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Overview

Exploration of LMI’s and SOS has just begun

• A unifying framework for optimization

• Applications limited only by imagination

Today we examine a few high-profile areas of SOS research.

1. Control of Delay Systems

2. Control of PDE Systems
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Functional Differential Equations

ẋ(t) = f (xt)

xt(θ) := x(t+ θ) θ ∈ [−τ, 0]

State xt

τ

x(t)

• Here x(t) ∈ Rn and f : Cτ → Rn.

• xt ∈ Cτ is the full state of the system at time t.

• x(t) ∈ Rn is the present state of the system at time t.

• Cτ is the space of continuous functions defined in the interval [−τ, 0].
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Time-Delay Systems

ẋ(t) = f(x(t), x(t− τ1), . . . , x(t− τK))

State xt

τ

x(t)

x(t-τ )1

x(t-τ )K

K

• Assume f is a polynomial.

Question: Is the System Stable?

M. Peet Lecture 04: Infinite-Dimensional Systems 3 / 55



Lyapunov-Krasovskii Functionals

Consider the functional differential equation

ẋ(t) = f(xt) (1)

Lyapunov Theory: System 1 is stable if there exists some function V : Cτ → R
for which the following holds for all φ ∈ Cτ .

β‖φ‖ ≥ V (φ) ≥ ε‖φ(0)‖2
V̇ (φ) ≤ 0

Here V̇ (x) is the derivative of the functional along trajectories of the system.
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Consider: A System of Linear Differential Equations with
Discrete Delays

ẋ(t) =
m∑
i=1

Aix(t− τi)

• Here x(t) ∈ Rn, Ai ∈ Rn×n.
• We say the system has K delays, τi > τi−1 for i = 1, . . . ,K and τ0 = 0

Question: Is the System Stable?
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Consider: A System of Linear Differential Equations with
Discrete Delays

ẋ(t) =
m∑
i=0

Aix(t− hi)

Problem: Stability
Given specific Ai ∈ Rn×n and hi ∈ R+,
and arbitrary initial condition x0,
does limt→∞ x(t) = 0?
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Converse Lyapunov Theorem

Definition 1.

We say that V is a complete quadratic functional if can be represented as:

V (φ) =

∫ 0

−τK

[
φ(0)
φ(θ)

]T
M(θ)

[
φ(0)
φ(θ)

]
dθ +

∫ 0

−τK

∫ 0

−τK
φ(θ)N(θ, ω)φ(ω)dθdω

Theorem 2.

If a linear time-delay system is asymptotically stable, then there exists a
complete quadratic functional, V , and η > 0 such that for all φ ∈ Cτ

V (φ) ≥ η‖φ(0)‖2 and V̇ (φ) ≤ −η‖φ(0)‖2

Note: Furthermore, M and R can be taken to be continuous everywhere except
possibly at points θ, η = −τi for i = 1, . . . ,K − 1.
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Problem Statement

We would like to construct polynomials M and N such that

V (φ) =

∫ 0

−τK

[
φ(0)
φ(θ)

]T
M(θ)

[
φ(0)
φ(θ)

]
dθ

+

∫ 0

−τK

∫ 0

−τK
φ(θ)N(θ, ω)φ(ω)dθdω ≥ ε‖φ(0)‖2

and

V̇ (φ) =

∫ 0

−τK


φ(−τ0)

...
φ(−τK)
φ(θ)


T

D(θ)


φ(−τ0)

...
φ(−τK)
φ(θ)

 dθ
+

∫ 0

−τK

∫ 0

−τK
φ(θ)L(θ, ω)φ(ω)dθdω ≤ 0

Where D and L are polynomials defined by the derivative.
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Stability of Linear Differential Equations with Delay

V (x) =

∫ 0

−h

[
x(0)
x(s)

]T
M(s)

[
x(0)
x(s)

]
ds

+

∫ 0

−h

∫ 0

−h
x(s)N(s, t)x(t)dsdt

Problem: Find M and N so that for all x ∈ C[−h, 0]:

V (x) > 0

V̇ (x) < 0

Question:

Is the problem finite-dimensional? Can we test positivity?
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Positive Quadratic Functionals
Consider the complete quadratic functional.

V (φ) =

∫ 0

−τK

[
φ(0)
φ(θ)

]T
M(θ)

[
φ(0)
φ(θ)

]
dθ +

∫ 0

−τK

∫ 0

−τK
φ(θ)N(θ, ω)φ(ω)dθdω

The complete quadratic Lyapunov functional is positive if
• M≥10,
• R≥20.

Definition 3.

M≥10 if for all φ ∈ Cτ∫ 0

−τK

[
φ(0)
φ(θ)

]T
M(θ)

[
φ(0)
φ(θ)

]
dθ ≥ 0

Definition 4.

N≥20 if for all φ ∈ Cτ∫ 0

−τK

∫ 0

−τK
φ(θ)N(θ, ω)φ(ω)dθdω ≥ 0
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Searching for Positive Quadratic Functionals

• ≥1 and ≥2 define convex cones.

• Q: How can we represent ≥1 and ≥2 for polynomials using SDP?

Note: Even for matrices, determining positivity on a subset is difficult. e.g.
Matrix Copositivity
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Representing the Cone ≥1

Theorem 5.

For a given M , the following are equivalent

1. M≥1εI for some ε > 0.

2. There exists a function T and ε′ > 0 such that∫ 0

−τK
T (θ)dθ = 0 and M(θ) +

[
T (θ) 0

0 0

]
� ε′I

Computationally Semi-Tractable:
• Assume M and T are polynomials.

• For the 1-D case, Σs is exact.

• The constraint∫ 0

−h T (s)ds = 0 is linear

≥1 → Σs → SDP
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Example: Positive Multipliers

M(θ) =

[
−2θ2 + 2 θ3 − θ
θ3 − θ θ4 + θ2

]

=


1 0
θ 0
0 θ
0 θ2


T 

1 0 −1 0
0 1 0 1
−1 0 1 0
0 1 0 1



1 0
θ 0
0 θ
0 θ2

+

[
3θ2 − 1 0

0 0

]

=


1 0
θ 0
0 θ
0 θ2


T [

0 1 0 1
1 0 −1 0

]T [
0 1 0 1
1 0 −1 0

]
1 0
θ 0
0 θ
0 θ2

+

[
3θ2 − 1 0

0 0

]

=

[
θ θ2

1 −θ

]T [
θ θ2

1 −θ

]
+

[
3θ2 − 1 0

0 0

]
≥10

Since ∫ 0

−1
(3θ2 − 1)dθ = 0
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Positivity of Part 2

Theorem 6 (The Cone N≥20).

Suppose N(s, t) is a polynomial of degree 2d. Then the following are
equivalent:

• ∫ 0

−h

∫ 0

−h
x(s)TN(s, t)x(t)dsdt ≥ 0 for all x ∈ C

• There exists a Q ≥ 0 such that

N(s, t) +N(t, s)T = Zd(s)
TQZd(t)

Computationally Semi-Tractable:

• SDP constraint on Q

• Assumes N is polynomial
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Example: Positive Integral Operators

If
R(θ, ω) =

[
1− ω − θ + 2θω 1− θ − θω2

1− ω − θ2ω 1 + θ2ω2

]

=


1 0
θ 0
0 1
0 θ2


T 

1 −1 1 0
−1 2 −1 −1
1 −1 1 0
0 −1 0 1



1 0
ω 0
0 1
0 ω2



=


1 0
θ 0
0 1
0 θ2


T [

1 −1 1 0
0 −1 0 1

]T [
1 −1 1 0
0 −1 0 1

]
1 0
ω 0
0 1
0 ω2


=

[
1− θ 1
−θ θ2

]T [
1− ω 1
−ω ω2

]
≥20

Then∫ 0

−τ

∫ 0

−τ
x(θ)TR(θ, ω)x(ω)dθdω =

∫ 0

−τ

∫ 0

−τ
x(θ)TG(θ)TG(ω)x(ω)dθdω

=

∫ 0

−τ
x(θ)TG(θ)T dθ

∫ 0

−τ
G(ω)x(ω)dω = KTK ≥ 0
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Discontinuous Elements

Theorem 7.

Suppose M(θ, ω) is discontinuous at θ, ω = −τi. Then N≥20 if and only if
there exists some continuous R≥20 such that

N(θ, ω) = Nij(θ, ω) for all θ ∈ Ii, ω ∈ Ij

Nij(θ, ω) = Rij

(
τK
∆i

θ + τi−1
τK
∆i

,
τK
∆j

ω + τj−1
τK
∆j

)

R(θ, ω) =

R11(θ, ω) . . . R1K(θ, ω)
...

...
RK1(θ, ω) . . . RKK(θ, ω)


Where Ii = [−τi,−τi−1] and ∆i = τi − τi−1.

Computationally Tractable
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The Derivative of Positive Quadratic Functionals

If M≥10 and N≥20, then V (φ) ≥ 0. However, the derivative of V is given by

V̇ (φ)=

∫ 0

−τK


φ(−τ0)

...
φ(−τK)

φ


T

D(θ)


φ(−τ0)

...
φ(−τK)

φ

dθ +

∫ 0

−τK

∫ 0

−τK
φ(θ)L(θ, ω)φ(ω)dθdω ≤ 0

The derivative is negative if

• −L≥20

• −D≥30

Definition 8.

D≥30 if for all φ ∈ Cτ

∫ 0

−τK


φ(−τ0)

...
φ(−τK)

φ


T

D(θ)


φ(−τ0)

...
φ(−τK)

φ

 dθ ≥ 0

Result: We can use a generalization of Theorem 5 for D≥30
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A Lyapunov Inequality

Theorem 9.

The linear time-delay system is asymptotically stable if there exist polynomials
M and R and constant η > 0 such that

Positive Functional:

• M≥1ηI

• R≥20

Negative Derivative:

• D≤3 − ηI
• L≤20

Where for a single delay,

D(θ) =

D11 PB −Q(−τ) τ(ATQ(θ)− Q̇(θ) +R(0, θ))
∗T −S(−τ) τ(BTQ(θ)−R(−τ, θ))
∗T ∗T −τ Ṡ(θ)


L(θ, ω) =

d

dθ
R(θ, ω) +

d

dω
R(θ, ω)

D11 = PA+ATP +Q(0) +Q(0)T + S(0)

where we represent M as M(θ) =

[
P τQ(θ)

τQ(θ)T τS(θ)

]
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Example:
Standard Test Case

We now consider a system with multiple delays.

ẋ(t) =

[
−2 0
0 − 9

10

]
x(t) +

[
−1 0
−1 −1

] [
1

20
x(t− τ

2
) +

19

20
x(t− τ)

]

A bisection method was used and results are listed below.

SOS Approach
d τmin τmax

1 .20247 1.354
2 .20247 1.3722

Analytic .20246 1.3723

Piecewise Functional
N2 τmin τmax

1 .204 1.35
2 .203 1.372

Table : τmax and τmin using a piecewise-linear functional and our approach and
compared to the analytical limit.
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Example: Remote Control

A Simple Inertial System: Suppose we are given a specific type of PD
controller that we want to implement.

ẍ(t) = −ax(t)− a

2
ẋ(t)

The controller is stable for all positive a. Now suppose we want to maintain
control from a remote location. When we include the communication delay,
the equation becomes.

ẍ(t) = −ax(t− τ)− a

2
ẋ(t− τ)

Question: For what range of a and τ will the controller be stable. The model is
linear, but contains a parameter and an uncertain delay.
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Delay and Parametric Uncertainty

We can make the Lyapunov functional robust by adding the uncertain
parameters a ∈ [amin, amax] and τ ∈ [hmin, hmax]. We represent this uncertainty
as

(a, τ) ∈ {(a, τ) : g1(a) ≥ 0, g2(τ) ≥ 0}
where g1(τ) = (τ − τmin)(τmax − τ) and g2(a) = (a− amin)(amax − a).

Then the Lyapunov functional is

V (φ, a, τ) =

∫ 0

−τK

[
φ(0)
φ(θ)

]T
M(θ, a, τ)

[
φ(0)
φ(θ)

]
dθ

+

∫ 0

−τK

∫ 0

−τK
φ(θ)N(θ, ω, a, τ)φ(ω)dθdω
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Delay and Parametric Uncertainty

Then for positivity, we require

• There exists Ri ∈ Σs, polynomials T (a, τ, s) and ε′ > 0 such that∫ 0

−τ
T (a, τ, s)ds = 0,

M(a, τ, s) +

[
T (a, τ, s) 0

0 0

]
− ε′I

= R0(a, τ) + g1(a)R1(a, τ) + g2(τ)R2(a, τ)

• There exists Si ∈ Σs such that

N(s, t, a, τ) +N(t, s, a, τ)T = Zd(s)
TQ(a, τ)Zd(t)

Q(a, τ) = S0(a, τ) + g1(a)S1(a, τ) + g2(τ)S2(a, τ)

Negativity of the derivative is enforced in a similar manner.
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Example: Remote Control

Recall that we considered an inertial system controlled remotely using PD
control

ẍ(t) = −ax(t− τ)− a

2
ẋ(t− τ)

Question: For what range of a and τ will the controller be stable?

• We use parameter-dependent functionals.

0 4 8 12 16
0

0.25

0.5

control gain(a)

- stable

τ(
s)
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Is M polynomial?
Does a continuous solution imply a polynomial solution?

Neglecting N , stability is a Feasibility Problem: Find M,T,Q ∈ C[−h, 0] :

M(s) +

[
T (s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
T (s)ds = 0

−A(M, Ṁ)(s) +

[
Q(s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
Q(s)ds = 0

Here A : C[−h, 0] × C[−h, 0] → C[−h, 0] is a linear operator given by

A(M, Ṁ)(s) =


AT

0 M11 + M11A0 M11A1 0

AT
1 M11 0 0

0 0 0

+


0 0 AT
0 M12(s)

0 0 AT
1 M12(s)

M21(s)A0 M21(s)A1 0



+
1

h


M12(0) + M21(0) + M22(0) −M12(−h) 0

−M21(−h) −M22(−h) 0
0 0 0

 +

 0 0 −Ṁ12(s)
0 0 0

−Ṁ21(s) 0 −Ṁ22(s)



Question:
Can we assume that M , T , and Q are polynomials?
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The Weierstrass Approximation Theorem on Linear
Varieties
Matrix-Valued Functions

Corollary 10.

Let L : C([0, 1],Rp×q)→ Rn×m be a bounded linear operator and
f ∈ C([0, 1],Rp×q).

Then for any δ > 0, there exists a matrix of polynomials r such that

‖f − r‖∞ ≤ δ,
Lr = Lf.
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Lyapunov-Krasovskii Functionals Can Partly Polynomial
At least for the first term.

Theorem 11.

Suppose there exist continuous functions M,T,Q such that

M(s) +

[
T (s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
T (s)ds = 0

−A(M, Ṁ)(s) +

[
Q(s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
Q(s)ds = 0

Then there exist polynomials B,C,D

B(s) +

[
C(s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
C(s)ds = 0

−A(B, Ḃ)(s) +

[
D(s) 0

0 0

]
� 0 for all s ∈ [−h, 0] and

∫ 0

−h
D(s)ds = 0
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What about the Second Term?
Maybe Not

Properties of the term are determined by the kernel.

Definition 12.

A kernel, N(s, t) ∈ Rn×n is separable if there exists N1(s), N2(s) ∈ Rm×n
such that

N(s, t) = N1(s)TN2(t).

Theorem 13.

If ∫ 0

−h

∫ 0

−h
x(s)N(s, t)x(t)dsdt > 0

for all x 6= 0, then N is NOT separable.

• A functional defined by a separable will Not Be Strictly Positive.

Polynomial Kernels are Separable!
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Full-Rank Integral Operators
Semi-Separable Kernels

Semi-separable kernels have been considered for defining the solution map of
linear time-vary systems.

Definition 14.

A kernel N(s, t) is semi-separable if there exist functions M1(s),M2(s) and
N1(s), N2(s) such that

P (s, t) =

{
N1(s)M1(t) s < t

N2(s)M2(t) s ≥ t .

Some interesting examples of semi-separable kernels include

e|s−t| =

{
e−set s < t

ese−t s ≥ t and I(s− t) =

{
0 s < t

1 s ≥ t
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Polynomial Semi-Separable Kernels
Positivity

We use a sum-of-squares approach to positivity of the operator.

Definition 15.

We say that a polynomial semi-separable kernel, N : R× R→ Rn×n, is
sum-of-squares if it can be represented as

N(s, t) =

∫ 0

−h
k(s, u)k(u, t)du

where k(u, t) : R× R→ Rn×n is a semi-separable kernel.
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Polynomial Semi-Separable Kernels
Positivity

Any sum-of-squares semi-separable kernel is positive since

(Ax)(s) =

∫
N(s, t)x(t)dt =

∫ ∫
k(s, u)k(u, t)dudt

=

∫
k(s, u)

∫
k(u, t)x(t)dtdu = (B∗Bx)(s)

where

Bx(s) =

∫
k(s, t)x(t)dt

A sum-of-squares semi-separable kernel

• Defines a positive operator.

• Is semi-separable.

Unlike polynomial kernels, it may be that not all positive semi-separable kernels
are sum-of-squares.

• The square root of a compact operator may not be compact.
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Positivity of Semi-Separable Kernels

Theorem 16.
A polynomial semi-separable kernel, N is sum-of-squares if and only if there exists a
d ≥ 0 and Q ≥ 0 such that

N(ω, t) =

{
N1(ω, t) ω ≤ t
N2(ω, t) ω > t,

N1(ω, t) =

∫ ω

−h
R11(t, s, ω) ds+

∫ t

ω

R21(t, s, ω) ds+

∫ 0

t

R22(t, s, ω) ds,

N2(ω, t) =

∫ t

−h
R11(t, s, ω) ds+

∫ ω

t

R12(t, s, ω) ds+

∫ 0

ω

R22(t, s, ω) ds.

R(t, s, ω) =

[
R11(t, s, ω) R12(t, s, ω)
R12(t, s, ω)

T R22(t, s, ω)

]
= Z2n,d(t, s)

TQZ2n,d(ω, s)

Zn,d(x) = In ⊗ Zd(x)
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Example: Epidemiological Model of Infection

Consider a human population subject to non-lethal infection by a cold virus.
The disease has incubation period (τ). Cooke(1978) models the percentage of
infected humans(y) using the following equation.

ẏ(t) = −ay(t) + by(t− τ) [1− y(t)]

Where

• a is the rate of recovery for infected persons

• b is the rate of infection for exposed people

The model is nonlinear and contains delay. Equilibria exist at y∗ = 0 and
y∗ = (b− a)/b.
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Example: Epidemiological Model

Recall the dynamics of infection are given by

ẏ(t) = −ay(t) + by(t− τ) [1− y(t)]

Cooke used the following Lyapunov functional to prove delay-independent
stability of the 0 equilibrium for a > b > 0.

V (φ) =
1

2
φ(0)2 +

1

2

∫ 0

−τ
aφ(θ)2dθ

Using semidefinite programming, we were also able to prove delay-independent
stability for a > b > 0 using the following functional.

V (φ) = 1.75φ(0)2 +

∫ 0

−τ
(1.47a+ .28b)φ(θ)2dθ

Conclusion: When the rate of recovery is greater than the rate of infection, the
epidemic will die out.
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Complexity Reductions: A Reformulation
Couple ODE and Difference Equations

Separate into an ODE and a static difference equation.

C(sI-A)-1B+D

e-hs

ẋ(t) = Ax(t) +By(t)

y(t) = Cx(t− τ)

where x ∈ Rn and y ∈ Rm
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A new “Complete Quadratic” Functional
Couple ODE and Difference Equations

We use the general form

ẋ(t) =Ax(t) +

K∑
j=1

Bjyj(t− rj),

yi(t) =Cix(t) +

K∑
j=1

Dijyj(t− rj), i = 1, 2, . . .K,

Which as shown in Gu et al., 2009 has a converse Lyapunov functional of form

V (x(t), yt) =

K∑
i=1

∫ 0

−τi

[
x(t)

yi(t+ s)

]T
Mi(s)

[
x(t)

yi(t+ s)

]
ds

+

K∑
i=1

K∑
j=1

∫ 0

−τi

∫ 0

−τj
yi(t+ s)TNi,j(s, θ)yj(t+ θ)ds dθ

Apply our SOS positivity conditions to this functional.
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Numerical Results

ẋ(t) =


0 .5 0 0 0 0
−.5 −.5 0 0 0 0
0 1 .1 1 0 0
0 0 −2 .2 0 0
0 0 0 1 −2 0
0 0 0 0 0 −.9

x(t)

+


0
−.5
0
1
0
0

u1(t− τ√
2

) +


0 0
0 0
0 0
0 0
−2 0
−1 −1.45

u2(t− τ)

u1(t) =
[
0 1 1 0 0 0

]
x(t), u2(t) =

[
−.2 0 0 0 1 0
0 0 −1 0 0 1

]
x(t)

• The system has 6 states, 2 delays and 3 delay channels
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Numerical Testing
Comparision of Asymptotic Algorithms for Delay Stability Testing
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Figure : Log-Log plot of accuracy vs. computation time using SeDuMi
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PDE Systems

Now lets see if our approach to analysis of time-delay systems can be expanded.

• Expand to PDE systems

• Expand to the problem of synthesis

Problems:

• PDE systems are all different
I State-space Theory is different for every system.
I No universal converse Lyapunov functional.
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Nuclear Fusion
A Renewable Energy Source

Fusion energy is the potential energy difference
between particles in free state and particles bound
together by the strong nuclear force.
The 2H + 3H to 4He + 1n reaction:
• Strong Nuclear Force: ∆E = −3.5

MeV/nucleon decrease in potential energy.

• electrostatic repulsion: ∆E = +0.01
MeV/nucleon increase in potential energy
(Coulomb Barrier).

• Nuclear Fission of U235 only releases −.85
MeV/nucleon

• Unfortunately .01 MeV/nucleon mean kinetic
energy implies a temperature of 120 · 106 K.

I Temperature at center of sun is 15.7 · 106K.
I From Maxwell-Boltzmann distribution, we

only need ∼= 106K for a statistically significant
reaction rate

Figure 1: Nuclear Binding Energy of Particles.
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Tokamaks
Magnetic Confinement of Plasma

Inertial Confinement

• Compress the fuel quickly

• Plasma does not have time to expand
spatially before creating additional
reactions.

I Similar to a hydrogen bomb.

Magnetic Confinement

• Plasma: At high temperature, atoms
ionize.

I Hydrogen → 2H+ ion + e+ electron .

• Charged particles oscillate in a uniform
magnetic field.

I But a uniform field must eventually end.
I Particles will eventually escape.

• Tokamaks loop the field back on itself.
I Particles rotate indefinitely.
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Magnetic Confinement of Plasma in Tokamaks
Poloidal and Toroidal Fields

The plasma is contained through the combined action of toroidal φ and poloidal
ψ fields.

• torroidal field is generated from fixed electromagnets

• poloidal field is generated by the motion of the plasma

We need to control the gradient of the poloidal field, ψx.
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The Dynamics of the Poloidal Flux Gradient

State: ψr(r, t) = ∂
∂rψ(r, t) - poloidal flux gradient.

Input: jni, non-inductive current (from ECCD and LH antennae)

∂ψr(r, t)

∂t
=

1

µ0a2
∂

∂r

(
η‖(r, t)

r

∂

∂r
(rψr(r, t))

)
+R0

∂

∂r

(
η‖(r, t)jni(r, t)

)
.

where a = mean radius

R0 = magnetic center location

µ0 = permeability of free space

η‖(r, t) = plasma resistivity

jni(r, t) = non-inductive current density

with the boundary conditions

ψr(0, t) = 0 and ψr(1, t) = 0.

The dynamics are coupled to electron temperature via Plasma Resistivity, η‖.

• Depends on dynamics of temperature, density, etc.

• Treat as time-varying parameter
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Dynamical System Representation

Generalize the problem: A PDE in ODE form

ψ̇(t) = Aψ(t) +Bu(t)

where A and B are the operators

(Aψ) (r) :=
1

µ0a2
∂

∂r

(
η‖(r)

∂

∂r
(rψ(r))

)
(Bjni) (r) :=

∂

∂r

(
η‖(r)jeni(r)

)
Define

DA = {y ∈ L2[0, 1] : y, yr, yrr ∈ L2[0, 1], y(0) = y(1) = 0}.

For any ψ(0) ∈ DA, this system has a solution such that ψ(t) ∈ DA for all
t ≥ 0 and is associated with Hilbert space X = L2[0, 1].
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Linear Operator Inequalities
The Lyapunov Inequality

How to prove stability?
• Find a Lyapunov function, e.g.

V =

∫
ψ(r)M(r)ψ(r)dr +

∫ ∫
ψ(r)N(r, θ)ψ(θ)dr dθ

• A Convex optimization problem.

Theorem 17.

Suppose the operator A generates a strongly continuous semigroup on Hilbert
space X with domain DA. Then

ẋ(t) = Ax(t)

is stable if and only if there exist a positive operator P ∈ L(X → X) such that

〈x, (A∗P + PA)x〉X < ‖x‖2X
for all x ∈ DA.

• Optimization with Variable: P
• Same as the Lyapunov question with V (x) = 〈x, Px〉L2

.
• How to parameterize P and enforce positivity?
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Solving Linear Operator Inequalities (LOIs)
A Finite-Dimensional Subspace

Question: How to parameterize a set of operators?

A Class of Operators: x ∈ L2[0, 1]

(Px)(s) = M(s)x(s) +

∫ 1

0

N(s, t)x(t)dt

• M(s) is the multiplier of a Multiplier Operator.

• N(s, t) is the kernel of an Integral Operator.

Question: How to parameterize multiplier and integral operators

• We consider polynomial multipliers, M(s) and kernels, N(s, t)

• For a finite monomial basis, the set of operators is finite-dimensional
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Operator Positivity

Now, how do we enforce positivity on DA?

• Consider the simplest case where DA = L2[0, 1]. Then

Theorem 18 (Multiplier Operator).

Let PM : L2 → L2 be defined as.

(PMx)(s) = M(s)x(s)

Then PM � 0 if and only if M(s) ≥ 0 for all s ∈ [0, 1].

Theorem 19 (Integral Operator).

Suppose N is polynomial, and let PN : L2 → L2 be defined as.

(PNx)(s) =

∫ 1

0

N(s, t)x(t)dt

Then PN � 0 if and only if N(s, θ) = Z(s)TQZ(θ) for some Q ≥ 0 where Z is
the vector of monomials.
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Full-State Feedback: A Dual LOI

Let u = Kx. Then
ẋ(t) = (A+BK)x(t)

Synthesis Problem: Find Lyapunov operator P � 0 and Control operator K
where

A∗P + PA+K∗B∗P + PBK ≺ 0

Unfortunately, this is bilinear in P and K.

Theorem 20 (Dual Stability condition).

Suppose the operator A generates a strongly continuous semigroup on Hilbert
space X with domain DA. The system

ẋ(t) = Ax(t)

is stable if there exist a positive, self-adjoint operator P ∈ L(DA → DA) such
that

〈x, (PA∗ +AP )x〉X < ‖x‖2X
for all x ∈ DA.
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An LOI for synthesis of full-state feedback controllers

For the ∞-dimensional System ẋ(t) = (A+BK)x(t),

• Use dual stability condition: PA∗ +AP + (KP )∗B∗ +BKP ≺ 0

• Define new variable Z = KP .

Theorem 21 (Variable Substitution Trick).

The system
ẋ(t) = Ax(t) +Bu(t)

is stabilizable via full-state feedback if there exist operators P : DA → DA and
Z such that P � 0 and

PA∗ +AP +BZ + Z∗B ≺ 0.

Furthermore, K = ZP−1 is a stabilizing controller.

A Convex Optimization Problem

M. Peet Lecture 04: Control of PDEs 48 / 55



Control of Tokamaks
Choosing Our Operators

Lyapunov Operator: For simplicity, choose

(Px)(r) = M(r)x(r).

Control Operator: Choose a relatively simple structure: K : DA → X

(Kψ) (r) = K1(r)ψ(r) +
d

dr
(K2(r)ψ(r))

New Variable: But K is not the operator we are looking for! We need
Z = KP .
• The structure of K and P gives the structure of Z = KP :

(Zψ) (r) = (KPψ) (r) = Z1(r)ψ(r) +
d

dr
(Z2(r)ψ(r))

Recover : Given a solution, P,Z, we recover the controller from K = ZP−1:

K1(r) = Z1(r)M(r)−1

K2(r) = Z2(r)M(r)−1.
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Control of Tokamaks
Solving the Problem

Recall the form for A and B:

(Aψ) (r) :=
1

µ0a2
∂

∂r

(
η‖(r)

∂

∂r
(rψ(r))

)
(Bjni) (r) :=

∂

∂r

(
η‖(r)jeni(r)

)
Positivity Constraint: First we must enforce positivity of P

〈ψ, Pψ〉 =

∫ 1

0

ψ(r)M(r)ψ(r)dr ≥ 0

which holds if and only if
M(r) ≥ 0 for all r ∈ [0, 1]

Negativity Constraint: Expanding the synthesis LOI
PA∗ +AP +BZ + Z∗B ≺ 0, we get two terms

〈ψ, (PA∗+AP+BZ+Z∗B)ψ〉 =

∫ 1

0

ψ(r)R1(r)ψ(r)ds+

∫ 1

0

ψ̇(r)R2(r)ψ̇(r)ds ≤ 0

where the polynomials R1 and R2 are on the following slide.

For negativity, we require both
R1(r) < 0 and R2(r) < 0 for all r ∈ [0, 1].
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Enforcing Positivity

As promised:

R1(s) :=
1

µ0a2
b1

(
r,
d

dr

)
M(r) + b2

(
r,
d

dr

)
Z1(r) + b3

(
r,
d

dr

)
Z2(r)

R2(s) :=
1

µ0a2
c1(r)M(r) + c2(r)Z2(r).

where

b1

(
r,
d

dr

)
= f(r)

(η‖,r
r
− η‖

r2

)
+ f ′(r)

(
−η‖
r

+ η‖,r

)
+ f ′′(r)η‖ +

f(r)η‖

r

d

dr
+
(
f(r)η‖ + f(r)η‖,r

) d2
dr2

,

b2

(
r,
d

dr

)
= −f ′(r) + f(r)

d

dr
,

b3

(
r,
d

dr

)
= η‖,rf

′(r) + η‖f
′′(r) + η‖,rf(r)

d

dr
+ η‖f(r)

d2

dr2
,

c1(r) = −η‖f(r), c2(r) = −2η‖f(r) and f(r) = r2(1− r).

M. Peet Lecture 04: Positivity of Operators 51 / 55



Simulation
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Figure : Time evolution of ψx-profile.
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Observing PDE systems: Heat Equation Example
Problem: Feedback requires a knowledge of the heat distribution.
• Sensors can only measure heat at a single point.

Consider the dynamics of heat flux.

wt(x, t) = wxx(x, t)

Point Observation: y(t) = w(1, t)
Point Actuation: wz(1, t) = u(t)

Design a Feedback Controller:

u(t) = Kŵ(t)

where ŵ is the state estimate.
Coupled with a Luenberger Observer:

˙̂w(t) = (A+ LC +BF )ŵ(t)− Ly(t)
Using a state-separation argument, the closed loop is stable if A+ LC and
A+BF are stable.

Convex LOI Problem: Find P � 0, Q � 0, Z,R such that

PA∗ +AP +BZ + Z∗B ≺ 0 and A∗Q+QA+ C∗R∗ +RC ≺ 0.
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Observer-Based Controller
The Heat Equation
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Observer-Based Controller
The Heat Equation
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