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Overview

Exploration of LMI's and SOS has just begun
e A unifying framework for optimization

e Applications limited only by imagination

Today we examine a few high-profile areas of SOS research.
1. Control of Delay Systems
2. Control of PDE Systems
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Functional Differential Equations

State x;

/ _— X

B

T

Here z(t) ¢ R™ and f : C, — R™.
o 1; € C; is the full state of the system at time ¢.

x(t) € R™ is the present state of the system at time ¢.

C; is the space of continuous functions defined in the interval [—7,0].
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Time-Delay Systems

z(t) = fx(t),z(t —11),...,2(t — TK))
X(t-Ty)

e

State x;

X(t)

e Assume f is a polynomial.

Question: Is the System Stable?
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Lyapunov-Krasovskii Functionals

Consider the functional differential equation

@(t) = f(xr) (1)

Lyapunov Theory: System 1 is stable if there exists some function V : C; — R
for which the following holds for all ¢ € C,.

Blliell = V(¢) = ellg(0)]2

V(g) <0

Here V(x) is the derivative of the functional along trajectories of the system.
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Consider: A System of Linear Differential Equations with
Discrete Delays

i(t) = Z Aix(t —7)

e Here z(t) € R", A, € R"*™,
e We say the system has K delays, 7; > 1;,_1 fori=1,...,K and 0 =0

Question: Is the System Stable?
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Consider: A System of Linear Differential Equations with
Discrete Delays

Problem: Stability

Given specific A; € R"*™ and h; € RT,
and arbitrary initial condition z,

does lim;_, oo x(t) = 07
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Converse Lyapunov Theorem

Definition 1.

We say that V is a complete quadratic functional if can be represented as:

Vo) = [ : [gggggfw oo a0+ [ OTK H(O)N (6, ) (w)dbo

—TK

Theorem 2.

If a linear time-delay system is asymptotically stable, then there exists a
complete quadratic functional, V', and n > 0 such that for all ¢ € C-

V(e) 2 nllo(0)>  and V() < —nllé(0)]

Note: Furthermore, M and R can be taken to be continuous everywhere except
possibly at points 6,7 = —7; fore =1,..., K — 1.
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Problem Statement

We would like to construct polynomials M and N such that

vo= [, [a] o {2533] “

[ / o(6 (w)dBdew > ¢ $(0) 2
and
o(-m0) 1" é(—70)
0 . .
V(p) = : D(# : do
9) / - O,
o(6) 4(6)

/_TK /_Tqu (w)dfdw < 0

Where D and L are polynomials defined by the derivative.
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Stability of Linear Differential Equations with Delay

Question:

Is the problem finite-dimensional? Can we test positivity?
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Positive Quadratic Functionals

Consider the complete quadratic functional.

v [ [ e[ [ [ oo

The complete quadratic Lyapunov functional is positive if
o M>40,
° RZQO

Definition 3.
M>10 if for all ¢ € C,

Definition 4.
N>50 if for all ¢ € C;

/_TK /_TK $(O)N (6,w)¢(w)dbdw > 0
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Searching for Positive Quadratic Functionals

e >, and >, define convex cones.

e Q: How can we represent >, and >, for polynomials using SDP?

Note: Even for matrices, determining positivity on a subset is difficult. e.g.
Matrix Copositivity
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Representing the Cone >4

Theorem 5.
For a given M, the following are equivalent
1. M> el for some € > 0.
2. There exists a function T and € > 0 such that

/ D I@)de=0 and M)+ {T(e) 0} Ny

—TK

Computationally Semi-Tractable:
e Assume M and T are polynomials. e The constraint

0 -
e For the 1-D case, X, is exact. f_hT(S)ds =0 is linear

>, — X, — SDP
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Positive Multipliers

[-20+2 6*-90
M(a)__a‘ﬁ—e 0" +6°
1 0171 0o -1 0]t 0
1o o 0 1 0 1110 0f 30°-1 0
“lo 6| |-1 0o 1 oo 6 0 0
0o ¢*] o 1 o0 1] [0 ¢
1 017" 10
e o 0101T010190+392710
“lo 6| [t 0o -1 0 [1 0 -1 0|0 @ 0 0
0 67 0 ¢
0 021" [0 6*] [36°-1 0
=l 70} 1 fe}Jr[ 0 0} =10
Since

0
/ (360 — 1)df = 0

-1
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Positivity of Part 2

Theorem 6 (The Cone N >,0).

Suppose N (s,t) is a polynomial of degree 2d. Then the following are
equivalent:

/ / 8)TN(s,t)x(t)dsdt >0  forallz €C
e There exists a () > 0 such that

N(s,t) + N(t,s)T = Za(s)TQZa(t)

Computationally Semi-Tractable:
e SDP constraint on Q)

e Assumes N is polynomial
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Positive Integral Operators

If Ry — |1 @0+ 200 10—
T 1w - Pw 1+ 6%
1 o0]"[1 -1 1 0][1 o0
e of |-1 2 -1 —1||w 0
“lo 1 1 -1 1 oo 1
o ¢ [0 -1 0 1]]|0
1 01" 1 0
e ol 1 -1 10"t -1 1 0]|w 0
“lo 1| o -1 0 1 [0 -1 0 1|0 1
0 6% 0 w’
-6 11"[1-w 1
-6 ¢ [fw wz} =20
Then

/,T /, (6)"R(6,) dad“—[T[T T G(w)z(w)dfdw

:/ da/ G(w)z(w)dw = KTK >0
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Discontinuous Elements

Theorem 7.

Suppose M (0,w) is discontinuous at 6,w = —7;. Then N>50 if and only if
there exists some continuous R>50 such that

N(6,w) = N;;(6,w) forall 0 € l;, wel;

_ - TK
Nz](e,W)—R <A 6+TZ IA A +T‘]1Aj>

Rll(e,w) ooo0 RlK(H,w)
R(0,w) =
RK1(9,w) ce RKK(Q,OJ)
Where I; = [—7;, —Ti—1] and A; = 7, — ;1.

Computationally Tractable
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The Derivative of Positive Quadratic Functionals

If M>1,0 and N>50, then V(¢) > 0. However, the derivative of V' is given by

S T Té(-m)
VO] ool POl d9+/_7,(/_75

o]
The derivative is negative if
o —L>50
e —D>30

Definition 8.

D>30 if for all ¢ € C;
T

¢(=70) $(—70)

/ ’ | pe| ¢ |de=o0
- | P(—TK) ¢(—7r)
¢ ¢

Result: We can use a generalization of Theorem 5 for D>30
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A Lyapunov Inequality

Theorem 9.

The linear time-delay system is asymptotically stable if there exist polynomials
M and R and constant n > 0 such that

Positive Functional: Negative Derivative:
o M>nl o D<3—nl
* R>50 o L<30

Where for a single delay,

Dy PB-Q(-7) 7(ATQ(6) — Q(6) + R(0,0))
D) = | *7 —S(—71) T(BTQ(#) - R(—T,0))
«L «L —75(6)
L(0,w) = C%R(O,w) + %R(G,w)
Dy = PA+ ATP +Q(0) + Q(0)" + 5(0)
P TQ(G)]

where we represent M as  M(0) = |:TQ(9)T 75(6)
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Example:
Standard Test Case

We now consider a system with multiple delays.

N P EURS I N R P R

A bisection method was used and results are listed below.

SOS Approach Piecewise Functional
d Tmin Tmax N2 Tmin Tmax
1 .20247 | 1.354 1 | .204 1.35
2 .20247 | 1.3722 2 | .203 | 1.372
Analytic | .20246 | 1.3723

Table : Tymaz and Tmin using a piecewise-linear functional and our approach and
compared to the analytical limit.
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Example: Remote Control

= T

Suppose we are given a specific type of PD
controller that we want to implement.

j@):gﬂaa)fgza)

The controller is stable for all positive a. Now suppose we want to maintain
control from a remote location. When we include the communication delay,
the equation becomes.

ﬂwzfm@fﬂfgﬂﬁw)

For what range of a and 7 will the controller be stable. The model is
linear, but contains a parameter and an uncertain delay.
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Delay and Parametric Uncertainty

We can make the Lyapunov functional robust by adding the uncertain
parameters a € [Umin, Gmax) aNd T € [Amin, Amax|. We represent this uncertainty
as

(a,T) € {(a’T) : gl(a) >0, 92(7—) > 0}
where g1(7) = (T — Tmin) (Tmax — 7) and g2(a) = (@ — amin) (Gmax — a).

Then the Lyapunov functional is
o T
_ ¢(0) $(0)
V(d),a,T)— . LZ)G] M(9,a,7) LZ)(G)] do
o0

L L

N0, w,a,T)dp(w)d0dw
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Delay and Parametric Uncertainty

Then for positivity, we require
o There exists R; € X, polynomials T'(a, T, s) and € > 0 such that

0
/ T(a,1,s)ds =0,

-7

M(a,7,s) + {T(a;f’s) 8} — T

= Ro(a,7) + g1(a)Ri(a,7) + g2(7) R2(a, 7)

e There exists S; € ¥, such that

N(s,t,a,7) 4+ N(t,s,a,7)" = Zg(s)"Q(a, ) Z4(t)
Q(CL, T) = So(a, T) + 0 (a)sl (CL, T) + 92(7—)52(0" T)

Negativity of the derivative is enforced in a similar manner.
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Example: Remote Control

Recall that we considered an inertial system controlled remotely using PD

control a
i(t) = —azx(t —7) — §$(t —7)

Question: For what range of a and 7 will the controller be stable?

e We use parameter-dependent functionals.

S S
((«

8 12
control gain(a)

4
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Is M polynomial?

Does a continuous solution imply a polynomial solution?

Neglecting N, stability is a : Find M, T,Q € C[-h,0] :

[T(()s) 8} =0 forall se[—h,0 and /O T(s)ds =0
(

—h
Qs) 0} 0 forallse[~h,0] and ’ ds =0
[0 ol = orall s € [—h,0] an /_hQ(s)s

Here A : C[—h, 0] X C[—h,0] — C[—h, 0] is a linear operator given by

M(s)

+
—A(M, M)(s) +

AT M1 + My1Ag  Mi1A; 0O

0 0 AL My (s)
A(M, M)(s) = A{Mn o ol o o ATM12(5)}
0 0 0 Mgy (s)Ag Moy (s)Aq 0
1 [M12(0) + M21(0) + M22(0)  —Mjya(=h) 0 0 0 —Mya(s)
" [ T Mmoo | i o —M22<s>]

Can we assume that M, T', and @ are polynomials?
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The Weierstrass Approximation Theorem on Linear
Varieties

Matrix-Valued Functions

Corollary 10.

Let L : C([0,1],RP*?) — R™*™ be a bounded linear operator and
f € C([o,1], RP*9).

Then for any 6 > 0, there exists a matrix of polynomials r such that

If = 7lloo <6,
Lr=Lf.
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Lyapunov-Krasovskii Functionals Can Partly Polynomial

At least for the first term.

Theorem 11.

Suppose there exist continuous functions M, T, Q) such that

M(s) + [T(()S) 8} =0 forallse€[—h,0] and /_Oh T(s)ds =0
_A(M, M)(s) + [Q((f) 8} ~ 0 forallse[—h,0] and K Oh Qs)ds = 0

Then there exist polynomials B, C, D
C(s) 0
0 0

D(s) 0
0 0

0
B(s) + [ } >0 forallse[—h,0 and C(s)ds=0
“h
0

—A(B, B)(s) + [ } =0 forall se€[—h,0] and / D(s)ds =0

—h
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What about the Second Term?

Maybe Not

Properties of the term are determined by the kernel.

Definition 12.

A kernel, N(s,t) € R™*™ is separable if there exists N;(s), Na(s) € R™*"
such that
N(s,t) = N1(s)" Na(2).

Theorem 13.
If

/ / )z (t)dsdt > 0

for all z #~ 0, then N is NOT separable.

e A functional defined by a separable will

Polynomial Kernels are Separable!
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Full-Rank Integral Operators

Semi-Separable Kernels

Semi-separable kernels have been considered for defining the solution map of
linear time-vary systems.

Definition 14.

A kernel N(s,t) is semi-separable if there exist functions M;(s), Ma(s) and
Ni(s), Na(s) such that

. Nl(S)Ml(t) s<t
Pls,t) = {NQ(S)MQ(t) s>t

Some interesting examples of semi-separable kernels include

—s t
<t 0 <t
ot =3¢ ¢ 8 and I(s—t) = s
eSet s>t 1 s>t
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Polynomial Semi-Separable Kernels

Positivity

We use a sum-of-squares approach to positivity of the operator.

Definition 15.

We say that a polynomial semi-separable kernel, N : R x R — R"*" s
sum-of-squares if it can be represented as

0
N(s,t) = /_ (s, u)k(u,

where k(u,t) : R x R — R™*™ is a semi-separable kernel.
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Polynomial Semi-Separable Kernels

Positivity
Any sum-of-squares semi-separable kernel is positive since
(Az)(s) = /N(sj)x(t)dt: //k(s,u)k(u,t)dudt
_ / (s, u) / k(u, £)2(8)dtdu = (B* Bz)(s)
where

Ba(s) = / k(s, )z (t)dt

A sum-of-squares semi-separable kernel
e Defines a positive operator.
e |s semi-separable.

Unlike polynomial kernels, it may be that not all positive semi-separable kernels
are sum-of-squares.

e The square root of a compact operator may not be compact.
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Positivity of Semi-Separable Kernels

Theorem 16.

A polynomial semi-separable kernel, N is sum-of-squares if and only if there exists a

d >0 and Q > 0 such that

w t 0
Ni(w, t) :/ Rii(t, s,w)ds + Ro1(t, s,w) ds—i—/ Raa(t, s,w)ds,
—h w t
0

t w
No(w,t) = / Rii(t, s,w)ds +/ Ris(t, s,w)ds +/ Raa(t, s,w) ds.
h t w

Rui(t,s,w) Raft,
R12(t, S,UJ)T Rzz(t,

= Zon,a(t, )" QZan,a(w, s)
Zn,d(m) =1, ® Zd(m)

R(t, s,w) = [
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Example: Epidemiological Model of Infection

ﬁ”.:.

Consider a human population subject to non-lethal infection by a cold virus.
The disease has incubation period (7). Cooke(1978) models the percentage of
infected humans(y) using the following equation.

y(t) = —ay(t) + by(t — 7) [1 — y(t)]
Where
e @ is the rate of recovery for infected persons
e b is the rate of infection for exposed people

The model is nonlinear and contains delay. Equilibria exist at y* = 0 and
y = (b—a)/b.
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Epidemiological Model

Recall the dynamics of infection are given by

(t) = —ay(t) + by(t —7) [1 - y(t)]

Cooke used the following Lyapunov functional to prove delay-independent
stability of the 0 equilibrium for a > b > 0.

1

0
V()= 3002 + 5 [ as(e)as

Using semidefinite programming, we were also able to prove delay-independent
stability for a > b > 0 using the following functional.

V(¢) = 1.75¢(0)* + /O (1.47a + .28b)$(0)*d0

-7

When the rate of recovery is greater than the rate of infection, the
epidemic will die out.
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Complexity Reductions: A Reformulation
Couple ODE and Difference Equations

Separate into an ODE and a static difference equation.

»| C(sl-A)'B+D

#(t) = Ax(t) + By(t)
y(t) =Cx(t—1)

where z € R and y € R™
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A new “Complete Quadratic” Functional
Couple ODE and Difference Equations

We use the general form
K
&(t) =Ax(t —|—ZB]y] (t—r;),

j=1

l't)-i-ZDijyj(t—Tj), 2’21,27...,[(7

Which as shown in Gu et al., 2009 has a converse Lyapunov functional of form

ij:/ [yz t+)8):|TMi(S) [yz(ff(i) 8)] ds
ey

i=1j=1""Ti

0
/ yi(t + )TN ;(s,0)y;(t + 0)ds do

Apply our SOS positivity conditions to this functional.
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Numerical Results

0 5 0 0 0 0
-5 -5 0 0 0 0
. o0 1 1 1 0 0
W=1g o 2 2 0 o]*®
0 0 0 1 -2 0
0O 0 0 0 0 -9
0 0 0
—5 0 0
0 T 0 0
+ 1 Ul(t—ﬁ)—F 0 O UQ(t—T)
0 2 0
0 1 —145

w@=[ 110 0 oz, wn=|7" 0 " 04 L =0

e The system has 6 states, 2 delays and 3 delay channels
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Numerical Testing
Comparision of Asymptotic Algorithms for Delay Stability Testing

0
10 T T T
—©— coupled SOS method
—#— coupled discretized method
—&— SOS method
107 E
=
S
|
&
g 2
£ 10 E
I
=~
N
£
5]
10°F E
1074 1 1 1
10° 10" 10° 10° 10"

Time [s]

Figure : Log-Log plot of accuracy vs. computation time using SeDuMi
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PDE Systems

Now lets see if our approach to analysis of time-delay systems can be expanded.

e Expand to PDE systems
e Expand to the problem of synthesis

Problems:
o PDE systems are all different

» State-space Theory is different for every system.
» No universal converse Lyapunov functional.
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Nuclear Fusion

A Renewable Energy Source

MeV /nucleon decrease in potential energy.

Fusion energy is the potential energy difference . il Iy
between particles in free state and particles bound g ° U L
e “He  Helium 4
together by the strong nuclear force. 3 W | Erewy U Uranium
- s in Fusi
The 2H + 3H to “He + 'n reaction: 3T e
e Strong Nuclear Force: AE = —3.5 £ &
E

He Q-5 U

Energy released
WO

e electrostatic repulsion: AE = 40.01
MeV /nucleon increase in potential energy e
(Coulomb Barrier).

Atomic mass

e Nuclear Fission of U23% only releases —.85

Deuterium

Helium
MeV /nucleon o G+\ &++"
o Unfortunately .01 MeV/nucleon mean kinetic o Pl
energy implies a temperature of 120 - 105 K. “‘3 —
» Temperature at center of sun is 15.7 - 10°K. +/ \ Energy
> From Maxwell-Boltzmann distribution, we T:u‘m Neutron

only need 2 10°K for a statistically significant
reaction rate
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Tokamaks

Magnetic Confinement of Plasma

Inertial Confinement
o Compress the fuel quickly

e Plasma does not have time to expand
spatially before creating additional
reactions.

> Similar to a hydrogen bomb.

Magnetic Confinement

e Plasma: At high temperature, atoms
ionize.

» Hydrogen — 2H™ ion + e* electron .

e Charged particles oscillate in a uniform
magnetic field.

» But a uniform field must eventually end.
> Particles will eventually escape.

e Tokamaks loop the field back on itself.
> Particles rotate indefinitely.
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Magnetic Confinement of Plasma in Tokamaks
Poloidal and Toroidal Fields

Poloidal Plasma
field electric current

Toroidal
field

Resultant helical field
(Pitch exaggerated)

The plasma is contained through the combined action of toroidal ¢ and poloidal
1) fields.

e torroidal field is generated from fixed electromagnets
e poloidal field is generated by the motion of the plasma

We need to control the gradient of the poloidal field, ..
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The Dynamics of the Poloidal Flux Gradient

State: ¢,.(r,t) = %w(r, t) - poloidal flux gradient.
Input: j,;, non-inductive current (from ECCD and LH antennae)

Oy (r,t) 1 0 (m(:,t) % (0 t))> R % (1 (7, )i 1))

ot poa? or

where a = mean radius
Ry = magnetic center location
o = permeability of free space
ny(r,t) = plasma resistivity
Jni(r,t) = non-inductive current density

with the boundary conditions
¥,(0,t) =0 and ¢,.(1,t) = 0.

The dynamics are coupled to electron temperature via Plasma Resistivity, 7.
e Depends on dynamics of temperature, density, etc.
e Treat as time-varying parameter
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Dynamical System Representation

Generalize the problem: A PDE in ODE form

Wh(t) = Ap(t) + Bu(t)

where A and B are the operators

(40) () = = (mlo) 32 o))
(Bini) (r) = - (y(P)jens (1)

Define
Dy ={y € L[0,1] : y,yr,yrr € L2[0,1], y(0) = y(1) = 0}.

For any ¢(0) € D 4, this system has a solution such that ¥(¢) € D 4 for all
t > 0 and is associated with Hilbert space X = L[0,1].
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Linear Operator Inequalities
The Lyapunov Inequality

How to prove stability?
e Find a Lyapunov function, e.g.

V= / O(r) M (r)p(r)dr + / / W(r)N (r, 64 (0)dr d
e A Convex optimization problem.

Theorem 17.

Suppose the operator A generates a strongly continuous semigroup on Hilbert
space X with domain D 4. Then

z(t) = Ax(t)
is stable if and only if there exist a positive operator P € L(X — X)) such that
(z, (A"P + PA)z)x < ||k
forall x € D 4.
e Optimization with Variable: P
e Same as the Lyapunov question with V(z) = (z, Px)p,.
e How to parameterize P and enforce positivity?
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Solving Linear Operator Inequalities (LOls)

A Finite-Dimensional Subspace

Question: How to parameterize a set of operators?

A Class of Operators: z € Ly[0, 1]

(Px)(s) = M(s)x(s) + /0 N (s, t)z(t)dt

o M(s) is the multiplier of a Multiplier Operator.
e N(s,t) is the kernel of an Integral Operator.

Question: How to parameterize multiplier and integral operators
e We consider polynomial multipliers, M(s) and kernels, N(s,t)

e For a finite monomial basis, the set of operators is finite-dimensional
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Operator Positivity

Now, how do we enforce positivity on D 47
o Consider the simplest case where D4 = L]0, 1]. Then

Theorem 18 (Multiplier Operator).
Let Py : Ly — Lo be defined as.
(Prx)(s) = M(s)x(s)

Then Py = 0 if and only if M(s) > 0 for all s € [0,1].

Theorem 19 (Integral Operator).
Suppose N is polynomial, and let Py : Ly — Lo be defined as.

(Pyz)( /Nst

Then Py = 0 if and only if N(s,0) = Z(s)TQZ(0) for some Q > 0 where Z is
the vector of monomials.
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Full-State Feedback: A Dual LOI

Let u = Kx. Then
#(t) = (A+ BK)x(t)

Synthesis Problem: Find Lyapunov operator P > 0 and Control operator K
where
A*P+ PA+ K*B*P+ PBK <0

Unfortunately, this is bilinear in P and K.
Theorem 20 (Dual Stability condition).

Suppose the operator A generates a strongly continuous semigroup on Hilbert
space X with domain D . The system

#(t) = Az(t)

is stable if there exist a positive, self-adjoint operator P € L(D s — D) such
that
(z, (PA* + AP)z)x < ||zll%

forallx € Dy.
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An LOI for synthesis of full-state feedback controllers

For the co-dimensional System i(t) = (A + BK)z(t),
o Use dual stability condition: PA* + AP + (KP)*B*+ BKP <0

e Define new variable Z = K P.

Theorem 21 (Variable Substitution Trick).

The system
x(t) = Ax(t) + Bu(t)

is stabilizable via full-state feedback if there exist operators P : Dy — D4 and
Z such that P > 0 and

PA*+ AP+ BZ+ Z*B < 0.

Furthermore, K = ZP~! is a stabilizing controller.

A Convex Optimization Problem
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Control of Tokamaks
Choosing Our Operators
Lyapunov Operator: For simplicity, choose
(Px)(r) = M(r)z(r).

Control Operator: Choose a relatively simple structure: K : Dy — X
d

(K9) (r) = Ki(r)y(r) + - (Ka(r)y(r)

New Variable: But K is not the operator we are looking for! We need
Z = KP.
e The structure of K and P gives the structure of Z = K P:

(Z4) (r) = (KPY) (r) = Zu(r)(r) + d% (Za(r)ip(r))

Recover : Given a solution, P, Z, we recover the controller from K = ZP~:
Ki(r) = Zy(r)M(r)~!
Ko(r) = Zy(r)M(r)~L.
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Control of Tokamaks
Solving the Problem

Recall the form for A and B: 1 8 5
(49) ()= s 2 ()5 (roe) )

foa? or

(Bina) (r) = 5 (0 (r)jens()

Positivity Constraint: First we must enforce positivity of P
1

W.Po) = [ 0@ 20
which holds if and only if ’
M(r)y>0  forallrel0,1]

Negativity Constraint: Expanding the synthesis LOI

PA*+ AP+ BZ + Z*B < 0, we get two terms
1

1
(. (PA* - AP+BZ+7" B)) — / D) Ry (r) b (r)ds+ / D () R (1) (r)ds < 0
where the polynomials R; and Ry gre on the following ind(c)a.

For negativity, we require both
Ri(r) <0 and Ra(r) <0 for all » € [0, 1].
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Enforcing Positivity

As promised:

Ra(s) i= ——er(r)M(r) + e2(r) Za(r)
Hoa
where
() =0 (B =) e (o)
r 2
w1+ L Gy 4 sm)

b (rge ) = =10+ 10 5

2
bs (ﬁi) = f () oy () e f(r )d +m f(r );42’

cr(r) = = f(r), ca(r) = =2n f(r) and f(r) =r*(1—r).
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Simulation
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Observing PDE systems: Heat Equation Example

Problem: Feedback requires a knowledge of the heat distribution.
e Sensors can only measure heat at a single point.

Consider the dynamics of heat flux.

w(0,1)=0 Rod Temperature
wi(,1) = Wap(, 1) \_{‘) vt
Point Observation: y(t) = w(l,t) 20
Point Actuation: w,(1,t) = u(t)
Design a Feedback Controller: e

CONTROLLER Control Input

u(t) = Kw(t)

where 1 is the state estimate.
Coupled with a Luenberger Observer:

w(t) = (A+ LC + BF)w(t) — Ly(t)
Using a state-separation argument, the closed loop is stable if A + LC and
A+ BF are stable.

Convex LOI Problem: Find P > 0,Q > 0, Z, R such that
PA*+ AP+ BZ+7Z*B <0 and A*Q+ QA+ C*R* + RC < 0.

M. Peet Lecture 04: Positivity of Operators 53 / 55



Observer-Based Controller
The Heat Equation

Observer state estimate Estimation error

time 0 o : o o
time z

Figure : Estimate of the State Figure : Error in the Observed State

M. Peet Lecture 04: Positivity of Operators 54 / 55



Observer-Based Controller
The Heat Equation

System solution

time 2

Figure : Effect of Observer-Based
Boundary Control

M. Peet

Control error

Wz 0w, z.)

time 0o

Figure : Error in Observer-Based Boundary

Control
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