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Summary

Powerful New Tools

e Convex Optimization

» LMils
» Sum-of-Squares

Many old problems have been solved
e H,, and H> optimal control
¢ Nonlinear stability analysis
e Analysis and Control of delayed and PDE systems

Many questions are still unresolved
e Control of nonlinear Systems

e Nonlinear Programming (partially resolved)

Question: What is meant by a “solution”?

M. Peet Lecture 01:

1/135



Outline

Lectures 1-2
1. Linear Systems
2. Convex Optimization and Linear Matrix Inequalities
3. Optimal Control
4. LMI Solutions to the H,, and Hy Optimal Control Problems
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Signal Spaces

Lo space

Definition 1.
L>[0,00) is the Hilbert space of functions f : R* — R™ with inner product

1 (o)

=5 | w(t)Tu(t)dt

<ua y>L2

L5[0, 00) inherits the norm

lul2, = / Ju(t)|2d
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Operator Theory

Linear Operators

Definition 2.

The normed space of bounded linear operators from X to Y is denoted
L(X,Y) with norm
[Pzlly _

1l x

IPllzcx,y) := E

a:;éO

e Satisfies the properties of a norm

e This type of norm is called an “induced” norm

e Notation: £(X) := L(X, X)

e If X is a Banach space, then £(X,Y) is a Banach space
Properties: Suppose G1 € L(X,Y) and Gy € L(Y, Z)

e Then G, © Gy € L(X,Z).

G20 Gillex,z) < 1Galleez)1Galleix -
e Composition forms an algebra.
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Laplace Transform

Definition 3.
Given u € Ls[0,00), the Laplace Transform of u is & = Au, where
T
(s) = (Au)(s) = lim u(t)e Stdt

T—o0 Jo

if this limit exists.

A is a bounded linear operator - A € L(Lo, Hs).
o A: Lo — Ho.
o The norm ||Al|z(L,,ms) IS

A
1A = sup 1Aulm gy
u€Ls ||U‘HL2
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Hs - A Space of Integrable Analytic Functions

Definition 4.
A complex function is analytic if it is continuous and bounded.

A function is analytic if the Taylor series converges everywhere in the domain.

Definition 5.
A function @ : C* — C" is in Hy if
1. 4(s) is analytic on the (denoted CT)
2. For almost every real w,
lim @ _ A
Jim (o +w) = 4(w)

» Which means continuous on the imaginary axis

o0
/ supl[a(o + w)||2 < 0o

—o00 0>0

» Which means integrable on every vertical line.
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The Maximum Modulus Principle

Theorem 6 (Maximum Modulus).

An analytic function cannot obtain its extrema in the interior of the domain.

Hence if @ satisfies 1) and 2), then

/ supl|i(o + w)||2 = / () 3o

—o00 020 —00
We equip H> with a norm and inner product

. R Lo Y N
[l &, :/ laGu)llzdw, (@ Gy, = 5~ | () d(w)dw
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Paley-Wiener

Theorem 7.

1. Ifu € L]0, 00), then Au € Hs.
2. If 4 € Hy, then there exists a u € L3[0,00) such that & = Au (Onto).

e Shows that Hs is exactly the image of A on L]0, 00)
e Shows the map is invertible

Definition 8.
The inverse of the Laplace transform, A=! : Hy — L5[0,00) is

u(t) = (A—La)(t) = — / ot 9t 4 )

=5 L

where o can be any real number.
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Corollary

Lemma 9.
<AU, Ay>H2 = <U, y>L2
e Thus A is unitary.

o [5]0,00) and Hy are isomorphic.

A
1A = sup 124l o0
u€Ls HUHI@
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H, - A Space of Bounded Analytic Functions

Definition 10.
A function G : CT — C"™™™ is in Hy if
1. G(s) is analytic on the CRHP, C*.

2.
lim G(o +w) = G(w)

o—07t

sup 7(G(s)) < oo
seCt

e A Banach Space with norm

||GHH°C = esssup 6(G(zw))
weR
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H. (A Signal Space) and Multiplier Operators

Every element of H, defines a multiplication operator.

Definition 11.
Given G € Hy, , define My, € L(Ho)

(Mg ) (s) = G(s)a(s)
for u € Hs.
Functions vs. Operators

e (G is a function of a complex variable.

® Mg is an operator (a function of functions...).
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Causal LTI Systems map to H.

For any analytic functions, @ and G, the function
j(s) = G(s)a(s)

is analytic.
e Thus Mg : Hy — Hs.
o Thus A™'M4A maps L3[0,00) — L3[0,00).

Theorem 12.

G is aACausa/, Linear, Time-Invariant Operator on Lo if and only if there exists
some G € Hy such that G = A="MzA.

(AGu) (w) = G (w)i(w)
H. is the space of transfer functions for linear time-invariant systems.
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H., - The space of “Transfer Functions”

From Paley-Wiener, if G = A~'MsA
Theorem 13.

Gl ezay = 1Melleas) = 1G] a.,

The Gain of the system G can be calculated as |G|z

e This is the motivation for H,, control
IGullL,
lully, -

> minimize maximum energy of the output.

® minimize sup,,

Conclusion: H., provides a complete parametrization of the space of causal
bounded linear time-invariant operators.

M. Peet Lecture 01: 13 / 135



Rational Transfer Functions (RH )

The space of bounded analytic functions, H. is infinite-dimensional.
e this makes it hard to design optimal controllers.

We usually restrict ourselves to state-space systems and state-space controllers.

Definition 14.

The space of rational functions is defined as

= {p(s) : p,q are polynomials}
q(s)

We define the following rational subspaces.

RHy = RN Hy
RH = RNHy

Note that RHy and RH, are not complete(Banach) spaces.
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Rational Transfer Functions (RH )

RH is the set of proper rational functions with no poles in the closed right
half-plane (CRHP).

Definition 15.

e A rational function r(s) = ;’Eg is Proper if the degree of p is less than or
equal to the degree of g.

e A rational function r(s) = ’;Ez) is Strictly Proper if the degree of p is less

—

than the degree of q.

Proposition 1.

1. G € RH, if and only ifG is proper with no poles on the closed right
half-plane.
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State-Space Systems

Define a State-Space System G : Lo — Ly by y = Gu if
z(t) = Azx(t) + Bu(t)
y(t) = Cx(t) + Du(t).

Theorem 16.

e For any stable state-space system, G, there exists some G € RH,, such
that
G=A1'M el

e For any G € RH,., the operator G = AflMéA can be represented in
state-space for some A, B,C and D where A is Hurwitz.
For state-space system, (A, B,C, D),
G(s)=C(sI —A)'B+D

State-Space is NOT Unique. For any invertible T,
e G=C(sI—A)"'B+D=CT Y (sI —TAT"")"'TB + D.
» (A,B,C,D) and (TAT*,TB,CT™ ", D) both represent the system G.
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Optimal Control Framework

2-input 2-output Framework

z regulated outputs <« < exogenous inputs w

Plant
y sensed outputs «— <« actuator inputs u

We introduce the control framework by separating internal signals from external
signals.
Output Signals:

e z: Output to be controlled/minimized
> Regulated output
e y: Output used by the controller
> Measured in real-time by sensor
The same signal may appear in both outputs.

e e.g. if you can measure what you want to minimize.
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2-input 2-output Framework

z regulated outputs «—— «—— exogenous inputs w
Plant _
y sensed outputs «—— <« actuator inputs u
Input Signals:

e w: Disturbance, Tracking Signal, etc.
> exogenous input
e u: Output from controller

> Input to actuator
» Not related to external input
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The Optimal Control Framework

The controller closes the loop from y to w.

Z «— l— W

P
Yy < U

=

For a linear system P, we have 4 subsystems.
z| | P Pio| |w
Y Py Paa| |u

Pllin—)Z P122’LL+—>Z

Pyt wery Py iu—y
Note that all P;; can themselves be MIMO.
M. Peet
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The Regulator

-

n, roc

R

If we define ¢ = w1 +u and r = Pyq, then

- [

y=[y] =7r+w

Yp
U

o[- [ez]
W2 nsensor

Nproe = W,y

M. Peet
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K
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The Regulator

“ =Y, P Mproc = Wy
Z,=u Negger = W,
)‘7: P, 7
Y K u

The reconfigured plant P is given by

z1(t) Py 0 PRy [wi(t)
2) =10 0 TI/| [w(t)
y(t) Py I PRy | u(?)
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Diagnostics

Zystem €]

Yaystem

command inputs —»

System

Controller

j«—— W,

system

u,

system

—» diagnostic outputs

Plant
Zeystem Weystem
aing *—— System ™ Weommands
Yaystem Usystem
Controller
Yeommands Ugiag
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Tracking Control

n.

proc sensor

Define ¢ = nproc + u, then

. zZ1 . e . .
Z[zg}[u} e=1r— Pyq

w1 r
Yy = L - " w= |wy| = | n
- - - - TocC
Y2 Nsensor + P()q P
w3 Nsensor
e = tracking error r = tracking input
Nproc = Process noise Nsensor = SENSOr noise
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Tracking Control

P l r=w,
z=e W, h T_ W, Mo = W,
2z = u—7 W, = J W.. Nsensor = w,
B,
Y K U
I —Py 0 —P A =1 = Po(nproc +u)
p— 0 0 0 I Z2 =1U

I 0 0 0 g =1

O PO I PO Y2 = w3 + PO(nproc + U)
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Linear Fractional Transformation

Close the loop

Z «— «—— W
P
Y < u
> K
Plant:
an b A| B B
L’j{P“ Plz} B}] where P=| Ci| Dii Dis
e Co | Da1 Do

Controller: B | Ak | Bk
u = Ky where K= {C‘K‘W]

M. Peet Lecture 01: 25 /135



Linear Fractional Transformation

z = Pllw + Plgu
y = Paiw + Pyu
u= Ky

Solving for wu,
u=KPoyiw+ KPyou

Thus

(I — KPQQ)U = KP21w
u = (I — KPQQ)ilKP21'LU

Now we solve for z:

z = I:Pll + Plg(.[ — KPQQ)ilKP21j| w
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Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P, K'), denoted
S(P,K) := P11 + Pia(I — KPs) 'K Py

AKA: Lower Star Product

Z 4 <« W
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Other Fractional Transformations

Lower LFT: Upper LFT:
Z 4— «— W
P > Q
Y U
i z < w
i P
Y <— — U

S(P,K) := Pli+Pio(I-KPy) ' KPy _ »
S(P7K) = P22+P21Q([—P11K) P12
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Other Fractional Transformations

Star Product:

2, +—] «— W,
P
Y u
K
Ly €— <« W,
L S(P, K1) Pio(I — K11P22)71K12
S(PK) = Ko (I — Pyo K1) 1Py S(K, Pys)
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Well-Posedness

The interconnection doesn't always make sense. Suppose

A| B, B
P = 01 D11 D12 and K= |: éK ZB;K :| .
Cy | Da1 Doy K=K

Definition 17.

The interconnection S(P, K) is well-posed if for any smooth w and any x(0)
and zx (0), there exist functions z, xx, u, y, z such that

z(t) = Az(t) + Biw(t) + Bou(t) Tx(t) = Agx(t) + Bgy(t)
z(t) = C1a(t) + D11w(t) + Dysu(t) u(t) = Cra(t) + Diy(t)
y(t) = Cgl'(t) aF D21’LU(t) aF D22u(t)

Note: The solution does not need to be in L.

e Says nothing about stability.
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Well-Posedness

In state-space format, the closed-loop system is:

AR A AR A AR HIET

At)=[C1 0] [ x(t) } + D1y 0] [thj + Dyyw(t)

I'K(t) t
From
u(t) = DKy(t) + CKIK(t)
y(t) = Dggu(t) + ng(t) + Dgl’w(t)
We have

I R AR R G

Because the rest is state-space, the interconnection is well-posed if and only if
_DK'

is invertible.
— Doy I

the matrix [

M. Peet Lecture 01: 31/ 135



Well-Posedness

Question: When is
I —Dpg
—Dso I
invertible?
Answer: 2x2 matrices have a closed-form inverse

{ I —DK]I_[I+DKQDm DKQ}
—D22 I B QD22 Q

where Q = (I - DQQDK>_1.
Proposition 2.
The interconnection S(P, K) is well-posed if and only if (I — Dy3Dk) is

invertible.

e Equivalently (I — Dy Dos) is invertible.
e Sufficient conditions: Dy = 0 or Doy = 0.

e To optimize over K, we will need to enforce this constraint somehow.
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Optimal Control

Definition 18.
The Optimal H,.-Control Problem is

i P K
min (ISP, K) 1.

e This is the Optimal H,, Dynamic-Output-Feedback Control Problem

Another class of optimal control problem:

Definition 19.
The Optimal Hs-Control Problem is

min ||S(P,K)||g, such that
K€Ho

S(P,K) € He.
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Optimal Control

Choose K to minimize

| P11 + Pio(I — K Pa) K Poy||m.,

Equivalently choose [ él,g gi } to minimize

A0 By 0 I —Dxgl'[0 k]| Bir+ B2DxkQDxn
0 Ax 0 Bx||-Ds I Cy 0 BrQDa:
[

I —Dxk] '[0 Ck
Cy 0

0] + [D12 0] { D11+ D12Dr QD2

—Doy I He

where Q = (I — DQQDK)_l.

In either case, the problem is
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Optimal Control

There are several ways to address the problem of nonlinearity.

|[Pr1 + Pio(I — K Py3) ' K Pl ..
Variable Substitution: The easiest way to make the problem linear is by
R:=(I — KPy) 'K
The optimization problem becomes: Choose R to minimize

declaring a new variable

| P11+ PioRPoi||m..

M. Peet

B,

K

P,

P,

Lecture 01:

35 /135



Optimal Control
We optimize
[Py + Pio(I — KPa2) 'K Pot||,. = ||Pi1 + PraRPo1 || 1.
Once, we have the optimal R, we can recover the optimal K as

K = R(I + RPy) ™"

Problems:
* how to optimize ||| m_. -
e Is the controller stable?

> Does the inverse (I + RPQQ)_I exist? Yes.
> |s it a bounded linear operator?
> In which space?

e An important branch of control.

» Coprime factorization
> Youla parameterization

e We will sidestep this body of work.
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What is Optimization?

Optimization can be posed in functional form:

min objective function : subject to

€l
inequality constraints
which may have the form
min fo(x) : subject to
el
fil@)>0  i=1,--k

Special Cases:
e Linear Programming
> fi(x) = Az — b ( Affine functions with f; : R™ — R™)
» EASY: Simplex/Ellipsoid Algorithm
¢ Polynomial Programming
» The f; : R™ — R™ are polynomials. (NP-HARD)
¢ Semidefinite Programming
> The f; : R™ — R™*™ are affine. (EASY)
For semidefinite programming, what does f;(x) > 0 mean?
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How Hard is Optimization?
Why is Linear Programming easy and polynomial programming hard?

min fo(x) : subject to
z€F

fil@)>0  i=1,-k
The Geometric Representation is equivalent:

mi]%l folx) : subject to zes
fAS

where S:={z : fi(z) >0, i=1,--- k}.
The Pure Geometric Representation:

min 7y : subject to
~v,x€F

(y,2) €5
where 8" :={(v, z) : v— fo(z) >0, fi(z) >0, i=1,---  k}.
e Two optimization problems are Equivalent if a solution to one can be used

to construct a solution to the other.
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Convexity

Definition 20.
A set is convex if for any z,y € @,

{fpz+ (1 —py - pel0,1]} CQ.

The line connecting any two points lies in the set.
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Convex Optimization

Convex Optimization:

Definition 21.

Consider the optimization problem

min v : subject to
v,z €F 3

(v,z) € 5"

The problem is Convex Optimization if the set 1
S’ is convex.

0
-1 0 1 2 3 4 5

Convex optimization problems have the property that the Gradient projection
algorithm (or Newton iteration with barrier functions) will always converge to
the global optimal.

The question is, of course, when is the set S’ convex?

e For polynomial optimization, a sufficient condition is that all functions f;
are convex.

» The level set of a convex function is a convex set.
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Non-Convexity and Local Optima

Newton’s Algorithm: Designed to solve f(z*) = 0 (is min f(z) > 07)

where t is the step-size. (From df /dx = M)

T—x*
For non-convex optimization, Newton descent may get stuck at local optima.

A x2

Inequality

iax <=b

Optimization
Direction ¢

Xoptimal

For constrained optimization, constraints are represented by barrier functions.
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Convex Cones

Definition 22.
A set is a cone if for any = € Q,
{pz 2 p >0} CQ.

A subspace is a cone but not all cones are subspaces.
e |f the cone is also convex, it is a convex cone.
e Cones are convex if they are closed under addition.

S, v,

M. Peet Lecture 01: 42 /135



What is an Inequality Constraint?

Question: What does f(x) > 0 mean.
e What does y > 0 mean?
If y is a Scalar (y € R), then y > 0 if y € [0, x0].

Question: What if y is a vector (y € R™)?
e Then we have several options...
Examples: Let y € R™.
e Positive Orthant: y > 0ify; >0fori=1,--- ,n.
e Half-space: y > 0if Y. y; >0 (17y > 0).
» More generally, y > 0 if aTy + b > 0.
o Intersection of Half-spaces: y > 0ifaly+b, >0fori=1,--- ,n.

» The positive orthant is the intersection of half-spaces with b; = 0 and
a; = e; (unit vectors).

Question: What if y is a matrix???
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Positivity

What is an inequality? What does > 0 mean?
e An inequality implies a partial ordering;:
»x>yife—y>0
e Any convex cone, C defines a partial ordering:
»r—y>0ifz—yeC
e The ordering is only partial because = £ 0 does not imply z > 0

» —x & C does not imply z € C.
» x may be indefinite.

Conclusion:
e Convex Optimization includes positivity induced from any partial ordering.

e In particular, we focus on Matrix Positivity.
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Matrix Positivity

Definition 23.
A symmetric matrix P € S" is Positive Semidefinite, denoted P > 0 if

T Pz >0 for all z € R™

Definition 24.
A symmetric matrix P € S" is Positive Definite, denoted P > 0 if

zT Pz >0 for all z # 0

e P is Negative Semidefinite if —P >0
e P is Negative Definite if —P > 0

e A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.
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Positive Matrices

Lemma 25.

P € S™ is positive definite if and only if all its eigenvalues are positive.

Things which are easy to prove:
e A Positive Definite matrix is invertible.
e The inverse of a positive definite matrix is positive definite.
e If P> 0, then TPTT >0 for any T. If T is invertible, then TPTT > 0.

Lemma 26.

For any P > 0, there exists a positive square root, P2 > 0 such that
1 1
P =PzP3.
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Semidefinite Programming - Dual Form

minimize trace C X
subject to trace ;X = b; for all ¢
X =0

e The variable X is a symmetric matrix
e X > 0 means X is positive semidefinite

e The feasible set is the intersection of an affine set with the positive

semidefinite cone
{Xes"|Xx=0}

Recall traceCX = Z” CiiXj-
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SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give
minimize 'z
subject to F0+$1F1+I’2F2+"'+InFn jO

where Fy, Fy, ..., F, are symmetric matrices.

The inequality constraint is called a

;eg.,
x1—3 1+ 2 -1
xr1 + T2 xo —4 0 =<0
-1 0 T
which is equivalent to
-3 0 -1 1 10 0 1 0
0 -4 0|+=z|1 0 Of+=x|1 1 0] =0
-1 0 0 0 0 1 0 0 0
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Linear Matrix Inequalities

Linear Matrix Inequalities are often a Simpler way to solve control problems.

Common Form:

Find X :
> AXBi+Q>0

The most important Linear Matrix Inequality is the Lyapunov Inequality.
There are several very efficient LMI/SDP Solvers for Matlab:
e SeDuMi

» Fast, but somewhat unreliable.
> See http://sedumi.ie.lehigh.edu/

e LMI Lab (Part of Matlab’s Robust Control Toolbox)

» Universally disliked
> See http://wuw.mathworks.com/help/robust/lmis.html

o YALMIP (a parser for other solvers)
> See http://users.isy.liu.se/johanl/yalmip/
| recommend YALMIP with solver SeDuMi.
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Semidefinite Programming(SDP):

Common Examples in Control

Some Simple examples of LMI conditions in control include:
e Stability
ATX + XA <0
X >0

o Stabilization
AX +BZ +XAT +ZTBT <0
X >0
e Hj Synthesis

min Tr (W)
[A B [)Z(} +X 27] [gg] +BiBY <0
{(CXi{DZ) e ;/DZ)T] =0

We will go beyond these examples.
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Lyapunov Theory

LMIs unite time-domain and frequency-domain analysis

Theorem 27 (Lyapunov).

Suppose there exists a continuously differentiable function V' for which V (0) = 0
and V() > 0 for x # 0. Furthermore, suppose lim|j;| o V(2) = oo and

_ V(z(t+h) - V() d
g, SR - GV <0

for any x such that &(t) = f(x(t)). Then for any x(0) € R the system of

equations
o(t) = f(x(t))

has a unique solution which is stable in the sense of Lyapunov.
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The Lyapunov Inequality (Our First LMI)

Lemma 28.
A is Hurwitz if and only if there exists a P > 0 such that

ATP+PA<O

Proof.
Suppose there exists a P > 0 such that ATP + PA < 0.

o Define the Lyapunov function V(z) = 2T Px.

e Then V(x) > 0 for 2 # 0 and V(0) = 0.

e Furthermore,

V(z(t)) = &(t)T Px(t) + z(t)T Pi(t)
=z(t)T AT Px(t) + z(t)T PAx(t)

z(t)” (ATP + PA) z(t)

Hence V (2(t)) < 0 for all & # 0. Thus the system is globally stable.
Global stability implies A is Hurwitz.

M. Peet Lecture 01 52 / 135



The Lyapunov Inequality

Proof.
For the other direction, if A is Hurwitz, let

o0 T
P:/ 2™ U
0

e Converges because A is Hurwitz.

e Furthermore e
PA :/ eA"seAs Ads
0

AT 4 As At d o oag
:/ e” °Ae éds:/ e ‘5—(6 ‘5) ds
0 0 dS

i > ©d g
_ eA seAs _ 76A seAs
0 o ds

— —/ ATeA seAs — 1 _ ATPp
0

o Thus PA+ ATP=-1<0.
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The Lyapunov Inequality

Other Versions:

Lemma 29.
(A, B) is controllable if and only if there exists a X > 0 such that

ATX + XA+ BBT <0

Lemma 30.
(C, A) is observable if and only if there exists a X > 0 such that

AX + XAT +CTCc <0
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The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 31.

The Static State-Feedback Problem is to find a feedback matrix K such that

z(t) = Ax(t) + Bu(t)

is stable
e Find K such that A+ BK is Hurwitz.

Can also be put in LMI format:

Find X >0, K :
X(A+BK)+ (A+BK)"X <0

Problem: Bilinear in K and X.
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The Static State-Feedback Problem

e The bilinear problem in K and X is a common paradigm.
e Bilinear optimization is not convex.
e To convexify the problem, we use a change of variables.

Problem 1:
Find X >0, K :
X(A+BK)+ (A+BK)"X <0
Problem 2:
Find P >0, 7 :
AP+ BZ + PAT 4+ ZTBT <0

Definition 32.

Two optimization problems are equivalent if a solution to one will provide a
solution to the other.

Theorem 33.
Problem 1 is equivalent to Problem 2.
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The Dual Lyapunov Equation

Problem 1: Problem 2:
Find X >0, : FindY >0, :
XA+ATX <0 YAT + AY <0
Lemma 34.

Problem 1 is equivalent to problem 2.

Proof.

First we show 1) solves 2). Suppose X > 0 is a solution to Problem 1. Let
Y=X"1>0

o If XA+ ATX <0, then
X UXA+ATX)X 1 <0
e Hence
XM XA+ ATX)X ' =AX 4+ X AT =AY +YAT <0

o Therefore, Problem 2 is feasible with solution ¥ = X 1.
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The Dual Lyapunov Equation

Problem 1: Problem 2:
Find X >0, : FindY >0, :
XA+ ATX <0 YAT + AY <0

Proof.

Now we show 2) solves 1) in a similar manner. Suppose Y > 0 is a solution to
Problem 1. Let X =Y~ > 0.

e Then

XA+ ATX = X(AX 1+ X1AT)X
=XAY +YAT)X <0

Conclusion: If V(z) = 2T Pz proves stability of # = Az,
o Then V(z) = 27 P~z proves stability of i = ATx.
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The Stabilization Problem

Thus we rephrase Problem 1

Problem 1: Problem 2:
Find P >0, K : Find X > 0,7 :
(A+BK)P + P(A+ BK)" <0 AX+BZ+XAT +zTBT <0
Theorem 35.
Problem 1 is equivalent to Problem 2.
Proof.

We will show that 2) Solves 1). Suppose X > 0, Z solves 2). Let P=X >0
and K = ZP~'. Then Z = KP and
(A+ BK)P + P(A+ BK)T = AP+ PAT + BKP + PKTBT
= AP+ PAT + BZ+Z"B" <0

Now suppose that P > 0 and K solve 1). Let X = P >0 and Z = KP. Then
AP+ PAT + BZ+Z"BT = (A+ BK)P+ P(A+ BK)T <0
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The Stabilization Problem

The result can be summarized more succinctly

Theorem 36.

(A, B) is static-state-feedback stabilizable if and only if there exists some P > 0
and Z such that

AP+ PAT + BZ+ ZT"BT <0
with u(t) = ZP_lsc(t).

Standard Format:
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The Schur complement

Before we get to the main result, recall the Schur complement.

Theorem 37 (Schur Complement).
For any S € S, QQ € S™ and R € R"*™, the following are equivalent.
1 M R
g o
2. Q>0and M —RQ™'R” >0

>0

A commonly used property of positive matrices.
Also Recall: If X >0,

e then X — el > 0 for € sufficiently small.
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The KYP Lemma (AKA: The Bounded Real Lemma)

The most important theorem in this lecture.

Lemma 38 (KYP Lemma).

Suppose
co-[415].

Then the following are equivalent.
* |Gl <7-
o There exists a X > 0 such that
ATX + XA XB 1[cT
e _ﬂ] = {DT [c D] <0

Can be used to calculate the H..-norm of a system
e Originally used to solve LMI's using graphs. (Before Computers)
e Now used directly instead of graphical methods like Bode.

The feasibility constraints are linear

e Can be combined with other methods.
M. Peet
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The KYP Lemma

Proof.

We will only show that ii) implies i). The other direction requires the
Hamiltonian, which we have not discussed.

o We will show that if y = Gu, then |ly|lz, < ¥||ullL,-

e From the 1 x 1 block of the LMI, we know that AT X + X A < 0, which
means A is Hurwitz.

e Because the inequality is strict, there exists some € > 0 such that
ATX + XA XB 1[cT
[ BTX  —(y- 6)1} 5 [DT [¢ D]
_ {ATX—FXA XB] 1 [CT

BTX  —I| "5 |DT 0 el

][0 D]+[O 0}<0
e Let y = Gu. Then the state-space representation is

y(t) = Cz(t) + Du(t)
z(t) = Ax(t) + Bu(t) z(0) =0
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The KYP Lemma

Proof.
o Let V(x) = 2T Xz. Then the LMI implies

] [[55 —eZol 35T # ]
[ 15 cZa [ e ]
Qo

1
=27 (ATX + XA)z + 2" XBu+u" BT Xz — (v — eju”u + ;yTy
1
= (Az + Bu)T Xz + T X (Az + Bu) — (y — e)uTu + ;yTy
: , 1
= i(t)" Xa(t) + 2(t)T X (t) — (v — ) Ju(®)||* + ;Ily(t)llz’

— V(a(t) — (v — ) lul®)|> + %HW)HZ <0
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The KYP Lemma

Proof.

* Now we have V(z(t)) — (v — e)[[u(t)|* + %Ily(t)ll2 <0

e Integrating in time, we get
T, 1
(A (V@) = 6= M@ + = (@) )

T T
=vm@»;wmm—w—aluww%H§AHmmﬂﬁ<o

e Because A is Hurwitz, limp_, o z(T) = 0.
e Hence limy_, o V(2(T)) = 0.
e Likewise, because 2:(0) = 0, we have V(z(0)) = 0.
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The KYP Lemma
Proof.

e Since V(z(0)) = V(z(o0)) = 0,

Jim |V(a(T) = V(a(0)) - fe/Nm OlPde+ L /|m IE)ar

:o_o—m—dﬁwwmnﬁ+74 ly(®)12dt

1
~(v = 9llullZ, + ;IIyIIQLJit <0

e Thus

IyllZ,dt < (v* = en)llullz,
o By definition, this means [|G||3, _ < (v —ey) <42 or
Gl <
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The Positive Real Lemma
A Passivity Condition

A Variation on the KYP lemma is the positive-real lemma

- A| B
Gls) = [%W] :
Then the following are equivalent.

e G is passive. i.e. ((u,Gu)r, >0).
o There exists a P > 0 such that

Lemma 39.
Suppose

ATP+PA PB-CT <0
BfP—-C -Df-D
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Recall: Linear Fractional Transformation

Z «— «— W
P
Y < Uu
> K
Plant:
ant b b A ‘ B, B,
|:;:| = |:P11 P12:| |:1:::| where P= Cl D11 D12
o Cy | Dy D

Controller: B | Ak | Bk
u = Ky where K= {C‘K‘W
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Optimal Control

Choose K to minimize

| Pi1 + Pia(I — K Py2) 'K Py ||

Equivalently choose [ él,i g; } to minimize

A 0 B, 0 I —Dg] '[0 Ck]| Bi+ B2DrQDo

+ BxQD

0 Ax 0 Bgk||-D2x2 I Cy 0 K& D21
[

I —Dxk] '[0 Ck
—D22 I

0] + [D12 0] { } D11+ D12Dr QD2

C: 0 .

where Q = (I — DQQDK)_l.
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Optimal Full-State Feedback Control

Z «— W

For the full-state feedback case, we consider a controller of the form

u(t) = Fa(t)

Controller: 0] 0
u= Ky where K= {T‘T}

Plant: ‘
A| By Bs
z| _ Py P |w where P=| Ci| D1 Do
Y Py Pyl |u I 0 0
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Optimal Full-State Feedback Control

Thus the closed-loop state-space representation is

S(P,f():[ A+ BF | B }

C1+ DyoF ‘ Dy

By the KYP lemma, ||S(P, K)| .. <~ if and only if there exists some X > 0
such that

(A+ BoF)T'X + X(A+ BoF) XB
BfX —I

1 [(Cy + Do F)T
+ - {( ! +DT12 ) } [(Ci+ D12F) Dip] <0
v 11

This is a matrix inequality, but is nonlinear
e Quadratic (Not Bilinear)
e May NOT apply variable substitution trick.
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Schur Complement

The KYP condition is

[ATX—i—XA XB} 1 [CT

R WDT} (¢ D] <0

Recall the Schur Complement

Theorem 40 (Schur Complement).

For any S € S, @ € S™ and R € R"*™, the following are equivalent.

1 M R
RT Q
2. Q<0and M —RQ'RT <0

<o

In this case, let Q = —%I <0,

ATX + XA XB

T
BTX I R=[C D]

|

Note we are making the LMI
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Schur Complement

The Schur Complement says that

ATX + XA XB 1[cT
BTX —71} 5 [DT [c D] <0
if and only if
ATX +XA XB CT
B'X  —~I DT| <o
C D —I

This leads to the
Full-State Feedback Condition

(A+BoF)T'X + X(A+ ByF) XB; (C1+ DpoF)T

BT X —I DE <0
(Cl + D12F) Dy —~I

which is now bilinear in X and F'.

M. Peet Lecture 01:

73 /135



Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of
this LMI.

Lemma 41 (KYP Dual).

Suppose
co-[#/3]

Then the following are equivalent.
* |Glla. <7-
e There exists a Y > 0 such that
YAT+AY B YCT
BT —~I DT | <0
CcY D —~I
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Dual KYP Lemma

Proof.

Let X =Y. Then
YAT + AY XB YCT

BTX —~I DT | <0 and Y >0
cYy D I
if and only if X > 0 and
Y=' 0 0] [yAT+AY B YCT|[v=t 0 0
0 I 0 BT —~I DT 0 I 0
0 0 I cYy D I 0 0 I
ATX +XA XB OT]
= BTX —I DT | <o.
C D —I)

By the Schur complement this is equivalent to
ATX +XA XB]  1[CT
T + = | pT

B X I "~ |D

Mc D] <0

By the KYP lemma, this is equivalent to |G|l g < 7. O
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Full-State Feedback Optimal Control

We can now apply this result to the state-feedback problem.
Theorem 42.

The following are equivalent:
o There exists an F such that ||S(P, K(0,0,0, F))|| g, <.
o There exist Y > 0 and Z such that
YAT + AY + ZTBY + B,Z B, YCT + ZTDi,
BT —I DY, <0
C1Y + D12Z Dy, —I

One may use F = ZY 1.
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Full-State Feedback Optimal Control

Proof.
Suppose there exists an F' such that ||S(P, K(0,0,0, F))|lz., <~. By the Dual
KYP lemma, this implies there exists a Y > 0 such that
Y(A+ ByF)T + (A+ BoF)Y By Y(Ci+ DppF)T
BT —~I DT, <0
(01 aF D12F)Y D11 —’}/I

Let Z = FY. Then
YAT + ZTBT + AY + BoZ By YCOT +zZTDL)T

B I D,
C1Y + D127 Dy —I
[YAT + YFTBT + AY + BoFY By YCT +YFTDL)T
L 01Y+D12FY D11 7’)/]'
[Y(A+ BoF)T + (A+ BoF)Y By Y(Cy+ DyoF)T
= BT —I W < 0.
L (Cl aF Dle)Y D11 —’y[
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Full-State Feedback Optimal Control

Proof.

Now suppose there exists a Y > 0 and Z such that

YAT + ZTBT + AY + BoZ B

BY
CiY + D127

Let F = ZY ! Then

Y(A+ BoF)T + (A+ BoF)Y

M. Peet

B
(C1 + D1y F)Y

BY
C1Y + D1oFY

[YAT + ZTBT + AY + ByZ

BY
C1Y + D13Z

T
Dy

YCt + ZT DY,

Di,
_fYI

By Y(Ci+ DpF)T

[YAT + YFTBY + AY + B,FY B

<0

<0

=All D1T1
Dll —")/I
YCF +YFT DY,
-1 D1T1
D11 7’)/1
B, YC’lT —|—TZTDf2
-l Dy,
D11 —’)/I

Lecture 01
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Full-State Feedback Optimal Control

Therefore the following optimization problems are equivalent
Form A

min|[S(P, K£(0,0,0, F)|| ..

Form B
vl
-Y 0 0 0
0 YA +AY +2TBY + ByZz By YC! +ZTDIL,
0 B —~I DL
0 CiY + D127 Dy I

The optimal controller is given by F = ZY 1.
Next: Optimal Output Feedback
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Optimal Output Feedback

Recall: Linear Fractional Transformation

Z €« «—— W
P
y <t u
> K
Plant: . b A ‘ B, B,
{Z} — [P“ PIQ} B] where P=| C,| Dy D
Yy 21 22 Cy | Doy Doy
Controller: Ak | Bk
u = Ky Where K = {C‘K‘W
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Optimal Control

Choose K to minimize

| Pi1 + Pia(I — K Py2) 'K Py ||

Equivalently choose [ él,i g; } to minimize

A 0 B, 0 I —Dg] '[0 Ck]| Bi+ B2DrQDo

+ BxQD

0 Ax 0 Bgk||-D2x2 I Cy 0 K& D21
[

I —Dxk] '[0 Ck
—D22 I

0] + [D12 0] { } D11+ D12Dr QD2

C: 0 .

where Q = (I — DQQDK)_l.
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Optimal Control

Recall that .
{ I _DK] _ [I + DgQDo DKQ}
—D22 I QD22 Q

where Q = (I — DQQDK)_l. Then

A [A 0] B 0 I —-Dgl7'[0 ok
A0 Ag 0 Bgl||-Dy I Cy 0

= [A 0 } N {32 0 ] {HDKQDQQ DKQ} {0 CK]

_ A+ BsDgQCy By(I 4+ DrQDy3)Cxk
BrQCy Ax + BgQD22Cx
Likewise
I+DgQDs; DrQ| |0 Cg
Cyu=|C; 0 D 0
! [1 }Jr[lz }{ QDoy Q C, 0

= [Cl + D12DkQCy  D1a(I + DKQDQZ)CK]
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Optimal Output Feedback Control

Thus we have

A+ ByDgQCy  By(I + DrgQD23)Ck By + By D QDo
BrQCs Ag + BxQD3Cg Br QD
[C1+ D12DQC>  D13(I + DkQD32)Ck]| | D11 + D12Dk QDo

where Q = (I — D22DK>_1.
e This is nonlinear in (Ax, Bk,Ck,Dk).

e Hence we make a change of variables (First of several).

Ags = Ag + BkQD22Ck
Bgs = BrQ
Cko = (14 DgQDas)Ck
Dgo = D@
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Optimal Output Feedback Control

This yields the system

A+ ByDgoCy ByCrko Bi + ByDga Doy
Bg2Co Ago BgaDoy
[C1 4 D12Dk2C>  D12Cks] | D11+ D12Dga Doy

. o Ago | Bko ]
Which is affine in .
ich i ine i |:CK2 Drca
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Optimal Output Feedback Control

Hence we can optimize over our new variables.
e However, the change of variables must be invertible.

If we recall that
(I-QM) ™ =1+Q(I—-MQ)'M

then we get
I+ DgQDyy =1+ Dg(I — DygDg) ' Doy = (I — D Do) ™!
Examine the variable C'ko

Cko = (I + Dg(I — DyyDg) ' Dys)C
= (I — DgD9y) 'Ok

Hence, given Cko, we can recover C'i as

Ck = (I = DgD22)Cika
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Optimal Output Feedback Control

Now suppose we have Dgs. Then
Dgs = DgQ = Di(I — Dy D) ™!
implies that
Dk = Da(I — D22 Dk) = Dg2 — Dg2Da22 D

or
(I + Dg2D22)Dg = Dgo

which can be inverted to get

Dy = (I + DgaDos) ' Do
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Optimal Output Feedback Control

Once we have Ck and Dg, the other variables are easily recovered as
By = Bg2Q ™" = Bgo(I — D2s D)
Ag = Ago — B (I — DayDp) ' DaaCix
To summarize, the original variables can be recovered as
Dy = (I + DgaDas) " Dieo
Br = Bga(I — D22 D)
Crx = (I — DgD23)Ck»
Ax = Ago — Br(I — Doz D) ' DaoCix
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Optimal Output Feedback Control
A B A+ ByDgoCs Bchﬂ Bi + ByDgoDoy ]
cl cl L
|: Ccl Dcl :| T

Br2Cs Ak BraDa
[C1 4 D12Dk2C>  D15Cks] | D11+ D12DgaDay |

Ag Bg] |40 Bip 0 By B0 T 0]
[CD}_OOOJFIO[C DHCOD
cl cl Cl O Dll_ 0 D12 K2 K2 2 21 |
Or
4 _[A 0 +'0 Bg] [Am Bm} [0 I}
o 0] "|I 0] |Cka Dg2||C2 O

0

B, + 0 Ba| |Ak2 Bga|| 0

0 I 0| |Ck2 Dga| |Dax
Ago Bgo| |0 I

Ca=[C1 0]+[0 Dy [Om Dm] [02 o]

Ags Bgo| | 0
Ck2 Dga| |Da
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Optimal Output Feedback Control

Lemma 43 (Transformation Lemma).

Suppose that

Y1 I
K
Then there exist X5, X3,Yo,Y3 such that
—il
X X [V Y, _ =il
X—[XQT XJ_[YQT y:,,] —Y 50

i I

where Y, = [YQT 0

] has full rank.

M. Peet
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Transformation Lemma

Proof.

e Since
Yim [
[I Xl] >0,

by the Schur complement X; > 0 and X1_1 — Y7 > 0. Since
I—X,Y1 =X (X;' = Y1), we conclude that T — X,Y; is invertible.

e Choose any two square invertible matrices X5 and Y5 such that
XYV, =1—- XY,
e Because X5 and Y; are non-singular,

Y7 Y- I 0
o 1 2 _
Y, = {I O] and X, = [X1 X2]

are also non-singular.
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Transformation Lemma

Proof.
e Now define X and Y as
X=Y,"X, and Y =Xx'vI

Then
XY =Y ' XuX'Yu=1

Likewise, Y X = I. Hence, Y = X 1. O
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Optimal Output Feedback Control

Lemma 44 (Converse Transformation Lemma).

Given X = {X% Xz > 0 where Xy has full column rank. Let
Xy X3
1 _v_|h Y
X " =Y= {YZT Y,
then
i I
{I XJ >0

1
vy 0] has full column rank.
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Converse Transformation Lemma

Proof.

Since X5 is full rank, X, = [
XY = I implies

v (Y1 Yol [Xh Xof [ I O
K,IX_|:I 0 X’QT XS — X1 X2 —Xcl.

I 0

X, XJ also has full column rank. Note that

Hence YT_-Yl % [I o vy
4TI 0] | X X T 7

has full column rank. Now, since XY = I implies X;Y; + XQYQT = I, we have

I o][vn I1_[ n Il Mm I
X1 Xo| Y o] T [ Xin+XeYd X1 T |1 Xa

XaYe = {

Furthermore, because Y,; has full rank,

[Yl 1

I XJ =XuYu=XaY X, =Y XYy >0
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Optimal Output Feedback Control
Theorem 45.

The following are equivalent.

o There exists a K = {i‘BiK} such that ||S(P, K)||a.. <.
Ck | Dk >

o There exist X1,Y1, Ap, By, Cp, D, such that [)? ;] >0
1
[AY1+Y1AT +B2Cr+CT BT «T *" 1
AT + Ay + [B2DyCo)T X1A+AT X1+ B,Co+C3 BY T T <0
[Bi + B2Dy, Do ] [XBi1 + BnD2i]" -1

C1Y1 + D12Cy C1 4+ D12D,,C> D11+D12Dn D2y —I ]
Moreover,
[ Ags | Bre |_[X2 XiBo] ' [[4: B.] [X14vi 0] [YS o]
oo En C. D, 0 o] ey I

for any full-rank X5 and Ys such that

X, X [vi vt
XTI X3 |YL Y3
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Optimal Output Feedback Control

Proof: If.

Suppose there exist X1,Y1, A, By, Cy, D, such that the LMI is feasible. Since
X, I]
{ S R

by the transformation lemma, there exist X5, X3, Y5, Y3 such that

- =il
X X Y Y
X = {X:T XJ__YQT YJ >0
Y I

where Y, = [YQT O] has full row rank. Let K = [ ég gi } where

Dg = (I 4+ Dk2Das) 'Di»

Br = Bga(I — D23 D)

Ckx = (I — DgD23)Ck»

Ag = Ags — Bg(I — D23 D) ' D2:Cl.

Lecture 01
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Optimal Output Feedback Control

Proof: If.

and where

Ao | Bx2 | [Xo XiB| ' [[4n B.] [X:AY: 0]][YL o]
Cxs | Do | |0 I C, D, 0 off|cni I

O
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Optimal Output Feedback Control

Proof: If.

As discussed previously, this means the closed-loop system is

Aq  Ba A0 B 0 B Ags Bgo| [0 I 0

[c D]OOO+IO[C D}{COD}
et D C, 0 Dy 0 Dis k2 Dia| |Co 21
A 0 B; 0 B>

=10 O 0|+ |1 0

Xo X1B:| ' [[An B.] [XiAY: 0]][YL o] '[o I o0
0 I C, D, 0 0 Y, I Cy 0 Doy
Now look at the LMI from the KYP lemma.
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Optimal Output Feedback Control

Proof: If.

Expanding out, we obtain

YI 0 0] [AZX+XA, XBy CL][vu 0 0
0 I 0 BCTlX —~I Dg 0 I 0f=
0 0 I Ccl Dcl 77] 0 0 I
AY1+Y1 AT +ByCr+Cy By T ! "
AT + A, + [B2D,Co]" X1A+ATX,1+B,Co+CT BY T _ <0
[B1 + B2D,, D1 ]” [XBy + B,D2]" —I
C1 Y1 + D12Cy, C1+ D12D,,Cs D11+D12DyDo1 —vI
A B .
Hence, by the KYP lemma, S(P, K) = [ CCZ DCl } satisfies
cl cl

IS(P, K)o <7 O
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Optimal Output Feedback Control
Proof: Only If.

Now suppose that ||S(P, K)||n., < 7 for some K = Ax | Br . Since
o Ck | Dk

IS(P, K)||m.., <7y, by the KYP lemma, there exists a

X = [Xl XQ} >0

X2T X3
such that
AEX + XA, XBg C’g;
BgZX —I Dg <0
Ccl Dcl _’VI

Because the inequalities are strict, we can assume that X5 has full row rank.
Define
I Yo IR
Y = [YQT Y:J =X and Yo = Yy 0

Then, according to the converse transformation lemma, Y,; has full row rank

and X I
R
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Optimal Output Feedback Control
Proof: Only If.

Now, using the given Ag, Bx,Ck, Dk, define the variables

A, B,| [Xo XiB2| [Ak2 Br2| [Yd 0 n X147 0
C, D,| |0 I Cr2 Dgao| |CoY1 I 0 0"

where
Ags = Ag + Bx(I — DyaDp) 'D2sCx  Brga = Bg(I — DyaDg) ™!

Cro = (I + Dg(I — DyaDg) ' D9)Cx  Dgo = D (I — DyaDp) ™t

Then as before

A 0 B1 0 B2

[‘é“l gcl] 00 0 |+][I o0

o Ci 0 Dy 0 Di
Xo X1B:| ' [[An B.] [XiAY: 0]][YL o] '[o I o0
0o I C. D, 0 o]|eyvi Il [c: 0 Dy

O
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Optimal Output Feedback Control

Proof: Only If.
Expanding out the LMI, we find

AYi +Y1 AT+ ByCr+CT BT o7 o7 o7
AT + A, + [B2DnC2)T X1A+AT X1+ B,C>2+C3 BY T T
[Bi + B2D,, Do) [XBy + B, D2]" —~I
C1Y1 + D120 C1+ D12D,Co D11+D12Dn D21 —vI
YC{ 0 0 AZZX + XA, XBgy CZ; Y, 0 0
0 I 0 Bz;Xcl —~I DZ; 0 I 0f<0
0 0 I Cy Dy —~1 0 0 I
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Conclusion

To solve the H.-optimal state-feedback problem, we solve

min vy such that
v, X1,Y1,4n,Bn,Cpn Dy,

X, I
[ I Yl] >0
AY: +Y1AT+BQCn+CZB2T «T x7 T
AT + A, + [B2D,Co]" X1A+AT X1+ B,Co+CT BY «T - <0
[Bi + B2D,, Doy )" [XBy + B.D2]" -1
C1Y1 + D12Cy C1 4 D12D,,C> D11+D12Dy D2y —~I
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Conclusion

Then, we construct our controller using

Dy = (I + DgsDa2) ' Do
Bk = Bga(I — D22 D)
Ck = (I — DgD3)Ck2
Ak = Ag2 — Bi(I — Daa D) ' Das O
where
Az | Bra | [Xo XiBo] ' [[4. B.] [Xi4vi 0]][vF o]
Crgo | Do | |0 I C, D, 0 0] [CoYT I ’
and where X5 and Y5 are any matrices which satisfy XoYs =1 — X;Y7.
eeg LletYo=Tand Xo =1— X Y;.
e The optimal controller is NOT uniquely defined.
e Don't forget to check invertibility of I — Do D
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Conclusion

The H.-optimal controller is a dynamic system.

. > AK BK
Transfer Function K (s) =
e Transfer Function K(s) { Cw [ Dx ]

Minimizes the effect of external input (w) on external output (z).

12l 2, < ISP K| ],

e Minimum Energy Gain
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H>-optimal control

Motivation
Hs-optimal control minimizes the Hs-norm of the transfer function.
e The Hs-norm has no direct interpretation.

1 & R N
Gl = 5 [ Trace(Giu)"Glaw))d

—0o0
Motivation: Assume external input is Gaussian noise with signal variance S,,

Elw(t)?] = — / " Trace(Sy (1)) dw

=5
Theorem 46.

For an LTI system P, if w is noise with spectral density S’w(zw) and z = Pw,
then z is noise with density

S, (w) = P(w) S (w) P(w)*
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H>-optimal control

Motivation

Then the output z = Pw has signal variance (Power)

Elz(t)%] = % _Oo Trace(G (w)* S (1w) G (1)) dw
< 1Sl a.. IGll,

If the input signal is white noise, then S(ww) = I and

El2(t)] = |Gl
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H>-optimal control

Colored Noise

Now suppose the noise is colored with variance S'w(zw). Now define H as

H(w)H (w)* = Sy (w) and the filtered system.

_ [Pu(s)H(s) Pra(s)

Puls) = Por(5)H(s)  Pao(s)

Now, applying feedback to the filtered plant, we get
S(P,,K)(s) = P\yH + Pyo(I — KPy) 'KPy H =S(P,K)H

Now the spectral density, S. of the output of the true plant using colored noise
equals the output of the artificial plant under white noise. i.e.

S.(s) = S(P, K)(s)Su(s)S(P, K)(s)*
=S(P,K)(s)H(s)H(s)*S(P, K)(s)" = S(Ps, K)(5)S(Ps, K)(5)*

Thus if K minimizes the Hay-norm of the filtered plant (||S(PS,K)||§{2) it will
minimize the variance of the true plant under the influence of colored noise with
density S, .
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H>-optimal control

Theorem 47.

Suppose P(s) = C(sI — A)~'B. Then the following are equivalent.
1. A is Hurwitz and | P| g, < 7.
2. There exists some X > 0 such that

trace CXC7T < ~2
AX + XA + BBT <0

M. Peet Lecture 01: 108 / 135



H>-optimal control

Proof.

Suppose A is Hurwitz and || P||z, < 7. Then the Controllability Grammian is

defined as -
Ty = / eAtBBT A" gt
0

Now recall the Laplace transform

(Aet) (s) = / " eMetagy

0

[e's}
_ / 6_(SI_A)tdt
0
t=—o0

(SI A) 1 7sI A)tdt
t=0

= (s — A)*1

Hence (ACe?'B) (s) = C(sI — A)~!
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H>-optimal control

Proof.
(ACe?'B) (s) = C(sI — A)~'B implies

1PII%, = [IC(sI — A)~*Bl|%,

_ 2i " Trace(Cluwl — A) ' BY(Clwl — A)~'B))dw
T Jo

- 2i " Trace(Clwl — A)-LB)(C(wl — A)-1B)*)dw
T Jo

:Trace/ CeBB*eA ™t C*dt
= TraceCX,.CT

Thus X, > 0 and TraceCX.CT = ||P||2, <42 O
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H>-optimal control

Proof.

Likewise TraceBT X,B = ||]5||fq2 where X, is the observability Grammian. To
show that we can take strict the inequality X > 0, we simply let

X = / t(BBT +el) e dt

for sufficiently small € > 0. Furthermore, we already know the controllability
grammian X, and thus X, satisfies the Lyapunov inequality.

ATX.+ X. A+ BBT <0

These steps can be reversed to obtain necessity. O
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H>-optimal control
Full-State Feedback

Lets consider the full-state feedback problem

e Djiq is the weight on control effort.
e Dy1 =0 is neglected as the feed-through term.
e (5 = I as this is state-feedback.

o [34]
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H>-optimal control
Full-State Feedback

Theorem 48.
The following are equivalent.
1 [|S(K, Pl <.
2. K=27X""! for some Z and X > 0 where

[A B [JZ(} +[x Z7 Lfég] +B1B] <0

Trace [C1X + D12Z] X' [C1 X + D12Z) < +?

However, this is nonlinear, so we need to reformulate using the Schur
Complement.
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H>-optimal control
Full-State Feedback

Theorem 49.
The following are equivalent.
L |IS(K, P)l#, <7
2. K =ZX1 for some Z and X > 0 where

(A By [)Z(] +[x 27] [gﬂ +BBY <0

X (C1X + D2)™] _
C1X + D197 1%

TraceW < ~>

Thus we can solve the Hs-optimal static full-state feedback problem.
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H>-optimal control

Applying the Schur Complement gives the alternative formulation convenient for
control.

Theorem 50.

Suppose P(s) = C(sI — A)~'B. Then the following are equivalent.
1. A is Hurwitz and || P| g, < 7.
2. There exists some X, Z > 0 such that

ATX+XA XB] _, X cT
BTX —~I| S c z

} > 0, TraceZ < 42
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H>-optimal control
Relationship to LQR

The LQR Problem:
e Full-State Feedback
e Choose K to minimize the cost function

/mx@FQﬂw+u@Fmeﬁ
0

subject to dynamic constraints
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H>-optimal control
Relationship to LQR

To solve the LQR problem using Hs optimal state-feedback control, let
_[@?
o C = |: 0

i [ )]

R2
e Bob=DBand B; =1.
So that
PN A+ ByK ‘Bl
S(P,K) = _
S( ) [01+D12KD11

And solve the Hs full-state feedback problem. Then if
z(t) = Acrx(t) = (A+ BK)z(t) = Ax(t) + Bu(t)
u(t) = Kx(t), z(0) = xo

Then z(t) = edotty,
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H>-optimal control
Relationship to LQR

If

(t) = Acra(t) = (A+ BK)x(t) = Ax(t) + Bu(t)
u(t) = Kz(t), z(0) = g

then z(t) = etz and
/ 27 Qa(t) + u(t)” Ru(t)dt — / 2T AL (Q 4+ KT RK)eA g dt
0 0

oo T 1
Q= Q2
:Trace/0 aTeAlrt [RZK R K eActtygdt

= ||m0||2Trace/ BleAth(C’l + D12 K)T(Cy + DK )ecrt BT at
0
= [lzo| | S(K, P)| 7,
Thus LQR reduces to a special case of Hs static state-feedback.
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H>-optimal output feedback control

Theorem 51 (Lall).

The following are equivalent.

o There exists a K = Ax | Bk such that ||S(K, P)||m, < 7.
Ck | Di

e There exist X1,Y1, 2, A, By, Cy, D,, such that

AY1+Y1 AT + BoC, +CT BT «L *T
AT I An aF [BgDnCQ]T X1A+ATX1 +Bn02+CQTB;I; *T <0,
[B1 + B2D,, Doy | [X1B1 + B, Doy -1
Yl I *T
I X1 T > 0,

C1Y1 + D12C, Cy+ D15D,Co Z
D11 + D12Dp D2y =0, trace(Z) < ?
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H>-optimal output feedback control

As before, the controller can be recovered as

Az | Brz | _[Xo XiBo| ' [[A. B.] [X14vi 0]][ Y
Cka | Drga | | O I C, D, 0 0 CcLyY,
for any full-rank X5 and Y5 such that
X, X]_[v v
X3 X3 VY Vs
To find the actual controller, we use the identities:
Dy = (I + DgoDas) ' Drea

By = Bg2(I — D22Dk)
Cx = (I — DgD92)Cio

Ax = Ago — Br(I — Doz D) ' DaoCik
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Robust Control

Before we finish, let us briefly touch on the use of LMIs in Robust Control.

A

\ 4

Questions:
o Is S(A, M) stable for all A € A?
e Determine

sup [[S(A, M)| a.. -
AeA
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Robust Control

Suppose we have the system M

M= [Mll Mu]

M1 Moo

Definition 52.

We say the pair (M, A) is Robustly Stable if (I — My3A) is invertible for all
A€ A.

Sy (M, A) = My + MipA(I — MosA) ™ My,
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Robust Control

The structure of A makes a lot of difference. e.g.
e Unstructured, Dynamic, norm-bounded:

A= {AcL(Ly): Al <1}
e Structured, Dynamic, norm-bounded:
A:={A,Ag,--- € L(La) : ||Ai]|r. <1}
e Unstructured, Parametric, norm-bounded:
A= {AeR™": A <1}
e Unstructured, Parametric, polytopic:

A = {AERTLXR : A:ZOZZ‘Hi, a; >0, Zai < 1}
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Robust Control

Let's consider a simple question: Additive Uncertainty.
My =0, Mp=My =1
Question: Is & = A(t)x(t) stable if A(t) € A for all t > 0.

Definition 53 (Quadratic Stability).

z = A(t)z(t) is Quadratically Stable for A(t) € A if there exists some P > 0
such that
A"P+PA<0 forall Ae A

Theorem 54.
If & = A(t)x(t) is Quadratically Stable, then it is stable for A € A.
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Robust Control

We examine this problem for:

e Parametric, Polytopic Uncertainty:

A :={A eR™" : A:Z(%'Az‘, a; >0, Zaizl}

M. Peet Lecture 01: 125 / 135



Parametric, Polytopic Uncertainty

For the polytopic case, we have the following result

Theorem 55 (Quadratic Stability).

Let
A={AcR™ : A= a;H;, 0 >0,) o;=1}

Then &(t) = A(t)z(t) is quadratically stable for all A € A if and only if there
exists some P > 0 such that

ATP 4+ PA; <0 fori=1,---,

Thus quadratic stability of systems with polytopic uncertainty is equivalent to
an LML
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Parametric, Norm-Bounded Uncertainty

A more complex uncertainty set is:

@(t) = Aoz(t) + Mp(t),  p(t) = A(t)q(t),
q(t) = Nz(t) + Qp(t), AeA

e Parametric, Norm-Bounded Uncertainty:

A= {AeR™ . A <1}
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Parametric, Norm-Bounded Uncertainty
Quadratic Stability: There exists a P > 0 such that
P(Aox(t)+Mp)+(Aox(t)+Mp)'P <0 forallpe {p : p=Aq,q = No+Qp}

Theorem 56.
The system

&(t) = Aoz(t) + Mp(t),  p(t) = At)q(?),
g(t) = No(t) + Qp(t), AecA:={AcR™ :|A|<1}

is quadratically stable if and only if there exists some P > 0 such that

z| [ATP+ PA PM]| [z <0
Y MTp 0 Y

o [ L] FI e o] <o)
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Parametric, Norm-Bounded Uncertainty

Bl g
B B st

2T P(Az + My) + (Az + My)T Pz < 0

for all x, y such that
[Nz + Qyll* < |ly|I”

Therefore, since p = Agq implies ||p|| < ||q||, we have quadratic stability.
The only if direction is similar.
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Relationship to the S-Procedure
A Classical LMI

S-procedure to the rescue!
The S-procedure asks the question:

o Is2TFz>0forall z € {x:2TGx > 0}7?

Corollary 57 (S-Procedure).

2TFz>0 forall z € {x : 2T Gz > 0} if there exists a T > 0 such that
F—7G = 0.

The S-procedure is Necessary if {z : 27Gxz > 0} # 0.
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Parametric, Norm-Bounded Uncertainty

Theorem 58.
The system

i(t) = Az(t) + Mp(t),  p(t)=A1)q(?),
q(t) = Nz(t) + Qp(t), AeA:={AcR™" : ||A| <1}

is quadratically stable if and only if there exists some y > 0 and P > 0 such that

T T T T
AP + PA PN}JFM[MM MQ <0}

NP 0 QMT QQT -1

These approaches can be readily extended to controller synthesis.
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Quadratic Stability

Consider Quadratic Stability in Discrete-Time: xp+1 = S;(M, A)xg.
Definition 59.
(S1,A) is QS if

Sy (M, AN)TPS;(M,A)—P <0 forall Ac A

Theorem 60 (Packard and Doyle).
Let M € R(vtm)x(ntm) pe given with p(My1) < 1 and o(May) < 1. Then the
following are equivalent.

1. The pair (M, A = R™*™) js quadratically stable.

2. The pair (M, A = C™*™) js quadratically stable.

3. The pair (M, A = C™*™) js robustly stable.

M. Peet Lecture 01 132 / 135



The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

A= {A = diag(61[n17 e 768]TLS7AS+1) e 3A5+f) : 67, € IF7 A € Fnkxnk}

e § and A represent unknown parameters.
e s is the number of scalar parameters.

e f is the number of matrix parameters.

Definition 61.
Given system M € L£(L3) and set A as above, we define the Structured
Singular Value of (M, A) as

1

inf ~Aea 1A
I—Mass A is singular
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The Structured Singular Value

Theorem 62.
Let

A, ={A €A, ||A] < p(M, A)}.

Then the pair (M, A,,) is robustly stable.
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Conclusion

LMiIs are a versatile tool for
e Optimal H., Control
e Optimal Hy Control (LQR/LQG)
e Robust Control
Next Lecture, we expand the use of LMIs exponentially
1. Nonlinear Systems Theory
2. Sum-of-Squares Nonlinear Stability Analysis
Time permitting, we will explore other applications
1. Stability and Control of Time-Delay Systems
2. Stability and Control of PDE systems.
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