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Overview

In this lecture, we will show how the LMI framework can be expanded
dramatically to other forms of control problems.

1. Positivity of Polynomials

1.1 Sum-of-Squares

2. Positivity of Polynomials on Semialgebraic sets

2.1 Inference and Cones
2.2 Positivstellensatz

3. Applications

3.1 Nonlinear Analysis
3.2 Robust Analysis and Synthesis
3.3 Global optimization

M. Peet Lecture 03: 1 / 91



Nonlinear Ordinary Differential Equations
Stability Measure 1: Exponential Decay Rate

Question: How do we Quantify the problem?

Consider: A System of Nonlinear Ordinary Differential Equations

ẋ(t) = f (x(t))

Problem 1: Exponential Decay Rate
Given a specific polynomial f : Rn → Rn and region X ⊂ Rn,
find K and γ such that

‖x(t)‖ ≤ Ke−γt‖x(0)‖

for any x(0) ∈ X.
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Stability Measure 2: Invariant Regions
Long-Range Weather Forecasting and the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, 1963.

ẋ = σ(y − x) ẏ = rx− y − xz ż = xy − bz

Problem 2: Show that all trajectories converge to a set X.
M. Peet Lecture 03: 3 / 91



Problem 3: Limit Cycles / Domain of Attraction
The Poincaré-Bendixson Theorem and van der Pol Oscillator

An oscillating circuit model:

ẏ = −x− (x2 − 1)y

ẋ = y
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Figure : The van der Pol oscillator in reverse

Theorem 1 (Poincaré-Bendixson).

Invariant sets in R2 always contain a limit cycle or fixed point.
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The Search for a Proof
Lyapunov Functions are Necessary and Sufficient for Stability

Consider

ẋ(t) = f(x(t))

with x(0) ∈ X.

Theorem 2 (Lyapunov Stability).

Suppose there exists a continuous V and α, β, γ > 0 where

β‖x‖2 ≤ V (x) ≤ α‖x‖2

V̇ (x) = ∇V (x)T f(x) ≤ −γ‖x‖2

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.
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The Stability Problem is Convex

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

The problem is finite-dimensional if V (x) is polynomial of bounded degree.

Convex Optimization of Polynomials: Variables c ∈ Rn and γ ∈ R

max
c,γ

γ

subject to

cTZ(x)− xTx ≥ 0 ∀x
cT∇Z(x)f(x) + γxTx ≤ 0 ∀x

• Z(x) is a fixed vector of monomial bases.
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Is Nonlinear Stability Analysis Tractable or Intractable?
The Answer lies in Convex Optimization

Problem:

max
x

bx

subject to Ax ∈ C

The problem is convex optimization if

• C is a convex cone.

• b and A are affine.

Computational Tractability: Convex Optimization over C is tractable if

• The set membership test for y ∈ C is in P (polynomial-time verifiable).

• The variable x is a finite dimensional vector (e.g. Rn).
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Modern Optimal Control - Lyapunov-based Optimization
The Cone of Positive Matrices

Linear Matrix Inequality (LMI) Format:

Find P :∑
i

AiPBi +Q > 0

Key Concept: System Performance is captured by Lyapunov Functions.

Lemma 3 (KYP Lemma).

For a state-space system
Ĝ(s) =

[
A B
C D

]
,

the following are equivalent.

• ‖Ĝ‖H∞ ≤ γ.

• There exists a P > 0 such that[
ATP + PA PB

BTP −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

The Lyapunov V (x) = xTPx proves that ‖Gu‖L2 ≤ γ‖u‖L2 .
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LMI’s and Non-Quadratic Lyapunov Functions

Examples of problems with explicit LMI formulations:

• H∞-optimal control

• H2-optimal Control (LQG/LQR)

• Quadratic Stability of systems with bounded and polytopic uncertainty

The key is that ANY quadratic Lyapunov function can be represented as

V (x) = xTPx

Positive matrices can also parameterize non-quadratic Lyapunov functions:

V (x) = Z(x)TPZ(x)

is positive if P > 0. (Z(x) can be any vector of functions)

• Such a function is called Sum-of-Squares (SOS), denoted V ∈ Σs.

Question: Can ANY Lyapunov function be represented this way?
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Polynomial Lyapunov Functions: A Converse Result

Theorem 4 (Peet, TAC 2009).

• Suppose ẋ(t) = f(x(t)) is exponentially stable for ‖x(0)‖ ≤ r.

• Suppose Dαf is continuous for ‖α‖∞ ≤ 3.

Then there exists a Lyapunov function V : Rn → R such that

• V is exponentially decreasing on ‖x‖ ≤ r.

• V is a polynomial.

Question: Can we make this Quantitative?
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A Bound on the Complexity of Lyapunov Functions

Theorem 5 (Peet and Papachristodoulou, TAC, 2012).

• Suppose ‖x(t)‖ ≤ K‖x(0)‖e−λt for ‖x(0)‖ ≤ r.

• Suppose f is polynomial and ‖∇f(x)‖ ≤ L on ‖x‖ ≤ r.

Then there exists a SOS polynomial V ∈ Σs such that

• V is exponentially decreasing on ‖x‖ ≤ r.

• The degree of V is less than

degree(V ) ≤ 2q2(Nk−1) ∼= 2q2c1
L
λ

where q is the degree of the vector field, f .

Conclusion: We can assume ANY Lyapunov function is of form

V (x) = Zd(x)PZd(x)

where P > 0 and Zd(x) is the vector of monomials of degree d ≤ q2c1
L
λ .
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
This is feasible with

V (x) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+ 0.61188y3 + 0.47537x4 − 0.052424x3y + 0.44289x2y2 + 0.090723y4
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Problem: Local Stability Analysis
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Problem: Find a polynomial V such that

V (x) ≥ α‖x‖2 for x ∈ X,
and

∇V (x)T f(x) ≤ −γ‖x‖2 for x ∈ X,
where

X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}
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Optimization of Polynomials

Problem:

max bTx

subject to A0(y) +
n∑
i

xiAi(y) � 0 ∀y

The Ai are matrices of polynomials in y. e.g. Using multi-index notation,

Ai(y) =
∑
α

Ai,α y
α

Computationally Intractable
The problem: “Is p(x) ≥ 0 for all x ∈ Rn?” (i.e. “p ∈ R+[x]?”) is NP-hard.
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Optimization of Polynomials:
Examples

In fact, many important problems can be cast as optimization of polynomials.

• Global Stability of Nonlinear Systems

f(y)T∇p(y) < 0

p(y) > 0

• Matrix Copositivity

yTMy − g(y)T y ≥ 0

g(y) ≥ 0

• Integer Programming

max γ

p0(y)(γ − f(y))− (γ − f(y))2 +
∑n
i=1 pi(y)(y2

i − 1) ≥ 0

p0(y) ≥ 0

• Structured Singular Value (µ)
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Global Positivity

Definition 6.

A Polynomial, f , is called Positive SemiDefinite (PSD) if

f(x) ≥ 0 for all x ∈ Rn

Problem: How to prove that f(x) ≥ 0 for all x?
More generally, the Primary problem is

γ∗ = max
γ

γ : γ ≤ f(x) for all x ∈ Rn

Then if γ∗ ≥ 0, f is Positive SemiDefinite.
An Alternative problem is

min
(σ,x)

σ : f(x) ≤ σ for some x ∈ Rn

These are Strong Alternatives.

• They are also both NP-hard.

• If γ∗ = σ∗ ≥ 0, the function f is PSD.
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Global Positivity Certificates (Proofs and Counterexamples)

It is easy to identify a primal Certificate of Infeasibility (A Proof that f is
NOT PSD). i.e. To show that

f(x) ≥ 0 for all x ∈ Rn

is FALSE, we need only find a point x with f(x) < 0.

It is much harder to identify a Certificate of Feasibility (A Proof that f is
PSD).

Question: How does one prove that f(x) is positive semidefinite?

What Kind of Functions do we Know are PSD?

• Any squared function is positive.

• The sum of squared forms is PSD

• The product of squared forms is PSD

• The ratio of squared forms is PSD

But is any PSD polynomial the sum, product, or ratio of squared polynomials?

• An old Question....
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Sum-of-Squares
Hilbert’s 17th Problem

Definition 7.

A polynomial, p(x) ∈ R[x] is a Sum-of-Squares (SOS), denoted p ∈ Σs if
there exist polynomials gi(x) ∈ R[x] such that

p(x) =

k∑
i

gi(x)2.

David Hilbert created a famous list of 23 then-unsolved mathematical problems
in 1900.

• Only 10 have been fully resolved.

• The 17th problem has been resolved.

“Given a multivariate polynomial that takes only non-negative values
over the reals, can it be represented as a sum of squares of rational
functions?” -D. Hilbert, 1900
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Sum-of-Squares
Hilbert’s 17th Problem

Hilbert’s 17th was resolved in the affirmative by E. Artin in 1927.

• Any PSD polynomial is the sum, product and ratio of squared polynomials.

• If p(x) ≥ 0 for all x ∈ Rn, then

p(x) =
g(x)

h(x)

where g, h ∈ Σs.

• If p is positive definite, then we can assume h(x) = (
∑
i x

2
i )
d for some d.

That is,
(x2

1 + · · ·+ x2
n)dp(x) ∈ Σs

• If we can’t find a SOS representation (certificate) for p(x), we can try
(
∑
i x

2
i )
dp(x) for higher powers of d.

Of course this doesn’t answer the question of how we find SOS representations.
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Polynomial Representation - Linear

First consider the question of representation of polynomials.

• The set of polynomials is an infinite-dimensional vector space.
• The set of polynomials of degree d or less is a finite-dimensional subspace.

I The monomials are a simple basis for the space of polynomials

Definition 8.

Define Zd(x) to be the vector of monomial bases of degree d or less.

e.g., if x ∈ R2, then

Z2(x1, x2)T =
[
1 x1 x2 x1x2 x2

1 x2
2

]
and

Z4(x1)T =
[
1 x1 x2

1 x3
2 x4

1

]
Linear Representation
• Any polynomial of degree d can be represented with a vector c ∈ Rm

p(x) = cTZd(x)

• This representation is unique.

2x2
1 + 6x1x2 + 4x2 + 1 =

[
1 0 4 6 2 0

] [
1 x1 x2 x1x2 x2

1 x2
2

]T
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Polynomial Representation - Quadratic

Quadratic Representation

• Alternatively, a polynomial of degree d can be represented b a matrix
M ∈ Sm

p(x) = Zd(x)TMZd(x)

• However, now the problem may be under-determinedx2

xy
y2

T M1 M2 M3

M2 M4 M5

M3 M5 M6

x2

xy
y2


= M1x

4 + 2M2x
3y + (2M3 +M4)x2y2 + 2M5xy

3 +M6y
4

Thus, there are infinitely many quadratic representations of p. For the
polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we can use the alternative solution

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x2y2 + 2M5xy
3 +M6y

4
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Polynomial Representation - Quadratic

For the polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we require

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x2y2 + 2M5xy
3 +M6y

4

Constraint Format:

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; 10 = M6.

An underdetermined system of linear equations (6 variables, 5 equations).

• This yields a family of quadratic representations, parameterized by λ as

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =

x2

xy
y2

T  4 2 −λ
2 −7 + 2λ −1
−λ −1 10

x2

xy
y2


which holds for any λ ∈ R
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Positive Matrix Representation of SOS
Sufficiency

The Quadratic Representation is important in the case where the matrix is
positive semidefinite.
Suppose: p(x) = Zd(x)TQZd(x) where Q > 0.

• Any positive semidefinite matrix, Q ≥ 0 has a square root Q = PPT

Hence
p(x) = Zd(x)TQZd(x) = Zd(x)TPPTZd(x).

Which yields

p(x) =
∑
i

∑
j

Pi,jZd,j(x)

2

which makes p ∈ Σs an SOS polynomial.
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Positive Matrix Representation of SOS
Necessity

Moreover: Any SOS polynomial has a quadratic rep. with a PSD matrix.

Suppose: p(x) =
∑
i gi(x)2 is degree 2d (gi are degree d).

• Each gi(x) has a linear representation in the monomials.

gi(x) = cTi Zd(x)

• Hence

p(x) =
∑
i

gi(x)2 =
∑
i

Zd(x)cic
T
i Zd(x) = Zd(x)

(∑
i

cic
T
i

)
Zd(x)

• Each matrix cic
T
i ≥ 0. Hence Q =

∑
i cic

T
i ≥ 0.

• We conclude that if p ∈ Σs, there is a Q ≥ 0 with p(x) = Zd(x)QZd(x).

Lemma 9.

Suppose M is polynomial of degree 2d. M ∈ Σs if and only if there exists some
Q � 0 such that

M(x) = Zd(x)TQZd(x).
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Sum-of-Squares

Thus we can express the search for a SOS certificate of positivity as an LMI.

Take the numerical example

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

The question of an SOS representation is equivalent to

Find M =

M1 M2 M3

M2 M4 M5

M3 M5 M6

 ≥ 0 such that

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; M6 = 10.

In fact, this is feasible for

M =

 4 2 −6
2 5 −1
−6 −1 10

 =

0 2
2 1
1 −3

[0 2 1
2 1 −3

]
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Sum-of-Squares

We can use this solution to construct an SOS certificate of positivity.

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =

x2

xy
y2

T  4 2 −6
2 5 −1
−6 −1 10

x2

xy
y2


=

x2

xy
y2

T 0 2
2 1
1 −3

[0 2 1
2 1 −3

]x2

xy
y2


=

[
2xy + y2

2x2 + xy + 3y2

]T [
2xy + y2

2x2 + xy + 3y2

]
= (2xy + y2)2 + (2x2 + xy + 3y2)2
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SOS Programming:
Numerical Example

This also works for matrix-valued polynomials.

M(y, z) =

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]
=


z 0
yz 0
0 1
0 y
0 y2


T 

1 0 0 0 1
0 1 1 −1 0
0 1 1 −1 0
0 −1 −1 1 0
1 0 0 0 1



z 0
yz 0
0 1
0 y
0 y2



=


z 0
yz 0
0 1
0 y
0 y2


T [

0 1 1 −1 0
1 0 0 0 1

]T [
0 1 1 −1 0
1 0 0 0 1

]
z 0
yz 0
0 1
0 y
0 y2


=

[
yz 1− y
z y2

]T [
yz 1− y
z y2

]
∈ Σs
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Problems with SOS

Unfortunately, a Sum-of-Squares representation is not necessary for positivity.

• Artin included ratios of squares.

Counterexample: The Motzkin Polynomial

M(x, y) = x2y4 + x4y2 + 1− 3x2y2
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1

1.2

x

M(x,y,1)

y

However, (x2 + y2 + 1)M(x, y) is a Sum-of-Squares.

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy3 − x)2 + (x2y2 − 1)2

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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Sum-of-Squares (SOS) Programming

Problem:

max bTx

subject to A0(y) +

n∑
i

xiAi(y) ∈ Σs

Definition 10.

Σs ⊂ R+[x] is the cone of sum-of-squares matrices. If S ∈ Σs, then for some
Gi ∈ R[x],

S(y) =

r∑
i=1

Gi(y)TGi(y)

Computationally Tractable: S ∈ Σs is an SDP constraint.
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Global Stability Analysis

At this point, we can express the problem of global stability of a polynomial
vector field as an LMI.

ẋ = f(x)

max
c,γ

γ

subject to

V (x)− ‖x‖2 = cTZ(x)− xTx ∈ Σs

V̇ (x) + γ‖x‖2 = cT∇Z(x)f(x) + γxTx ∈ Σs

If this is feasible with γ > 0, then

V (x) ≥ ‖x‖2 and V̇ (x) ≤ −γ‖x‖2

which implies the system is globally exponentially stable.

• The process can be automated (See SOSTOOLS)

• Creates a set of equality constraints between c and a PSD matrix,
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An Example of Global Stability Analysis

A controlled model of a jet engine.

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
This is feasible with

V (x) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+ 0.61188y3 + 0.47537x4 − 0.052424x3y + 0.44289x2y2 + 0.090723y4
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Problems with SOS

The problem is that most nonlinear stability problems are local.

• Global stability requires a unique equilibrium.

• Very few nonlinear systems are globally stable.

Figure : The Lorentz Attractor
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Figure : The van der Pol oscillator
in reverse
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Local Positivity

A more interesting question is the question of local positivity.
Question: Is y(x) ≥ 0 for x ∈ X, where X ⊂ Rn.

Examples:

• Matrix Copositivity:

yTMy ≥ 0 for all y ≥ 0

• Integer Programming (Upper bounds)

min γ

γ ≥ fi(y)

for all y ∈ {−1, 1}n and i = 1, · · · , k

• Local Lyapunov Stability

V (x) ≥ ‖x‖2 for all ‖x‖ ≤ 1

∇V (x)T f(x) ≤ 0 for all ‖x‖ ≤ 1
All these sets are
Semialgebraic.
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Semialgebraic Sets

The first step is to unify the representation of sets.

Definition 11.

A set X ⊂ Rn is Semialgebraic if it can be represented using polynomial
equality and inequality constraints.

X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}
If there are only equality constraints, the set is Algebraic.

Note: A semialgebraic set can also include 6= and <.

Integer Programming

{−1, 1}n = {y ∈ Rn : y2
i − 1 = 0}

Local Lyapunov Stability

{x : ‖x‖ ≤ 1} = {x : 1− xTx ≥ 0}

Not that the representation of a semialgebraic set is NOT UNIQUE.

• Some representations are better than others...
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Feasibility of a Semialgebraic Set

Positivity of f on X is equivalent to a positive solution of either the Primary or
Alternative problems.

The Primary problem is

max
γ

γ :

γ < f(x) for all x ∈ X

The Alternative problem is

min
σ,x

σ :

f(x) ≤ σ for some x ∈ X

Define Sγ = {x : γ ≥ f(x), x ∈ X} (A Semialgebraic Set)

The Primary problem is

max γ :

Sγ = ∅

The Alternative problem is

minσ :

Sσ 6= ∅

The feasibility problem is the difficult part.
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Positivity and Feasibility

Positivity and Feasibility are the same problem...:

Lemma 12.

f(x) ≥ 0 for all x ∈ Rn if and only if

Y = {x : −f(x) > 0} = ∅

Now, let

X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}
f(x) ≥ 0 for all x ∈ X if and only if

Y = {x : −f(x) > 0, pi(x) ≥ 0, qj(x) = 0} = ∅

Problem: How to test if there exists an y ∈ Y (Feasibility of Y )???
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Feasibility of a Semialgebraic Set

Solving the feasibility problem yields a solution to the optimization problem.
Convex Optimization: For convex functions fi,

min f0(x) :

subject to fi(x) ≤ 0, hj(x) = 0

Geometric Representation: Let S := {x ∈ Rn : fi(x) ≤ 0, hj(x) = 0}

min f0(x) :

subject to x ∈ S

Feasibility Representation: For γ, define

Sγ := {x ∈ Rn : f0(x) ≤ γ, fi(x) ≤ 0, hj(x) = 0}

min γ :

subject to Sγ 6= ∅

Given an efficient test for feasibility (Is Sγ = ∅?), Bisection will solve the
Optimization Problem.
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Bisection

Optimization Problem:

γ∗ = min
γ

γ :

subject to Sγ 6= ∅

Bisection Algorithm:

1 Initialize feasible γu = b

2 Initialize infeasible γl = a

3 Set γ = γu+γl
2

5 If Sγ feasible, set γu = γu+γl
2

4 If Sγ infeasible, set γl = γu+γl
2

6 k = k + 1

7 Goto 3

Then γ∗ ∈ [γl, γu] and |γu − γl| ≤ b−a
2k

.

Bisection with oracle also solves the
Primary Problem. (max γ : Sγ = ∅)

F(x)

F(b )1

F(b )2

x
b 1

a1

F(a )1

F(a )2

F(a )3
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A Problem of Representation and Inference

As with SOS and PSD Functions, Testing Feasibility is a Question of
Representation.

Consider how to represent a semialgebraic set:
Example: A representation of the interval X = [a, b].

• A first order representation:

{x ∈ R : x− a ≥ 0, b− x ≥ 0}

• A quadratic representation:

{x ∈ R : (x− a)(b− x) ≥ 0}

• We can add arbitrary polynomials which are PSD on X to the
representation.

{x ∈ R : (x− a)(b− x) ≥ 0, x− a ≥ 0}
{x ∈ R : (x2 + 1)(x− a)(b− x) ≥ 0}
{x ∈ R : (x−a)(b−x) ≥ 0, (x2 + 1)(x−a)(b−x) ≥ 0, (x− a)(b− x) ≥ 0}
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A Problem of Representation and Inference

Why are all these representations valid?

• We are adding redundant constraints to the set.

• x− a ≥ 0 and b− x ≥ 0 for x ∈ [a, b] implies

(x− a)(b− x) ≥ 0.

• x2 + 1 is SOS, so is obviously positive on x ∈ [a, b].

How are we creating these redundant constraints?

• Logical Inference

• Using existing polynomials which are positive on X
to create new ones.

Big Questions:

• Can ANY polynomial which is positive on [a, b] can be constructed this
way?

• Given f , can we use inference to prove that f(x) ≥ 0 for any
x ∈ X = [a, b]?
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The Cone of Inference

Definition 13.

Given a semialgebraic set S, a function f is called a valid inequality on S if

f(x) ≥ 0 for all x ∈ S

Question: How to construct valid inequalities?

• Closed under addition: If f1 and f2 are valid, then h(x) = f1(x) + f2(x) is
valid

• Closed under multiplication: If f1 and f2 are valid, then h(x) = f1(x)f2(x)
is valid

• Contains all Squares: h(x) = g(x)2 is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.
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The Cone of Inference

Definition 14.

The set of polynomials C ⊂ R[x] is called a Cone if

• f1 ∈ C and f2 ∈ C implies f1 + f2 ∈ C.

• f1 ∈ C and f2 ∈ C implies f1f2 ∈ C.

• Σs ⊂ C.

Note: this is NOT the same definition as in optimization.
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The Cone of Inference

The set of inferences is a cone

Definition 15.

For any set, S, the cone C(S) is the set of polynomials PSD on S

C(S) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ S}

The big question: how to test f ∈ C(S)???

Corollary 16.

f(x) ≥ 0 for all x ∈ S if and only if f ∈ C(S)
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The Monoid

Suppose S is a semialgebraic set and define its monoid.

Definition 17.

For given polynomials {fi} ⊂ R[x], we define monoid({fi}) as the set of all
products of the fi

monoid({fi}) := {h ∈ R[x] : h(x) =
∏

fa11 (x)fak2 (x) · · · fa2k (x), a ∈ Nk}

• 1 ∈ monoid({fi})
• monoid({fi}) is a subset of the cone defined by the fi.

• The monoid does not include arbitrary sums of squares
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The Cone of Inference

If we combine monoid({fi}) with Σs, we get cone({fi}).

Definition 18.

For given polynomials {fi} ⊂ R[x], we define cone({fi}) as

cone({fi}) := {h ∈ R[x] : h =
∑

sigi, gi ∈ monoid({fi}), si ∈ Σs}

If
S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

cone({fi}) ⊂ C(S) is an approximation to C(S).

• The key is that it is possible to test whether f ∈ cone({fi}) ⊂ C(S)!!!
I Sort of... (need a degree bound)
I Use e.g. SOSTOOLS
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More on Inference

Corollary 19.

h ∈ cone({fi}) ⊂ C(S) if and only if there exist si, rij , · · · ∈ Σs such that

h(x) = s0 +
∑
i

sifi +
∑
i6=j

rijfifj +
∑
i 6=j 6=k

rijkfifjfk + · · ·

Note we must include all possible combinations of the fi

• A finite number of variables si, rij .

• si, rij ∈ Σs is an SDP constraint.

• The equality constraint acts on the coefficients of f, si, rij .

This gives a sufficient condition for h(x) ≥ 0 for all x ∈ S.

• Can be tested using, e.g. SOSTOOLS
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Numerical Example

Example: To show that h(x) = 5x− 9x2 + 5x3 − x4 is PSD on the interval
[0, 1] = {x ∈ Rn : x(1− x) ≥ 0}, we use f1(x) = x(1− x). This yields the
constraint

h(x) = s0(x) + x(1− x)s1(x)

We find s0(x) = 0, s1(x) = (2− x)2 + 1 so that

5x− 9x2 + 5x3 − x4 = 0 + ((2− x)2 + 1)x(1− x)

Which is a certificate of non-negativity of h on S = [0, 1]

Note: the original representation of S matters:

• If we had used S = {x ∈ R : x ≥ 0, 1− x ≥ 0}, then we would have had 4
SOS variables

h(x) = s0(x) + xs1(x) + (1− x)s2(x) + x(1− x)s3(x)

The complexity can be decreased through judicious choice of representation.
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Stengle’s Positivstellensatz

We have two big questions
• How close an approximation is cone({fi}) ⊂ C(S) to C(S)?

I Cannot always be exact since not every positive polynomial is SOS.

• Can we reduce the complexity?

Both these questions are answered by Positivstellensatz Results. Recall

S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

Theorem 20 (Stengle’s Positivstellensatz).

S = ∅ if and only if −1 ∈ cone({fi}). That is, S = ∅ if and only if there exist
si, rij , · · · ∈ Σs such that

−1 = s0 +
∑
i

sifi +
∑
i 6=j

rijfifj +
∑
i6=j 6=k

rijkfifjfk + · · ·

Note that this is not exactly what we were asking.
• We would prefer to know whether h ∈ cone({fi})
• Difference is important for reasons of convexity.
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Stengle’s Positivstellensatz

Problem: We want to know whether f(x) > 0 for all x ∈ {x : gi(x) ≥ 0}.

Corollary 21.

f(x) > 0 for all x ∈ {x : gi(x) ≥ 0} if and only if there exist si, qij , rij , · · · ∈ Σs
such that

f

s−1 +
∑
i

qigi +
∑
i 6=j

qijgigj +
∑
i 6=j 6=k

qijkgigjgk + · · ·


= 1 + s0 +

∑
i

sigi +
∑
i 6=j

rijgigj +
∑
i 6=j 6=k

rijkgigjgk + · · ·

Proof.

f(x) > 0 for all x ∈ {x : gi(x) ≥ 0} is equivalent to infeasibility of

S := {x : −f(x) ≥ 0, gi(x) ≥ 0}

By applying the Positivstellensatz, we obtain the conditions.
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Stengle’s Positivstellensatz

f

s−1 +
∑
i

qigi +
∑
i 6=j

qijgigj +
∑
i 6=j 6=k

qijkgigjgk + · · ·


= 1 + s0 +

∑
i

sigi +
∑
i 6=j

rijgigj +
∑
i 6=j 6=k

rijkgigjgk + · · ·

The Good:

• Now possible to test whether f(x) > 0 for x ∈ S
• No special conditions on S or f .

The Bad:

• Condition is bilinear in the f and si, qij .
I Need a specialized solver.

• Strict Positivity
I f(x) > ε for some ε > 0 and all x ∈ S
I Actually, Stengle’s Positivstellensatz has a weak form.

• Lots of variables.
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Stengle’s “Weak” Positivstellensatz

S := {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . , nK}.

Theorem 22.

Let S be given as above and let I denote the set of subsets of {0, . . . , nK}.
Then f0(x) ≥ 0 for all x ∈ S if and only if there exist s ∈ Σs, sJ ∈ Σs for J ∈ I
and k ∈ Z+ such that

s(x) +
∑
J∈I

sJ(x)
∏
i∈J

fi(x) + f0(x)2k = 0

Condition:

f0

s−1 +
∑
i

qigi +
∑
i6=j

qijgigj +
∑
i 6=j 6=k

qijkgigjgk + · · ·


= f0(x)2k + s0 +

∑
i

sigi +
∑
i6=j

rijgigj +
∑
i6=j 6=k

rijkgigjgk + · · ·
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Schmudgen’s Positivstellensatz

If the set is compact, then the problem can be convexified.

Theorem 23.

Suppose that S = {x : gi(x) ≥ 0} is compact. If f(x) > 0 for all x ∈ S, then
there exist si, rij , · · · ∈ Σs such that

f = s0 +
∑
i

sigi +
∑
i6=j

rijgigj +
∑
i6=j 6=k

rijkgigjgk + · · ·

Note that Schmudgen’s Positivstellensatz is essentially the same as Stengle’s
except for a single term.

• Now we can include both f and si, rij as variables.

• Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).
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Putinar’s Positivstellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 24.

We say that fi ∈ R[x] for i = 1, . . . , nK define a P-compact set Kf , if there
exist h ∈ R[x] and si ∈ Σs for i = 0, . . . , nK such that the level set
{x ∈ Rn : h(x) ≥ 0} is compact and such that the following holds.

h(x)−
nK∑
i=1

si(x)fi(x) ∈ Σs

The condition that a region be P-compact may be difficult to verify. However,
some important special cases include:

• Any region Kf such that all the fi are linear.

• Any region Kf defined by fi such that there exists some i for which the
level set {x : fi(x) ≥ 0} is compact.
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Putinar’s Positivstellensatz

P-Compact is not hard to satisfy.

Corollary 25.

Any compact set can be made P-compact by inclusion of a redundant constraint
of the form fi(x) = β − xTx for sufficiently large β.

Thus P-Compact is a property of the representation and not the set.

Example: The interval [a, b].

• Not Obviously P-Compact:

{x ∈ R : x2 − a2 ≥ 0, b− x ≥ 0}

• P-Compact:
{x ∈ R : (x− a)(b− x) ≥ 0}

M. Peet Lecture 03: 54 / 91



Putinar’s Positivstellensatz

If S is P-Compact, Putinar’s Positivstellensatz dramatically reduces the
complexity

Theorem 26 (Putinar’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0} is P-Compact. If f(x) > 0 for all x ∈ S, then
there exist si ∈ Σs such that

f = s0 +
∑
i

sigi

A single multiplier for each constraint.
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Relationship to the S-Procedure

A Classical LMI.
The S-procedure asks the question:

• Is zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0}?

Corollary 27 (S-Procedure).

zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0} if there exists a τ ≥ 0 such that
F − τG � 0.

The S-procedure is Necessary if {x : xTGx > 0} 6= ∅.

A Special Case of Putinar’s Positivstellensatz when

• f(x) = xTFx

• g(x) = xTGx

• s(x) = τ

• we replace ≥ 0 with ∈ Σs
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Robust Analysis and Synthesis

Recall the problem of parametric uncertainty.

ẋ(t) = A(α)x(t) +B(α)u(t)

y(t) = C(α)x(t) +D(α)u(t)

where α ∈ X where X is a semialgebraic set.

Let X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}
Almost any analysis or synthesis condition expressed as an LMI can be made
robust using SOS and Positivstellensatz results.
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Robust Analysis and Synthesis

Theorem 28.

ẋ(t) = A(α)x(t) is stable for all α ∈ X if there exist ε > 0, polynomials Ti and
SOS polynomials P,R, Si ∈ Σs such that

P (α)− εI = R(α)

−
(
A(α)TP (α) + P (α)A(α)

)
= S0(α) +

∑
i

Si(α)pi(α) +
∑
j

Ti(α)qj(α)

The difference from the S-procedure is that

• The Lyapunov function is parameter-dependent (Not Quadratic Stability).

• The multipliers are parameter-dependent.
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Polynomial Programming

PS results can be applied to the problem of polynomial programming.

Polynomial Optimization

c∗1 = max
y

dT y

subject to fi(y) ≥ 0 i = 1, · · · , k

This problem is NOT convex.

Optimization of Polynomials:

c∗2 = max
x

bTx

subject to A0(y) +

n∑
i

xiAi(y) � 0 ∀y

This Problem is convex (use SOS)

Optimization of polynomials can be used to find the maximum value c∗1.

c∗1 = min
γ

γ

subject to γ ≥ dT y ∀y ∈ {y : fi(y) ≥ 0, i = 1, · · · , k}
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Polynomial Programming

Optimization of polynomials can be used to find the maximum value c∗1.

c∗1 = min
γ

γ

subject to γ ≥ dT y ∀y ∈ {y : fi(y) ≥ 0, i = 1, · · · , k}

Reformulate as

c∗1 = min
γ

γ subject to

γ − dT y = s0(y) +
∑
i

si(y)fi(y)

si ∈ Σs

Which is easily solved using SOSTOOLS.
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Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Let

X :=

{
x : pi(x) ≥ 0 i = 1, . . . , k

}

Theorem 29.
Suppose there exists a polynomial v, a constant ε > 0, and sum-of-squares polynomials
s0, si, t0, ti such that

v(x)−
∑
i

si(x)pi(s)− s0(s)− ε xTx = 0

−∇v(x)T f(x)−
∑
i

ti(x)pi(s)− t0(x)− ε xTx = 0

Then the system is exponentially stable on any Yγ := {x : v(x) ≤ γ} where Yγ ⊂ X.

Note: Find the largest Yγ via bisection.
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Return to Lyapunov Stability

Van-der-Pol Oscillator
ẋ(t) = −y(t)

ẏ(t) = −µ(1− x(t)2)y(t) + x(t)

Procedure:
1. Use Bisection to find the largest ball on which you can find a Lyapunov

function.
2. Use Bisection to find the largest level set of that Lyapunov function on

which you can find a Lyapunov function. Repeat
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Computing the Attractive Region

Advective approaches also work well.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure : The van der Pol Oscillator using advection [T.-C. Wang]
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Computing the Invariant Region
Numerical Results using the Advective Approach
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Figure : The Lorentz Attractor using advection [T.C. Wang]
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Equality Constraints

Before we conclude, it is worth considering the question of equality constraints:
Integer Programming (Upper bounds)

min γ

γ ≥ fi(y)

for all y ∈ {−1, 1}n and i = 1, · · · , k

where
{−1, 1}n = {y ∈ Rn : y2

i − 1 = 0}
Incompressible Navier-Stokes

∂v

∂t
= −v · ∇v +

1

ρ
(∇ · T + f −∇p)

Requires conservation of mass
∇v = 0

Which imposes an algebraic constraint on the state.
Question: How to test whether

f(x) ≥ 0 for all x ∈ {x : g(x) = 0}?
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Inference

The approach is the same as for inequality constraints.

• If g1(x) = 0 for x ∈ S and g2(x) = 0 for x ∈ S, then

g1(x) + g2(x) = 0 for all x ∈ S

• If g(x) = 0 for x ∈ S, then for ANY polynomial h(x),

g(x)h(x) = 0 for all x ∈ S

Let
S = {x : fi(x) = 0, i = 1, · · · k}

Definition 30.

We say f is a valid equality on S if f(x) = 0 for x ∈ S
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Inference

Definition 31.

A set of polynomials, I is called an ideal if

• f1 + f2 ∈ I for all f1, f2 ∈ I.

• fg ∈ I for all f ∈ I and g ∈ R[x].

Define ideal(S) to be the set of valid equalities on S.

Definition 32.

For given polynomials {fi} ⊂ R[x], we define ideal({fi}) as

ideal({fi}) := {h ∈ R[x] : h =
∑

figi, gi ∈ R[x]}

ideal({fi}) gives a set of valid equalities on

S = {x : fi(x) = 0, i = 1, · · · k}

ideal({fi}) is the smallest ideal containing {fi}.
• How closely does ideal({fi}) approximate ideal(S)?
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The Nullstellensatz

Theorem 33 (Hilbert’s Nullstellensatz).

For fi ∈ C[x], let

S = {x ∈ Cn : fi(x) = 0, i = 1, · · · k}

Then S = ∅ if and only if 1 ∈ ideal({fi})

If 1 ∈ ideal({fi}), then feasibility of the set would imply 1 = 0.

• Predates Positivstellensatz results.

• Not valid over the reals

This gives an algorithmic approach to testing feasibility: Find gi such that

−1 =
∑

figi, gi ∈ C[x]}

This involves solving linear equations (no optimization).
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Positivstellensatz with Equality

Fortunately, the equality constraint are included in later versions of the
Positivstellensatz.

Theorem 34 (Putinar’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is P-Compact. If f(x) > 0 for all
x ∈ S, then there exist si ∈ Σs and ti ∈ R[x] such that

f = s0 +
∑
i

sigi +
∑
j

tjhj

Theorem 35 (Schmüdgen’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is compact. If f(x) > 0 for all
x ∈ S, then there exist si, rij , · · · ∈ Σs and ti ∈ R[x] such that

f = 1 +
∑
j

tjhj + s0 +
∑
i

sigi +
∑
i 6=j

rijgigj +
∑
i 6=j 6=k

rijkgigjgk + · · ·
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Integer Programming Example
MAX-CUT

Figure : Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index xi = −1 or xj = 1 to maximize overall cost.

• The cost if xi and xj do not share the same index is wij .

• The cost if they share an index is 0

• The weight wi,j are given.

• Thus the total cost is
1

2

∑
i,j

wi,j(1− xixj)
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MAX-CUT

The optimization problem is the integer program:

max
x2
i=1

1

2

∑
i,j

wi,j(1− xixj)

The MAX-CUT problem can be reformulated as

min γ :

γ ≥ max
x2
i=1

1

2

∑
i,j

wi,j(1− xixj) for all x ∈ {x : x2
i = 1}

We can compute a bound on the max cost using the Nullstellensatz

min
pi∈R[x], s0∈Σs

γ :

γ − 1

2

∑
i,j

wi,j(1− xixj) +
∑
i

pi(x)(x2
i − 1) = s0(x)
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MAX-CUT

Consider the MAX-CUT problem with 5 nodes

w12 = w23 = w45 = w15 = .5 and w14 = w24 = w25 = w34 = 0

where wij = wji. The objective function is

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5

We use SOSTOOLS and bisection on γ to solve

min
pi∈R[x], s0∈Σs

γ :

γ − f(x) +
∑
i

pi(x)(x2
i − 1) = s0(x)

We achieve a least upper bound of γ = 4.
However!

• we don’t know if the optimization problem achieves this objective.

• Even if it did, we could not recover the values of xi ∈ [−1, 1].
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MAX-CUT

1

1

2

3 4

5

Figure : A Proposed Cut

Upper bounds can be used to VERIFY optimality of a cut.
We Propose the Cut

• x1 = x3 = x4 = 1

• x2 = x5 = −1

This cut has objective value

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5 = 4

Thus verifying that the cut is optimal.
M. Peet Lecture 03: Numerical Examples 73 / 91



MAX-CUT code

pvar x1 x2 x3 x4 x5;

vartable = [x1; x2; x3; x4; x5];

prog = sosprogram(vartable);

gamma = 4;

f = 2.5 - .5*x1*x2 - .5*x2*x3 - .5*x3*x4 - .5*x4*x5 - .5*x5*x1;

bc1 = x1^2 - 1 ;

bc2 = x2^2 - 1 ;

bc3 = x3^2 - 1 ;

bc4 = x4^2 - 1 ;

bc5 = x5^2 - 1 ;

for i = 1:5

[prog, p{1+i}] = sospolyvar(prog,Z);

end;

expr = (gamma-f)+p{1}∗bc1+p{2}∗bc2+p{3}∗bc3+p{4}∗bc4+p{5}∗bc5;

prog = sosineq(prog,expr);

prog = sossolve(prog);
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

∆ = {∆ = diag(δ1In1, · · · , δsIns : δi ∈ R}

• δi represent unknown parameters.

Definition 36.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

‖∆‖

The fundamental inequality we have is ∆γ = {diag(δi), :
∑
i δ

2
i ≤ γ}. We

want to find the largest γ such that I −M∆ is stable for all ∆ ∈∆γ
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The Structured Singular Value, µ

The system

ẋ(t) = A0x(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆

is stable if there exists a P (δ) ∈ Σs such that

V̇ = xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x < εxTx

for all x, p, δ such that

(x, p, δ) ∈

{
x, p, δ : p = diag(δi)(Nx+Qp),

∑
i

δ2
i ≤ γ

}

Proposition 1 (Lower Bound for µ).

µ ≥ γ if there exist polynomial h ∈ R[x, p, δ] and si ∈ Σs such that

xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x− εxTx

= −s0(x, p, δ)− (γ −
∑
i

δ2
i )s1(x, p, δ)− (p− diag(δi)(Nx+Qp))h(x, p, δ)
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Variations - Polya’s Formulation

Recall that Hilbert’s 17th was resolved in the affirmative by E. Artin in 1927.
• Any PSD polynomial p is the sum, product and ratio of squared

polynomials.

p(x) =
g(x)

h(x)

where g, h ∈ Σs.
It was later shown by Habricht that if p is strictly positive, then we may assume
h(x) = (

∑
i x

2
i )
d for some d. That is,

(x2
1 + · · ·+ x2

n)dp(x) ∈ Σs

Question: Given properties of p, may we assume a structure for h?

Yes: Polya was able to show that if p(x) has the structure

p(x) = p̃(x2
i , · · · , x2

n),

then we may assume that s is a sum of squared monomials (prima facie SOS).

s(x) =
∑
α∈Nn

(cαx
α)2

where xα =
∏
i x

αi
i .
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Variations - Polya’s Formulation

Now suppose that we are interested in polynomials defined over the positive
orthant:

X := {x : xi ≥ 0, i = 1, · · · }
A polynomial f(x1, · · · , xn) > 0 for all x ∈ X if and only if f(x2

1, · · · , x2
n) ≥ 0

for all x ∈ Rn.
Thus, by Polya’s result if f(x1, · · · , xn) > 0 for all x ∈ X, then

(
∑
i

x2
i )
dpf(x2

1, · · · , x2
n) =

∑
α∈Nn

(cαx
α)2

for some dp > 0.
Now making the substitution x2

i → yi, we have the condition

Theorem 37.

If f(x1, · · · , xn) > 0 for all x ∈ X then there exist cα ≥ 0 and dp ≥ 0 such that(∑
i

yi

)dp
f(y1, · · · , yn) =

∑
α∈Nn

|α|1≤d+dp

cαy
α
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Variations - Polya’s Formulation

Now suppose the polynomial, p, is homogeneous. Then p(x) > 0 for all X/0 if
and only if p(x) > 0 for x ∈ ∆ := {x :

∑
i xi = 1} where ∆ is the unit simplex.

Consider the uncertainty set ∆ := {x ∈ Rn :
∑n
i=1 xi = 1, xi ≥ 0}.

Theorem 38 (Polya’s Theorem).

Let F (x) be a real homogeneous polynomial which is positive on ∆. Then for a
sufficiently large d ∈ N,

(x1 + x2 + · · ·+ xn)
d
F (x)

has all its coefficients strictly positive.

The algorithmic nature was noted by Polya himself:

“The theorem gives a systematic process for deciding whether a given
form F is strictly positive for positive x. We multiply repeatedly by∑
x, and, if the form is positive, we shall sooner or later obtain a form

with positive coefficients.” -G. Pólya, 1934
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Variations - Polya’s Formulation

For example, if we have a finite number of operating points Ai, and want to
ensure performance for all combinations of these points.

ẋ(t) = Ax(t) where A ∈

{∑
i

Aiµi : µi ≥ 0,
∑
i

µi = 1

}
This is equivalent to the existence of a polynomial P such that P (µ) > 0 for all
µ ∈ ∆ and such that

A(µ)TP (µ) + P (µ)A(µ) < 0 for all µ ∈ ∆

where A(µ) =
∑
i

Aiµi
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Variations - Polya’s Formulation

A more challenging case is if A(α) is nonlinear in some parameters, α.
Simple Example: Angle of attack (α)

α̇(t) = −ρv
2cα(α,M)

2I
α(t)

The time-varying parameters are:

• velocity, v and Mach number, M (M depends on Reynolds #);

• density of air, ρ;

• Also, we sometimes treat α itself as an uncertain parameter.

Figure : CM vs. α and Re # Figure : CM vs. Mach # and α
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Variations - Handelman’s Formulation

Polya was not alone in looking for structure on s.

Recall Schmudgen’s Positivstellensatz.

Theorem 39.

Suppose that S = {x : gi(x) ≥ 0} is compact. If f(x) > 0 for all x ∈ S, then
there exist si, rij , · · · ∈ Σs such that

f = s0 +
∑
i

sigi +
∑
i6=j

rijgigj +
∑
i6=j 6=k

rijkgigjgk + · · ·

Suppose that S is a CONVEX polytope

S := {x ∈ Rn : aTi x ≤ bi, i = 1, · · · }

Then we may assume all the si are positive scalars.
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Variations - Handelman’s Formulation

Let S := {x ∈ Rn : aTi ≤ bi}.

Theorem 40.

Suppose that S := {x ∈ Rn : aTi x ≤ bi} is compact and convex with
non-empty interior. If p(x) > 0 for all x ∈ S, then there exist constants
si, rij , · · · > 0 such that

p = s0 +
∑
i

sigi +
∑
i6=j

rijgigj +
∑
i6=j 6=k

rijkgigjgk + · · ·
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Variations - Handelman’s Formulation
Example: Consider the hypercube

S := {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}
Now the polytope is defined by 4 inequalities

g1(x, y) = −x+ 1; g2(x, y) = x+ 1; g3(x, y) = −y + 1; g4(x, y) = y + 1

Which yields the following vector of bases

 g1

...
g3g4

 =



−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1


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Variations - Handelman’s Formulation

First put the function in the linear basis

p(x) = −(y2 + xy + y) + 3 =
[
3 0 −1 −1 0 −1

]


1
x
y
xy
x2

y2


Then convert the Handelman basis to the original basis

 g1

...
g3g4

 =



−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1



=



1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1




1
x
y
xy
x2

y2


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Variations - Handelman’s Formulation

Now the positivity constraint becomes ci > 0 and

p(x) =

 c1...
c13


T  g1(x)

...
g3(x)g4(x)

 .
Therefore, substituting the expressions of the previous slide


3
0
−1
−1
0
−1



T 
1
x
y
xy
x2

y2

 =

 c1...
c13


T



1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1




1
x
y
xy
x2

y2


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Variations - Handelman’s Formulation

Finally, we have that positivity of p can be expressed as the search for ci > 0
such that 

1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1



T

 c1...
c13

 =


3
0
−1
−1
0
−1



Which is of the form ATx = b in variables x > 0.

Recall: Optimization over the positive orthant is called Linear Programming.
• b is determined by the coefficients of the polynomial, p
• b may itself be a variable if we are searching over positive polynomials.
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Variations - Handelman’s Formulation

For the polynomial

p(x) = −(y2 + xy + y) + 3 =
[
3 0 −1 −1 0 −1

]


1
x
y
xy
x2

y2


The Linear Program is feasible with

x =
[
1 0 0 0 0 0 0 0 0 0 0 1 1

]
This corresponds to the form

p(x) = g3(x)g4(x) + g2(x)g4(x) + g1(x)

= (−y2 + 1) + (−xy + x− y + 1) + (−x+ 1)

= −y2 − xy − y + 3
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Variations - Handelman’s Formulation
Now consider the polynomial

p(x) = x2 + y2 =
[
0 0 0 0 1 1

] [
1 x y xy x2 y2

]T
Clearly, p(x, y) ≥ 0 for all (x, y) ∈ S. However the LP is NOT feasible.
Consider the point (x, y) = (0, 0). Then p(0, 0) = 0 and

p(0) =


0
0
0
0
1
1



T 
1
x
y
xy
x2

y2


(x,y)=0

=


0
0
0
0
1
1



T 
1
0
0
0
0
0

 =

 c1...
c13


T



−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1


(x,y)=(0,0)

=

 c1...
c13


T



1
1
1
1
1
1
1
1
1
1
1
1
1


Which implies

∑
i ci = 0. Since the ci ≥ 0, this implies c = 0, which is not

feasible.
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Variations - Handelman’s Formulation

Conclusion: For many representations, the strict positivity is necessary.

• Polya’s representation precludes interior-point zeros.

• Handelman’s representation precludes interior-point zeros.

• Bernstein’s representation precludes interior-point zeros.

In each of these cases, we may have zeros at vertices of the set.

• This makes searching for a Lyapunov function impossible.
I Must be positive on a neighborhood of the x = 0 with V (0) = 0.

One Solution: Partition the space so that the zero point is a vertex of each set.
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Conclusion

1. Optimization of Polynomials can be used to solve an broad class of
problem.

1.1 Stability Analysis of Vector Fields
1.2 Bounds for Polynomial Programming
1.3 Integer Programming

2. SDP, Sum-of-Squares and the Positivstellensatz allow us to optimize
polynomials

Next Time:

• More applications of SOS
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