22 Q

]

where Q = (I −D22DK)−1. Then

Acl :=

[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK

−D22 I

]−1 [
0 CK
C2 0

]

=

[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I +DKQD22 DKQ

QD22 Q

] [
0 CK
C2 0

]

=

[
A+B2DKQC2 B2(I +DKQD22)CK

BKQC2 AK +BKQD22CK

]

Likewise

Ccl :=
[
C1 0

]
+
[
D12 0

] [I +DKQD22 DKQ
QD22 Q

] [
0 CK
C2 0

]

=
[
C1 +D12DKQC2 D12(I +DKQD22)CK

]

M. Peet Lecture 01: 82 / 135



Optimal Output Feedback Control

Thus we have



A+B2DKQC2 B2(I +DKQD22)CK
BKQC2 AK +BKQD22CK

B1 +B2DKQD21

BKQD21[
C1 +D12DKQC2 D12(I +DKQD22)CK

]
D11 +D12DKQD21




where Q = (I −D22DK)−1.

• This is nonlinear in (AK , BK , CK , DK).

• Hence we make a change of variables (First of several).

AK2 = AK +BKQD22CK

BK2 = BKQ

CK2 = (I +DKQD22)CK

DK2 = DKQ
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Optimal Output Feedback Control

This yields the system




[
A+B2DK2C2 B2CK2

BK2C2 AK2

]
B1 +B2DK2D21

BK2D21[
C1 +D12DK2C2 D12CK2

]
D11 +D12DK2D21




Which is affine in

[
AK2 BK2

CK2 DK2

]
.
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Optimal Output Feedback Control

Hence we can optimize over our new variables.

• However, the change of variables must be invertible.

If we recall that
(I −QM)−1 = I +Q(I −MQ)−1M

then we get

I +DKQD22 = I +DK(I −D22DK)−1D22 = (I −DKD22)−1

Examine the variable CK2

CK2 = (I +DK(I −D22DK)−1D22)CK

= (I −DKD22)−1CK

Hence, given CK2, we can recover CK as

CK = (I −DKD22)CK2
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Optimal Output Feedback Control

Now suppose we have DK2. Then

DK2 = DKQ = DK(I −D22DK)−1

implies that

DK = DK2(I −D22DK) = DK2 −DK2D22DK

or
(I +DK2D22)DK = DK2

which can be inverted to get

DK = (I +DK2D22)−1DK2
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Optimal Output Feedback Control

Once we have CK and DK , the other variables are easily recovered as

BK = BK2Q
−1 = BK2(I −D22DK)

AK = AK2 −BK(I −D22DK)−1D22CK

To summarize, the original variables can be recovered as

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK
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Optimal Output Feedback Control

[
Acl Bcl
Ccl Dcl

]
:=




[
A+B2DK2C2 B2CK2

BK2C2 AK2

]
B1 +B2DK2D21

BK2D21[
C1 +D12DK2C2 D12CK2

]
D11 +D12DK2D21




[
Acl Bcl
Ccl Dcl

]
=



A 0 B1

0 0 0
C1 0 D11


+




0 B2

I 0
0 D12



[
AK2 BK2

CK2 DK2

] [
0 I 0
C2 0 D21

]

Or

Acl =

[
A 0
0 0

]
+

[
0 B2

I 0

] [
AK2 BK2

CK2 DK2

] [
0 I
C2 0

]

Bcl =

[
B1

0

]
+

[
0 B2

I 0

] [
AK2 BK2

CK2 DK2

] [
0
D21

]

Ccl =
[
C1 0

]
+
[
0 D12

] [AK2 BK2

CK2 DK2

] [
0 I
C2 0

]

Dcl =
[
D11

]
+
[
0 D12

] [AK2 BK2

CK2 DK2

] [
0
D21

]
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Optimal Output Feedback Control

Lemma 43 (Transformation Lemma).

Suppose that [
Y1 I
I X1

]
> 0

Then there exist X2, X3, Y2, Y3 such that

X =

[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−1

= Y −1 > 0

where Ycl =

[
Y1 I
Y T2 0

]
has full rank.
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Transformation Lemma

Proof.

• Since [
Y1 I
I X1

]
> 0,

by the Schur complement X1 > 0 and X−1
1 − Y1 > 0. Since

I −X1Y1 = X1(X−1
1 − Y1), we conclude that I −X1Y1 is invertible.

• Choose any two square invertible matrices X2 and Y2 such that

X2Y
T
2 = I −X1Y1

• Because X2 and Y2 are non-singular,

Y Tcl =

[
Y1 Y2

I 0

]
and Xcl =

[
I 0
X1 X2

]

are also non-singular.
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Transformation Lemma

Proof.

• Now define X and Y as

X = Y −Tcl Xcl and Y = X−1
cl Y

T
cl .

Then
XY = Y −1

cl XclX
−1
cl Ycl = I

Likewise, Y X = I. Hence, Y = X−1.
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Optimal Output Feedback Control

Lemma 44 (Converse Transformation Lemma).

Given X =

[
X1 X2

XT
2 X3

]
> 0 where X2 has full column rank. Let

X−1 = Y =

[
Y1 Y2

Y T2 Y3

]

then [
Y1 I
I X1

]
> 0

and Ycl =

[
Y1 I
Y T2 0

]
has full column rank.
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Converse Transformation Lemma

Proof.

Since X2 is full rank, Xcl =

[
I 0
X1 X2

]
also has full column rank. Note that

XY = I implies

Y TclX =

[
Y1 Y2

I 0

] [
X1 X2

XT
2 X3

]
=

[
I 0
X1 X2

]
= Xcl.

Hence

Y Tcl =

[
Y1 Y2

I 0

]
=

[
I 0
X1 X2

]
Y = XclY

has full column rank. Now, since XY = I implies X1Y1 +X2Y
T
2 = I, we have

XclYcl =

[
I 0
X1 X2

] [
Y1 I
Y T2 0

]
=

[
Y1 I

X1Y1 +X2Y
T
2 X1

]
=

[
Y1 I
I X1

]

Furthermore, because Ycl has full rank,
[
Y1 I
I X1

]
= XclYcl = XclY X

T
cl = Y TclXYcl > 0
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Optimal Output Feedback Control

Theorem 45.

The following are equivalent.

• There exists a K̂ =

[
AK BK
CK DK

]
such that ‖S(P,K)‖H∞ < γ.

• There exist X1, Y1, An, Bn, Cn, Dn such that

[
X1 I
I Y1

]
> 0



AY1+Y1A

T +B2Cn+C
T
nB

T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+C

T
2 B

T
n ∗T ∗T

[B1 +B2DnD21]
T [XB1 +BnD21]

T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI


<0

Moreover,[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−1
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Optimal Output Feedback Control

Proof: If.

Suppose there exist X1, Y1, An, Bn, Cn, Dn such that the LMI is feasible. Since

[
X1 I
I Y1

]
> 0,

by the transformation lemma, there exist X2, X3, Y2, Y3 such that

X :=

[
X X2

XT
2 X3

]
=

[
Y Y2

Y T2 Y3

]−1

> 0

where Ycl =

[
Y I
Y T2 0

]
has full row rank. Let K =

[
AK BK
CK DK

]
where

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK .
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Optimal Output Feedback Control

Proof: If.

and where

[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

.
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Optimal Output Feedback Control

Proof: If.

As discussed previously, this means the closed-loop system is

[
Acl Bcl
Ccl Dcl

]
=



A 0 B1

0 0 0
C1 0 D11


+




0 B2

I 0
0 D12



[
AK2 BK2

CK2 DK2

] [
0 I 0
C2 0 D21

]

=



A 0 B1

0 0 0
C1 0 D11


+




0 B2

I 0
0 D12




[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1 [
0 I 0
C2 0 D21

]

Now look at the LMI from the KYP lemma.
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Optimal Output Feedback Control

Proof: If.

Expanding out, we obtain



Y Tcl 0 0
0 I 0
0 0 I





ATclX +XAcl XBcl CTcl

BTclX −γI DT
cl

Ccl Dcl −γI





Ycl 0 0
0 I 0
0 0 I


 =



AY1+Y1A

T +B2Cn+C
T
nB

T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+C

T
2 B

T
n ∗T ∗T

[B1 +B2DnD21]
T [XB1 +BnD21]

T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI


<0

Hence, by the KYP lemma, S(P,K) =

[
Acl Bcl
Ccl Dcl

]
satisfies

‖S(P,K)‖H∞ < γ.
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Optimal Output Feedback Control

Proof: Only If.

Now suppose that ‖S(P,K)‖H∞ < γ for some K =

[
AK BK
CK DK

]
. Since

‖S(P,K)‖H∞ < γ, by the KYP lemma, there exists a

X =

[
X1 X2

XT
2 X3

]
> 0

such that 

ATclX +XAcl XBcl CTcl

BTclX −γI DT
cl

Ccl Dcl −γI


 < 0

Because the inequalities are strict, we can assume that X2 has full row rank.
Define

Y =

[
Y1 Y2

Y T2 Y3

]
= X−1 and Ycl =

[
Y1 I
Y T2 0

]

Then, according to the converse transformation lemma, Ycl has full row rank
and

[
X1 I
I Y1

]
> 0.
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Optimal Output Feedback Control

Proof: Only If.

Now, using the given AK , BK , CK , DK , define the variables[
An Bn
Cn Dn

]
=

[
X2 X1B2

0 I

] [
AK2 BK2

CK2 DK2

] [
Y T2 0
C2Y1 I

]
+

[
X1AY1 0

0 0

]
.

where

AK2 = AK +BK(I −D22DK)−1D22CK BK2 = BK(I −D22DK)−1

CK2 = (I +DK(I −D22DK)−1D22)CK DK2 = DK(I −D22DK)−1

Then as before
[
Acl Bcl
Ccl Dcl

]
=



A 0 B1

0 0 0
C1 0 D11


+




0 B2

I 0
0 D12




[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1 [
0 I 0
C2 0 D21

]
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Optimal Output Feedback Control

Proof: Only If.

Expanding out the LMI, we find



AY1+Y1A

T +B2Cn+C
T
nB

T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+C

T
2 B

T
n ∗T ∗T

[B1 +B2DnD21]
T [XB1 +BnD21]

T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI




=



Y Tcl 0 0
0 I 0
0 0 I





ATclX +XAcl XBcl CTcl

BTclXcl −γI DT
cl

Ccl Dcl −γI





Ycl 0 0
0 I 0
0 0 I


 < 0
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Conclusion

To solve the H∞-optimal state-feedback problem, we solve

min
γ,X1,Y1,An,Bn,Cn,Dn

γ such that

[
X1 I
I Y1

]
> 0



AY1+Y1A

T +B2Cn+C
T
nB

T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]
T X1A+ATX1+BnC2+C

T
2 B

T
n ∗T ∗T

[B1 +B2DnD21]
T [XB1 +BnD21]

T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI


<0
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Conclusion

Then, we construct our controller using

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK .

where

[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

.

and where X2 and Y2 are any matrices which satisfy X2Y2 = I −X1Y1.

• e.g. Let Y2 = I and X2 = I −X1Y1.

• The optimal controller is NOT uniquely defined.

• Don’t forget to check invertibility of I −D22DK

M. Peet Lecture 01: 103 / 135



Conclusion

The H∞-optimal controller is a dynamic system.

• Transfer Function K̂(s) =

[
AK BK
CK DK

]

Minimizes the effect of external input (w) on external output (z).

‖z‖L2
≤ ‖S(P,K)‖H∞‖w‖L2

• Minimum Energy Gain
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H2-optimal control
Motivation

H2-optimal control minimizes the H2-norm of the transfer function.

• The H2-norm has no direct interpretation.

‖G‖2H2
=

1

2π

∫ ∞

−∞
Trace(Ĝ(ıω)∗Ĝ(ıω))dω

Motivation: Assume external input is Gaussian noise with signal variance Sw

E[w(t)2] =
1

2π

∫ ∞

−∞
Trace(Ŝw(ıω))dω

Theorem 46.

For an LTI system P , if w is noise with spectral density Ŝw(ıω) and z = Pw,
then z is noise with density

Ŝz(ıω) = P̂ (ıω)Ŝ(ıω)P̂ (ıω)∗
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H2-optimal control
Motivation

Then the output z = Pw has signal variance (Power)

E[z(t)2] =
1

2π

∫ ∞

−∞
Trace(Ĝ(ıω)∗S(ıω)Ĝ(ıω))dω

≤ ‖S‖H∞‖G‖2H2

If the input signal is white noise, then Ŝ(ıω) = I and

E[z(t)2] = ‖G‖2H2
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H2-optimal control
Colored Noise

Now suppose the noise is colored with variance Ŝw(ıω). Now define Ĥ as
Ĥ(ıω)Ĥ(ıω)∗ = Ŝw(ıω) and the filtered system.

P̂s(s) =

[
P̂11(s)Ĥ(s) P̂12(s)

P̂21(s)Ĥ(s) P̂22(s)

]

Now, applying feedback to the filtered plant, we get

S(Ps,K)(s) = P11H + P12(I −KP22)−1KP21H = S(P,K)H

Now the spectral density, Ŝz of the output of the true plant using colored noise
equals the output of the artificial plant under white noise. i.e.

Sz(s) = S(P,K)(s)Ŝw(s)S(P,K)(s)∗

= S(P,K)(s)Ĥ(s)Ĥ(s)∗S(P,K)(s)∗ = S(Ps,K)(s)Ŝ(Ps,K)(s)∗

Thus if K minimizes the H2-norm of the filtered plant (‖Ŝ(Ps,K)‖2H2
), it will

minimize the variance of the true plant under the influence of colored noise with
density Ŝw.
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H2-optimal control

Theorem 47.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ‖P̂‖H2
< γ.

2. There exists some X > 0 such that

traceCXCT < γ2

AX +XAT +BBT < 0
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H2-optimal control

Proof.

Suppose A is Hurwitz and ‖P̂‖H2 < γ. Then the Controllability Grammian is
defined as

Xc =

∫ ∞

0

eAtBBT eA
T

dt

Now recall the Laplace transform

(
ΛeAt

)
(s) =

∫ ∞

0

eAte−tsdt

=

∫ ∞

0

e−(sI−A)tdt

= −(sI −A)−1e−(sI−A)tdt

∣∣∣∣
t=−∞

t=0

= (sI −A)−1

Hence
(
ΛCeAtB

)
(s) = C(sI −A)−1B.
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H2-optimal control

Proof.(
ΛCeAtB

)
(s) = C(sI −A)−1B implies

‖P̂‖2H2
= ‖C(sI −A)−1B‖2H2

=
1

2π

∫ ∞

0

Trace((C(ıωI −A)−1B)∗(C(ıωI −A)−1B))dω

=
1

2π

∫ ∞

0

Trace((C(ıωI −A)−1B)(C(ıωI −A)−1B)∗)dω

= Trace

∫ ∞

−∞
CeAtBB∗eA

∗tC∗dt

= TraceCXcC
T

Thus Xc ≥ 0 and TraceCXcC
T = ‖P̂‖2H2

< γ2.
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H2-optimal control

Proof.

Likewise TraceBTXoB = ‖P̂‖2H2
where Xo is the observability Grammian. To

show that we can take strict the inequality X > 0, we simply let

X =

∫ ∞

0

eAt
(
BBT + εI

)
eA

T

dt

for sufficiently small ε > 0. Furthermore, we already know the controllability
grammian Xc and thus Xε satisfies the Lyapunov inequality.

ATXε +XεA+BBT < 0

These steps can be reversed to obtain necessity.
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H2-optimal control
Full-State Feedback

Lets consider the full-state feedback problem

Ĝ(s) =




A B1 B2

C1

I
0 D12

0 0




• D12 is the weight on control effort.

• D11 = 0 is neglected as the feed-through term.

• C2 = I as this is state-feedback.

K̂(s) =

[
0 0
0 K

]
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H2-optimal control
Full-State Feedback

Theorem 48.

The following are equivalent.

1. ‖S(K,P )‖H2 < γ.

2. K = ZX−1 for some Z and X > 0 where

[
A B2

] [X
Z

]
+
[
X ZT

] [AT
BT2

]
+B1B

T
1 < 0

Trace
[
C1X +D12Z

]
X−1

[
C1X +D12Z

]
< γ2

However, this is nonlinear, so we need to reformulate using the Schur
Complement.
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H2-optimal control
Full-State Feedback

Theorem 49.

The following are equivalent.

1. ‖S(K,P )‖H2 < γ.

2. K = ZX−1 for some Z and X > 0 where

[
A B2

] [X
Z

]
+
[
X ZT

] [AT
BT2

]
+B1B

T
1 < 0

[
X (C1X +D12Z)T

C1X +D12Z W

]
> 0

TraceW < γ2

Thus we can solve the H2-optimal static full-state feedback problem.
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H2-optimal control

Applying the Schur Complement gives the alternative formulation convenient for
control.

Theorem 50.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ‖P̂‖H2
< γ.

2. There exists some X,Z > 0 such that

[
ATX +XA XB

BTX −γI

]
< 0,

[
X CT

C Z

]
> 0, TraceZ < γ2
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H2-optimal control
Relationship to LQR

The LQR Problem:

• Full-State Feedback

• Choose K to minimize the cost function
∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt

subject to dynamic constraints

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0
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H2-optimal control
Relationship to LQR

To solve the LQR problem using H2 optimal state-feedback control, let

• C1 =

[
Q

1
2

0

]

• D12 =

[
0

R
1
2

]

• B2 = B and B1 = I.

So that

S(P̂ , K̂) =

[
A+B2K B1

C1 +D12K D11

]
=



A+BK I

Q
1
2

R
1
2K

0




And solve the H2 full-state feedback problem. Then if

ẋ(t) = ACLx(t) = (A+BK)x(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

Then x(t) = eACLtx0
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H2-optimal control
Relationship to LQR

If

ẋ(t) = ACLx(t) = (A+BK)x(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

then x(t) = eACLtx0 and

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt =

∫ ∞

0

xT0 e
AT

CLt(Q+KTRK)eACLtx0dt

= Trace

∫ ∞

0

xT0 e
AT

CLt

[
Q

1
2

R
1
2K

]T [
Q

1
2

R
1
2K

]
eACLtx0dt

= ‖x0‖2Trace

∫ ∞

0

B1e
AT

CLt(C1 +D12K)T (C1 +D12K)eACLtBT1 dt

= ‖x0‖2‖S(K,P )‖2H2

Thus LQR reduces to a special case of H2 static state-feedback.
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H2-optimal output feedback control

Theorem 51 (Lall).

The following are equivalent.

• There exists a K̂ =

[
AK BK
CK DK

]
such that ‖S(K,P )‖H2

< γ.

• There exist X1, Y1, Z,An, Bn, Cn, Dn such that

AY1 +Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1 +BnC2 +CT2 B
T
n ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −I


<0,




Y1 I ∗T
I X1 ∗T

C1Y1 +D12Cn C1 +D12DnC2 Z


 > 0,

D11 +D12DnD21 = 0, trace(Z) < γ2
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H2-optimal output feedback control

As before, the controller can be recovered as

[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−1

To find the actual controller, we use the identities:

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK
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Robust Control

Before we finish, let us briefly touch on the use of LMIs in Robust Control.

qp M

¢

Questions:
• Is S(∆,M) stable for all ∆ ∈∆?
• Determine

sup
∆∈∆
‖S(∆,M)‖H∞ .
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Robust Control

Suppose we have the system M

M =

[
M11 M12

M21 M22

]

Definition 52.

We say the pair (M,∆) is Robustly Stable if (I −M22∆) is invertible for all
∆ ∈∆.

Sl(M,∆) = M11 +M12∆(I −M22∆)−1M21
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Robust Control

The structure of ∆ makes a lot of difference. e.g.

• Unstructured, Dynamic, norm-bounded:

∆ := {∆ ∈ L(L2) : ‖∆‖H∞ < 1}

• Structured, Dynamic, norm-bounded:

∆ := {∆1,∆2, · · · ∈ L(L2) : ‖∆i‖H∞ < 1}

• Unstructured, Parametric, norm-bounded:

∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

• Unstructured, Parametric, polytopic:

∆ := {∆ ∈ Rn×n : ∆ =
∑

i

αiHi, αi ≥ 0,
∑

i

αi ≤ 1}
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Robust Control

Let’s consider a simple question: Additive Uncertainty.

M11 = 0, M12 = M21 = I

Question: Is ẋ = A(t)x(t) stable if A(t) ∈∆ for all t ≥ 0.

Definition 53 (Quadratic Stability).

ẋ = A(t)x(t) is Quadratically Stable for A(t) ∈∆ if there exists some P > 0
such that

ATP + PA < 0 for all A ∈∆

Theorem 54.

If ẋ = A(t)x(t) is Quadratically Stable, then it is stable for A ∈∆.
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Robust Control

We examine this problem for:

• Parametric, Polytopic Uncertainty:

∆ := {∆ ∈ Rn×n : ∆ =
∑

i

αiAi, αi ≥ 0,
∑

i

αi = 1}
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Parametric, Polytopic Uncertainty

For the polytopic case, we have the following result

Theorem 55 (Quadratic Stability).

Let
∆ := {∆ ∈ Rn×n : ∆ =

∑

i

αiHi, αi ≥ 0,
∑

i

αi = 1}

Then ẋ(t) = A(t)x(t) is quadratically stable for all A ∈∆ if and only if there
exists some P > 0 such that

ATi P + PAi < 0 for i = 1, · · · ,

Thus quadratic stability of systems with polytopic uncertainty is equivalent to
an LMI.
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Parametric, Norm-Bounded Uncertainty

A more complex uncertainty set is:

ẋ(t) = A0x(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆

• Parametric, Norm-Bounded Uncertainty:

∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}
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Parametric, Norm-Bounded Uncertainty

Quadratic Stability: There exists a P > 0 such that

P (A0x(t)+Mp)+(A0x(t)+Mp)TP < 0 for all p ∈ {p : p = ∆q, q = Nx+Qp}

Theorem 56.

The system

ẋ(t) = A0x(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some P > 0 such that

[
x
y

] [
ATP + PA PM
MTP 0

] [
x
y

]
< 0

for all

[
x
y

]
∈
{[
x
y

]
:

[
x
y

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
y

]
≤ 0

}
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Parametric, Norm-Bounded Uncertainty

If.

If
[
x
y

] [
ATP + PA PM
MTP 0

] [
x
y

]
< 0

for all

[
x
y

]
∈
{[
x
y

]
:

[
x
y

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
y

]
≤ 0

}

then
xTP (Ax+My) + (Ax+My)TPx < 0

for all x, y such that
‖Nx+Qy‖2 ≤ ‖y‖2

Therefore, since p = ∆q implies ‖p‖ ≤ ‖q‖, we have quadratic stability.
The only if direction is similar.
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Relationship to the S-Procedure
A Classical LMI

S-procedure to the rescue!
The S-procedure asks the question:

• Is zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0}?

Corollary 57 (S-Procedure).

zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0} if there exists a τ ≥ 0 such that
F − τG � 0.

The S-procedure is Necessary if {x : xTGx > 0} 6= ∅.
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Parametric, Norm-Bounded Uncertainty

Theorem 58.

The system

ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0 and P > 0 such that

[
AP + PAT PNT

NP 0

]
+ µ

[
MMT MQT

QMT QQT − I

]
< 0}

These approaches can be readily extended to controller synthesis.
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Quadratic Stability

Consider Quadratic Stability in Discrete-Time: xk+1 = Sl(M,∆)xk.

Definition 59.

(Sl,∆) is QS if

Sl(M,∆)TPSl(M,∆)− P < 0 for all ∆ ∈∆

Theorem 60 (Packard and Doyle).

Let M ∈ R(n+m)×(n+m) be given with ρ(M11) ≤ 1 and σ(M22) < 1. Then the
following are equivalent.

1. The pair (M,∆ = Rm×m) is quadratically stable.

2. The pair (M,∆ = Cm×m) is quadratically stable.

3. The pair (M,∆ = Cm×m) is robustly stable.
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

∆ = {∆ = diag(δ1In1, · · · , δsIns,∆s+1, · · · ,∆s+f ) : δi ∈ F, ∆ ∈ Fnk×nk}

• δ and ∆ represent unknown parameters.

• s is the number of scalar parameters.

• f is the number of matrix parameters.

Definition 61.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M22∆ is singular

‖∆‖
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The Structured Singular Value

Theorem 62.

Let
∆n = {∆ ∈∆, ‖∆‖ ≤ µ(M,∆)}.

Then the pair (M,∆n) is robustly stable.
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Conclusion

LMIs are a versatile tool for

• Optimal H∞ Control

• Optimal H2 Control (LQR/LQG)

• Robust Control

Next Lecture, we expand the use of LMIs exponentially

1. Nonlinear Systems Theory

2. Sum-of-Squares Nonlinear Stability Analysis

Time permitting, we will explore other applications

1. Stability and Control of Time-Delay Systems

2. Stability and Control of PDE systems.
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