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Who Am I?

Website: http://control.asu.edu

Research Interests: Computation, Optimization and Control

Focus Areas:

• Control of Nuclear Fusion

• Immunology

• Thermostats, Renewable Energy,
and Power Distribution

Expertise with LMI Methods:

• Optimization of Polynomials

• Parallel Computing for Control

• Control of Delayed Systems

• Control of PDE Systems

• Control of Nonlinear Systems

My Background:

• B.Sc. University of Texas at Austin

• Ph.D. Stanford University

• Postdoc at INRIA Paris

• NSF CAREER Awardee

Office: ERC 253; Lab: GWC 531
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LMI Methods in Optimal and Robust Control
A Toolbox

Required: LMIs in Control Systems
by Duan and Yu

LMIs in Systems and Control Theory
by S. Boyd
Link: Available Online Here

Linear State-Space Control Systems
by Williams and Lawrence

Convex Optimization
by S. Boyd
Link: Available Online Here

Link: Entire Course Online Here
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LMI Methods in Optimal and Robust Control

This course is on RECENT Developments in Control

• Techniques Developed in the Last 20 years
• Computational Methods

I No Root Locus
I No Bode Plots
I No PID (Proportion-Integral-Differential)

We focus on State-Space Methods

• In the time-domain

• We use large state-space matrices

d

dt




x1(t)
x2(t)
x3(t)
x4(t)


 =




−1 1.2 −1 .8
1 0 0 0
0 1 0 0
0 0 1 0







x1(t)
x2(t)
x3(t)
x4(t)


+




1 0
0 1
0 0
0 0



[
u1(t)
u2(t)

]

• We require Matlab
I Need robust control toolbox.
I Recommend using YALMIP.

Link: Installs YALMIP and some other toolboxes
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https://www.mpt3.org/Main/Installation?action=download&upname=install_mpt3.m


What is Optimization?
An Optimization Problem has 3 parts.

min
x∈F

f(x) : subject to

gi(x) ≥ 0 i = 1, · · ·K1

hi(x) = 0 i = 1, · · ·K2

Variables: x ∈ F
• The things you must choose.
• F represents the set of possible choices for the variables.
• Can be vectors, matrices, functions, systems, locations, colors...

I However, computers prefer vectors or matrices.

Objective: f(x)
• A function which assigns a scalar value to any choice of variables.

I e.g. [x1, x2] 7→ x1 − x2; red 7→ 4; et c.

Constraints: g(x) ≥ 0; h(x) = 0
• Defines what is a minimally acceptable choice of variables.
• Equality and Inequality constraints are common.

I x is OK if g(x) ≥ 0 and h(x) = 0.
• Constraints mean variables are not independent. (Constrained optimization

is much harder).
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Least Squares
Unconstrained Optimization

Problem: Given a bunch of data in the form

• Inputs: ai
• Outputs: bi

Find the function f(a) = b which best fits the data.

For Least Squares: Assume f(a) = zTa+ z0 where
z ∈ Rn, z0 ∈ R are the variables with objective

min h(z) :=

K∑

i=1

|f(ai)− bi|2 =

K∑

i=1

|zTai + z0 − bi|2

The Optimization Problem is:

min
z∈Rn
‖Az − b‖2

where

A :=



aT1 1

...
aTK 1


 b :=



b1
...
bK




M. Peet Lecture 01: Optimization 5 / 131



Machine Learning
Classification and Support-Vector Machines

In Classification we have inputs (data) (xi), each of which has a binary label
(yi ∈ {−1,+1})
• yi = +1 means the output of xi belongs to group 1

• yi = −1 means the output of xi belongs to group 2

We want to find a rule (a classifier) which takes
the data x and predicts which group it is in.

• Our rule has the form of a function
f(x) = wTx− b. Then
I x is in group 1 if f(x) = wTx− b > 0.
I x is in group 2 if f(x) = wTx− b < 0.

Question: How to find the best w and b??
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Figure: We want to find a rule
which separates two sets of data.
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Machine Learning
Classification and Support-Vector Machines

Definition 1.

• A Hyperplane is the generalization of the concept of line/plane to multiple
dimensions. {x ∈ Rn : wTx− b = 0}

• Half-Spaces are the parts above and below a Hyperplane.

{x ∈ Rn : wTx− b ≥ 0} OR {x ∈ Rn : wTx− b ≤ 0}
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Machine Learning
Classification and Support-Vector Machines

We want to separate the data into disjoint half-spaces and maximize the
distance between these half-spaces

Variables: w ∈ Rn and b define the hyperplane
Constraint: Each existing data point should be
correctly labelled.

• wTx− b > 1 when yi = +1 and
wTx− b < −1 when yi = −1
(Strict Separation)

• Alternatively: yi(w
Txi − b) ≥ 1.

These two constraints are Equivalent.
Figure: Maximizing the distance
between two sets of Data

Objective: The distance between Hyperplanes {x : wTx− b = 1} and
{x : wTx− b = −1} is

f(w, b) = 2
1√
wTw
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Machine Learning
Unconstrained Form (Soft-Margin SVM)

Machine Learning algorithms solve

min
w∈Rp,b∈R

1

2
wTw, subject to

yi(w
Txi − b) ≥ 1, ∀i = 1, ...,K.

Soft Margin Problems
The hard margin problem can be relaxed to
maximize the distance between hyperplanes
PLUS the magnitude of classification errors

min
w∈Rp,b∈R

1

2
‖w‖2+c

n∑

i=1

max(0, 1−(wTxi−b)yi).
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Figure: Data separation using
soft-margin metric and distances
to associated hyperplanes

Link: Repository of Interesting Machine Learning Data Sets
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Computational Complexity

In Computer Science, we focus on Complexity of the PROBLEM

• NOT complexity of the algorithm.

On an Turing machine, the # of steps is a fn of
problem size (number of variables)

• NL: A logarithmic # (SORT)

• P: A polynomial # (LP)

• NP: A polynomial # for verification (TSP)

• NP HARD: at least as hard as NP (TSP)

• NP COMPLETE: A set of Equivalent* NP
problems (MAX-CUT, TSP)

• EXPTIME: Solvable in 2p(n) steps.
p polynomial. (Chess)

• EXPSPACE: Solvable with 2p(n) memory.

*Equivalent means there is a polynomial-time reduction from one to the other.
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Linear Algebra Review: Matrix Positivity - Definition

Try not to define positivity using eigenvalues. (Eigenvalues don’t add)

Definition 2.

A symmetric matrix P ∈ Sn is Positive Semidefinite, denoted P ≥ 0 if

xTPx ≥ 0 for all x ∈ Rn

Definition 3.

A symmetric matrix P ∈ Sn is Positive Definite, denoted P > 0 if

xTPx > 0 for all x 6= 0

• P is Negative Semidefinite if −P ≥ 0

• P is Negative Definite if −P > 0

• A matrix which is neither Positive nor Negative Semidefinite is Indefinite

The set of positive or negative matrices is a convex cone.
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Linear Algebra Review: Matrix Positivity - Definition

OK, yes, symmetric matrix has real eigenvalues and the matrix is PSD if and

only if its eigenvalues are all PSD and PD iff the eigenvalues are PD.



Pleasant Properties of Positive Matrices

Lemma 4.

P ∈ Sn is positive definite if and only if all its eigenvalues are positive.

In this case, the SVD and Unitary (Schur) Diagonalization are the same.


4 1 2
1 5 3
2 3 6


 =



−.37 .82 −.44
−.58 −.58 −.58
−.73 .04 .69




︸ ︷︷ ︸
U




9.4 0 0
0 3.4 0
0 0 2.2




︸ ︷︷ ︸
Λ=Σ



−.37 .82 −.44
−.58 −.58 −.58
−.73 .04 .69



T

︸ ︷︷ ︸
UT=V T

Fact: If T is invertible, then P > 0 is equivalent to TTPT > 0.
• P > 0→ (Tx)TP (Tx) = xTTTPTx > 0
• TTPT > 0→ (T−1x)TTTPT (T−1x) = xTPx > 0

Fact: A Positive Definite matrix is invertible: P−1 = UΣ−1UT .
Fact: The inverse of a positive definite matrix is positive definite: Σ−1 > 0
Fact: For any P > 0, there exists a positive square root, P

1
2 > 0 where

P = P
1
2P

1
2 .

P
1
2 = UΣ

1
2UT > 0 P

1
2P

1
2 = UΣ

1
2UTUΣ

1
2UT = UΣ

1
2 Σ

1
2UT = UΣUT = P
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Pleasant Properties of Positive Matrices

Schur Decomposition uses eigenvalues and V 6= U



Building Linear Matrix Inequalities

Fact:

[
X Y
Y T Z

]
> 0, implies both X > 0 and Z > 0.

Proof: True since

[
0
z

]T [
X Y
Y T Z

] [
0
z

]
> 0 and

[
x
0

]T [
X Y
Y T Z

] [
x
0

]
> 0

Fact: X > 0 and Z > 0 is equivalent to

[
X 0
0 Z

]
> 0.

Proof: True since xTXx > 0 and zTZz > 0 implies[
x
z

]T [
X 0
0 Z

] [
x
z

]
= xTXx+ zTZz > 0.

Theorem 5 (Schur Complement).
[
X Y
Y T Z

]
> 0 ⇔

[
X 0
0 Z − Y TX−1Y

]
> 0 ⇔

[
X − Y Z−1Y T 0

0 Z

]
> 0

Diagonal Dominance: If X and Z are big enough, Y doesn’t matter.
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Leftover Factoids on Positive Matrices

Things which are true:

• P > 0 and Q > 0 implies P +Q > 0.

• P > 0 implies µP > 0 for any positive scalar µ > 0.

• MTM ≥ 0 for any matrix, M .

• P > 0 implies MTPM > 0 if nullspace of M is empty.

Things which are NOT TRUE (Fallacies):

• P > 0 implies TPT−1 > 0.

• P > 0 and Q > 0 implies PQ > 0.

• P > 0 implies TTP + PT > 0

• P ≥ 0 implies P invertible.

• A has positive eigenvalues implies A+AT > 0.([1 − 3; 0 1])
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Semidefinite Programming - Dual Form

minimize traceCX

subject to traceAiX = bi for all i

X � 0

• The variable X is a symmetric matrix

• X � 0 is another way to say X is positive semidefinite

• The feasible set is the intersection of an affine set with the positive
semidefinite cone {

X ∈ Sn | X � 0
}

Recall traceCX =
∑
i,j Ci,jXj,i.
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Semidefinite Programming - Dual Form

SeDuMi uses a Dual Form Input Format

• But we will use YALMIP which is closer to the Primal Form



SDPs with Explicit Variables - Primal Form

We can also explicitly parametrize the affine set to give

minimize cTx

subject to F0 + x1F1 + x2F2 + · · ·+ xnFn � 0

where F0, F1, . . . , Fn are symmetric matrices.

The inequality constraint is called a Linear Matrix Inequality (LMI); e.g.,

x1 − 3 x1 + x2 −1
x1 + x2 x2 − 4 0
−1 0 x1


 � 0

which is equivalent to

−3 0 −1
0 −4 0
−1 0 0


+ x1




1 1 0
1 0 0
0 0 1


+ x2




0 1 0
1 1 0
0 0 0


 � 0
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Linear Matrix Inequalities

Linear Matrix Inequalities are often a Simpler way to solve control problems.
Common Form:

Find X :
∑

i

AiXBi +Q > 0

There are several very efficient LMI/SDP Solvers which interface with
YALMIP:
• SeDuMi

I Fast, but somewhat unreliable.
I Link: http://sedumi.ie.lehigh.edu/

• LMI Lab (Part of Matlab’s Robust Control Toolbox)
I Universally disliked, but you already have it.
I Link: http://www.mathworks.com/help/robust/lmis.html

• MOSEK (commercial, but free academic licenses available)
I Probably the most reliable
I Link: https://www.mosek.com/products/academic-licenses/
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Linear Matrix Inequalities

YALMIP uses a hybrid of the Primal and LMI formats

http://sedumi.ie.lehigh.edu/
http://www.mathworks.com/help/robust/lmis.html
https://www.mosek.com/products/academic-licenses/


Using YALMIP to Solve LMIs!
An Example

The system
ẋ = Ax

is stable (eigenvalues have negative real part) if and only if there exists a P > 0
such that

ATP + PA < 0

YALMIP Code for Stability Analysis:
> A = [-1 2 0; -3 -4 1; 0 0 -2];

> P = sdpvar(3,3);

> F = [P >= eye(3)];

> F = [F, A’*P+P*A <= 0];

> optimize(F);

If Feasible, YALMIP Code to Retrieve the Solution:
> Pfeasible = value(P);
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Stability of Continuous and Discrete-Time Systems

Definition 6.

A is Hurwitz if Reλi(A) < 0 for all i.

Theorem 7.

ẋ(t) = Ax(t) is stable if and only if A is Hurwitz.

For Discrete-Time Systems: xk+1 = Axk,

xk = Akx0

Definition 8.

A is Schur if |λi(A)| < 1 for all i.

Theorem 9.

xk+1 = Axk is stable if and only if A is Schur.
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Thing to Know: Lyapunov Functions Prove Global Stability

ẋ(t) = f(x(t))

Theorem 10 (Lyapunov).

V is a Lyapunov Function if V (0) = 0 and V (x) > 0 for x 6= 0 and
lim‖x‖→∞ V (x) =∞. If

d

dt
V (x(t)) < 0 for ẋ(t) = f(x(t)) x(t) 6= 0.

Then for any x(0) ∈ R the system ẋ(t) = f(x(t)) has a unique solution which is
stable in the sense of Lyapunov.
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Thing to Know: Lyapunov Functions Prove Global
Stability

If ẋ(t) = f(x(t)), then
V̇ (x) = ∇xV (x)T f(x)



The Lyapunov Inequality (Our First LMI)

Lemma 11 (An LMI for Hurwitz Stability).

A is Hurwitz if and only if there exists a P > 0 such that

ATP + PA < 0

Proof.

Suppose there exists a P > 0 such that ATP + PA < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x 6= 0 and V (0) = 0.

• Furthermore,

V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)TATPx(t) + x(t)TPAx(t)

= x(t)T
(
ATP + PA

)
x(t)

• Hence V̇ (x(t)) < 0 for all x 6= 0. Thus the system is globally stable.

• Global stability implies A is Hurwitz.
M. Peet Lecture 01: Stability LMI’s 21 / 131



The Lyapunov Inequality (Our First LMI)

Lemma 11 (An LMI for Hurwitz Stability).

A is Hurwitz if and only if there exists a P > 0 such that

ATP + PA < 0

Proof.

Suppose there exists a P > 0 such that ATP + PA < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x 6= 0 and V (0) = 0.

• Furthermore,
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The Lyapunov Inequality (Our First LMI)

• Although all problems can be posed as optimization problems, not all optimization problems are solvable. In particular, the
problem must be convex; the constraints typically should be in the form of a convex cone or inequality. Unfortunately, the
constraint that the eigenvalues of a matrix lie in the left half-plane is not easy to enforce directly. The eigenvalues of a matrix are
a complex function of the elements of the matrix and, in addition, are quite sensitive to errors in those elements. For this reason,
we seek to reformulate the constraint that a matrix be Hurwitz.

• Unlike eigenvalues, the set of Lyapunov functions is a convex cone. This means it is by definition an inequality and therefore
well-suited to numerical optimization. Furthermore, the restriction to quadratic Lyapunov functions is likewise a cone constraint
and finally, there is a 1-1 relationship between positive matrices and positive Lyapunov functions. This is because the definition of
positivity we defined for matrices is identical to the definition of positivity we defined for Lyapunov functions.

• Our first LMI provides the kernel by which we will transmute problems which involve the placement of eigenvalues into problems
on the feasibility of certain LMIs. We will use variations of this proof throughout the course, with perhaps the culmination being
the KYP Lemma.



The Lyapunov Inequality

Proof.

For the other direction, if A is Hurwitz, for any Q > 0, let

P =

∫ ∞

0

eA
T sQeAsds

• Converges because A is Hurwitz.

• Furthermore
PA =

∫ ∞

0

eA
T sQeAsAds

=

∫ ∞

0

eA
T sQAeAsds =

∫ ∞

0

eA
T sQ

d

ds

(
eAs
)
ds

=

[
eA

T sQeAs
]∞

0

−
∫ ∞

0

d

ds
eA

T sQeAs

= −Q−
∫ ∞

0

AT eA
T sQeAs = −Q−ATP

• Thus PA+ATP = −Q < 0.
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The Lyapunov Inequality

• Sufficiency is easy. Obviously P defines a Lyapunov function in the
obvious way. Now simply expand the V̇ and we are done.

• Necessity is not as obvious. It comes from the fact that one interpretation
of a Lyapunov function is that it represents the magnitude of the
forward-time solution starting from a point x. Since x(t) = eAtx0, we
then have

V (x0) =

∫ ∞
0

x(s)Tx(s)ds =

∫ ∞
0

xT0 e
AT seAsx0ds = xT0 Px0



Discrete-Time Lyapunov Functions

Lemma 12 (An LMI for Schur Stability).

A is Schur if and only if there exists a P > 0 such that

ATPA− P < 0

Proof.

Suppose there exists a P > 0 such that ATPA− P < 0.

• Define the Lyapunov function V (x) = xTPx.

• Then V (x) > 0 for x 6= 0 and V (0) = 0.

• Furthermore,

V (xk+1) = xTk+1Pxk+1

= xTkA
TPAxk

< xTk Pxk = V (xk)

• Hence V (xk+1) < V (xk) for all k ≥ 0. Thus the system is Stable.

• Stability implies A is Schur.
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Lyapunov Functions

Proof.

For the other direction, if A is Hurwitz, for any Q > 0, let

P =

∞∑

k=0

(AT )kQAk

ATPA− P =

∞∑

k=1

(AT )kQAk −
∞∑

k=0

(AT )kQAk

= −(AT )0QA0 = −Q < 0

• Thus ATPA− P < 0.

YALMIP Code:
> P = sdpvar(n); eta=.1;

> F=[P>=eta*eye(n)];

> F=[F; A’ P A - P<=0];

> optimize(F);
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Lyapunov Functions

• Necessity in the discrete-time case is similar to the continuous-time case.
Now, however, the solution is a sequence and its size is defined in the `2
sense. xk = Akx0, we then have

V (x0) = ‖x‖`2 =

∞∑
i=0

xT0 (AT )iAix0

• Note the nonlinearity in A. This will be a problem which will require
fixing. For now, however, A is fixed, so the matrix inequality is linear.



Pole Locations AKA D-stability

Some people still care about pole (eigenvalue) locations.

• For these people, we have D-stability.

To begin, you have to define the acceptable region of the complex plane using
inequality constraints.

• Rise Time (tr): ‖z‖ ≤ 1.8
tr

• Settling Time (ts): Re z ≤ − 4.6
ts

• Percent Overshoot (Mp): Re z ≤ − lnMp

π | Im z|
Recall that if z is the complex pole location:

• ‖z‖2 = z∗z

• Im z = (z − z∗)/2
• Re z = (z + z∗)/2
Which yields

• Rise Time: z∗z − 1.82

t2r
≤ 0

• Settling Time: z+z∗

2 + 4.6
ts
≤ 0

• Percent Overshoot: z − z∗ + π
lnMp

|z + z∗| ≤ 0
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Pole Locations AKA D-stability

• Now its time to start introducing lots of LMIs and ways to define them.
Up to now, we have been very theory-oriented. This was the minimal
amount of theory needed to allow you to understand the next few pages.
The next few pages are more practical. Still hard, however.

• The goal, again, is to translate constraints on the eigenvalues of A (which
are horribly nonlinear and non-convex functions of the elements of A) to
the feasibility of matric inequalities which are linear in A.

• Note that none of these approximations are valid unless the system is
composed of only 2 poles and no zeros.

• See, e.g. Franklin, Powell, Enami for derivations.



An LMI for Pole Locations

Gutman proposed a nice LMI for D-stability with a single constraint

Theorem 13 (Gutman).

The pole locations, z ∈ C of A satisfy

z ∈ {z ∈ C :
∑

k,l

cklz
k(z∗)l < 0}

if and only if there exists some P > 0 such that

∑

k,l

cklA
kP (AT )l < 0

But this has some disadvantages

• There can only be one constraint.

• The LMI is not linear in A.
I So controller synthesis is not an LMI.
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An LMI for Pole Locations

• Simply replace z with A and put a P in the middle!

• Region need not be convex!



An LMI for Convex Regions of the Complex Plane

To get around the limitations of Gutman’s result, we introduce the concept of
LMI regions.

• These are regions which can be represented using LMIs in the z and z∗

variables

Definition 14.

An LMI Region of the complex plane has the form

{z ∈ C : F0 + zF1 + z∗F2 < 0}

Such regions are hard to visualize (Spectahedron!), but

• Are convex
I e.g. Minimum rise time is not allowed!

• Can intersect multiple convex regions
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An LMI for Convex Regions of the Complex Plane

• Remember multiple LMI constraints can be concatenated on the diagonal
to obtain a single larger LMI constraint.



An LMI for Convex Regions of the Complex Plane
Examples

Rise Time: z∗z − 1.82

t2r︸︷︷︸
r2

≤ 0

[
−r z
z∗ −r

]
=

[
−r 0
0 −r

]

︸ ︷︷ ︸
F0

+

[
0 1
0 0

]

︸ ︷︷ ︸
F1

z +

[
0 0
1 0

]

︸ ︷︷ ︸
F2

z∗ < 0

Which by the Schur complement is equivalent to r − z∗r−1z > 0.

Settling Time: 4.6
ts

+ z+z∗

2 ≤ 0

Percent Overshoot: |z − z∗|+ π
lnMp

(z + z∗) ≤ 0

[
π(z + z∗) lnMp(z − z∗)

lnMp(z − z∗)∗ π(z + z∗)

]
=

[
0 0
0 0

]

︸ ︷︷ ︸
F0

+

[
π lnMp

− lnMp π

]

︸ ︷︷ ︸
F1

z+

[
π − lnMp

lnMp π

]

︸ ︷︷ ︸
F2

z∗ < 0

Which by the Schur complement is equivalent to z + z∗ < 0 and
(z − z∗)2 − ( π

lnMp
)2|z + z∗|2 > 0.
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An LMI for Convex Regions of the Complex Plane

• For rise time r − z∗r−1z > 0 is equivalent to r2 − z∗z > 0

• For PO, recall a > b is equivalent to a2 > b2 if a, b > 0 as the square is
monotonic increasing[

−π(z + z∗) − lnMp(z − z∗)
− lnMp(z − z∗)∗ −π(z + z∗)

]
≥ 0

−π(z + z∗) + (lnMp)
2(z − z∗)∗(z − z∗) 1

π(z + z∗)
≥ 0

−(π)2(z + z∗)2 + (lnMp)
2(z − z∗)∗(z − z∗) ≤ 0 (Since z + z∗ < 0)

−(
π

lnMp
)2(z + z∗)2 + |z − z∗|2 ≤ 0

|z − z∗|2 ≤ (
π

lnMp
)2(|z + z∗|)2

(
π

lnMp
)|z + z∗| ≥ |z − z∗|

(Since z + z∗ < 0)



An LMI for Convex Regions of the Complex Plane

Theorem 15 (Chilali + Gahinet).

The pole locations, z ∈ C of A satisfy

z ∈ {z ∈ C : F0 + zF1 + z∗F2 < 0}

if and only if there exists some P > 0 such that

F0 ⊗ P + F1 ⊗ (AP ) + F2 ⊗ (AP )T < 0

The notation F ⊗ P is Kronecker notation and means for each element of Fz,
replace the scalar z with the matrix P . So, e.g.

[
f11 f12

f12 f22

]

︸ ︷︷ ︸
F0

⊗P :=

[
f11P f12P
f12P f22P

]
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An LMI for Sector Regions of the Complex Plane

Rise Time: [−r z
z∗ −r

]
=

[
−r 0
0 −r

]

︸ ︷︷ ︸
F0

+

[
0 1
0 0

]

︸ ︷︷ ︸
F1

z +

[
0 0
1 0

]

︸ ︷︷ ︸
F2

z∗ < 0

becomes

Lemma 16.

The pole locations, z ∈ C of A satisfy z∗z ≤ r2 if and only if there exists some
P > 0 such that [

−rP AP
(AP )T −rP

]
< 0

Settling Time: 4.6
ts

+ z + z∗ ≤ 0
becomes

Lemma 17.

The pole locations, z ∈ C of A satisfy 2 Rex ≤ −α if and only if there exists
some P > 0 such that

AP + (AP )T + αP < 0
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An LMI for Sector Regions of the Complex Plane

This last LMI is also used to get the exponential decay rate, α



An LMI for Sector Regions of the Complex Plane

Percent Overshoot: z + z∗ ≤ − lnMp

π |z − z∗|

Lemma 18.

The pole locations, z ∈ C of A satisfy z + z∗ ≤ − lnMp

π |z − z∗| if and only if
there exists some P > 0 such that

[
π(AP + (AP )T ) lnMp(AP − (AP )T )

lnMp(AP − (AP )T )T π(AP + (AP )T )

]
< 0

M. Peet Lecture 01: Stability LMI’s 31 / 131



A Combined LMI for D-stability

Theorem 19.

The pole locations, z ∈ C of A satisfy z∗z ≤ r2, Rex ≤ −α and
z + z∗ ≤ − lnMp

π |z − z∗| if and only if there exists some P > 0 such that

[
−rP AP

(AP )T −rP

]
< 0,

AP + (AP )T + 2αP < 0, and
[

π(AP + (AP )T ) lnMp(AP − (AP )T )
lnMp(AP − (AP )T )T π(AP + (AP )T )

]
< 0

M. Peet Lecture 01: Stability LMI’s 32 / 131



Lets Add Inputs and Outputs
Solution for State-Space

State-Space System:

ẋ = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) x(0) = 0

State-Space

System

u y

Input Output

Input-Output Map:

x(t) =

∫ t

0

eA(t−s)Bu(s)ds

y(t) = Cx(t) +Du(t) =

∫ t

0

CeA(t−s)Bu(s)ds+Du(t)
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The Static State-Feedback Problem

Lets start with the problem of stabilization.

Definition 20.

The Static State-Feedback Problem is to find a feedback matrix K such that

ẋ(t) = Ax(t) +Bu(t)

u(t) = Kx(t)

is stable

• Find K such that A+BK is Hurwitz.

Can also be put in LMI format:

Find X > 0, K :

X(A+BK) + (A+BK)TX < 0

Problem: Bilinear in K and X.
• The bilinear problem in K and X is a common paradigm.
• Bilinear optimization is not convex.
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The Static State-Feedback Problem

State-feedback refers to the fact that u(t) = Kx(t) is a function of all the states,
which we assume are all individually measurable. Static refers to the fact that
the linear function Kx does not vary in time.

• Resolving this bilinearity is a quintessential step in the controller synthesis
process.

• Carries over throughout the course in various generalizations

• The resolution is quite simple and elegant.



An Equivalent LMI for Static State-Feedback

• To convexify the problem, we use a change of variables.

Problem 1: Find X > 0,K :

X(A+BK) + (A+BK)TX < 0

Theorem 21 (Peres).

(A,B) is static-state-feedback stabilizable if and only if there exists some P > 0
and Z such that

AP + PAT +BZ + ZTBT < 0

with u(t) = ZP−1x(t).

Proof.
Suppose Y > 0 is a solution to Problem 1. Let X = Y −1 > 0. Then

XA+ATX = X(AX−1 +X−1AT )X = X(AY + Y AT )X < 0

Conclusion: If V (x) = xTPx proves stability of ẋ = Ax,
• Then V (x) = xTP−1x proves stability of ẋ = ATx.
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• Then V (x) = xTP−1x proves stability of ẋ = ATx.
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An Equivalent LMI for Static State-Feedback

• A and AT have the same eigenvalues

• This transformation A→ AT is sometimes referred to as a duality
transformation



Controllers for D-stability

Then we have an LMI which gives us a controller for D-stabilization

Lemma 22 (An LMI for D-Stabilization).

Suppose there exists X > 0 and Z such that[
−rP AP +BZ

(AP +BZ)T −rP

]
< 0,

AP +BZ + (AP +BZ)T + 2αP < 0, and
[

AP +BZ + (AP +BZ)T c(AP +BZ − (AP +BZ)T )
c((AP +BZ)T − (AP +BZ)) AP +BZ + (AP +BZ)T

]
< 0

Then if K = ZP−1, the pole locations, z ∈ C of A+BK satisfy |x| ≤ r,
Rex ≤ −α and z + z∗ ≤ −c|z − z∗|.
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Controllers for D-stability

• Again, we use the fact that A and AT have the same eigenvalues

• LMIs are particularly useful in that they allow one to directly and
sequentially impose constraints on the variables by combining different
LMI constraints into a single LMI.

• So we can add closed-loop eigenvalue constraints.

• Or robustness constraints.

• However, this is limited by the variable substitution process Z = KQ and
P = Q−1.

• Old variables K, P must not appear anywhere in the LMI.



The Discrete-Time Stabilization Problem

Now consider the Schur Stability condition:

(A+BK)TP (A+BK)− P < 0

Pre- and Post-multiplying by P−1 shows this matrix inequality is equivalent to

P−1 − P−1(A+BK)TP (A+BK)P−1 > 0

Applying the Schur Complement, this matrix inequality is equivalent to
[

P−1 (A+BK)P−1

P−1(A+BK)T P−1

]
> 0

Using the change of variables X = P−1 and Z = KX, we get an LMI:

Lemma 23.

Suppose there exists some X > 0 and Z such that

[
X AX +BZ

(AX +BZ)T X

]
> 0

then if K = ZX−1, the closed-loop system matrix (A+BK) is Schur.
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Observers

Suppose we have designed a controller

u(t) = Fx(t)

but we can only measure y(t) = Cx(t)!

Question: How to find x(t)?
• If (C,A) observable, then we can observe y(t) on t ∈ [t, t+ T ].

I But by then its too late!
I we need x(t) in real time!

Definition 24.

An Observer, is an Artificial Dynamical System whose output tracks x(t).

Suppose we want to observe the following system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Lets assume the observer is state-space
• What are our inputs and output?
• What is the dimension of the system?
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The Luenberger Observer

For now, we consider a special kind of observers, parameterized by the matrix L

ż(t) = (A+ LC)z(t)− Ly(t) + (B + LD)u(t)

= Az(t) +Bu(t)︸ ︷︷ ︸
Propagate estimate

+L(Cz(t) +Du(t)︸ ︷︷ ︸
Predicted Output

− y(t)︸︷︷︸
Actual Output

)

︸ ︷︷ ︸
Correction Term

x̂(t) = z(t)

Now define e(t) = x̂(t)− x(t) and the error dynamics simplify to

ė(t) = (A+ LC)e(t)

Thus the criterion for convergence is A+ LC Hurwitz.

Question Can we choose L such that A+ LC is Hurwitz?
Similar to choosing A+BF .
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The Luenberger Observer

• The estimator state is itself the estimate of the state.



An LMI for Observer Synthesis
Question: How to compute L?
• The eigenvalues of A+ LC and (A+ LC)T = AT + CTLT are the same.
• This is the same problem as controller design!

Theorem 25.

There exists a K such that A+BK is stable if and only if there exists some
P > 0 and Z such that

AP + PAT +BZ + ZTBT < 0,

where K = ZP−1.

Theorem 26.

There exists an L such that A+ LC is stable if and only if there exists some
P > 0 and Z such that

ATP + PA+ CTZ + ZTC < 0,

where L = P−1ZT .
So now we know how to design an Luenberger observer.
• Also called an estimator

The error dynamics will be dictated by the eigenvalues of A+ LC.
• generally a good idea for the observer to converge faster than the plant.
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Observer-Based Controllers

Summary: What do we know?
• How to design a controller which uses the full state.
• How to design an observer which converges to the full state.

Question: Is the combined system stable?
• We know the error dynamics converge.
• Lets look at the coupled dynamics.

Proposition 1.

The system defined by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

u(t) = Fx̂(t)

˙̂x(t) = (A+ LC +BF + LDF ) x̂(t)− Ly(t)

has eigenvalues equal to that of A+ LC and A+BF .

Note we have reduced the dependence on u(t).
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Observer-Based Controllers

The proof is relatively easy

Proof.

The state dynamics are
ẋ(t) = Ax(t) +BFx̂(t)

Rewrite the estimation dynamics as

˙̂x(t) = (A+ LC +BF + LDF ) x̂(t)− Ly(t)

= (A+ LC) x̂(t) + (B + LD)Fx̂(t)− LCx(t)− LDu(t)

= (A+ LC) x̂(t) + (B + LD)u(t)− LCx(t)− LDu(t)

= (A+ LC) x̂(t) +Bu(t)− LCx(t)

= (A+ LC +BF ) x̂(t)− LCx(t)

In state-space form, we get

[
ẋ(t)
˙̂x(t)

]
=

[
A BF
−LC A+ LC +BF

] [
x(t)
x̂(t)

]
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Observer-Based Controllers

Proof.

[
ẋ(t)
˙̂x(t)

]
=

[
A BF
−LC A+ LC +BF

] [
x(t)
x̂(t)

]

Use the similarity transform T = T−1 =

[
I 0
I −I

]
.

TĀT−1 =

[
I 0
I −I

] [
A BF
−LC A+ LC +BF

] [
I 0
I −I

]

=

[
I 0
I −I

] [
A+BF −BF
A+BF −(A+ LC +BF )

]

=

[
A+BF −BF

0 A+ LC

]

which has eigenvalues A+ LC and A+BF .

Eigenvalues are invariant under similarity transforms.
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]
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I −I
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−LC A+ LC +BF
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I −I

]

=

[
I 0
I −I

] [
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]

=

[
A+BF −BF

0 A+ LC

]

which has eigenvalues A+ LC and A+BF .
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Observer-Based Controllers

Basically, we just change the states to x and e.



An LMI for Observer D-Stability

• Use the Controller Synthesis LMI to choose K.

• Then use the following LMI to choose L.

• If both A+ LC and A+BK satisfy the D-stability
condition, then the eigenvalues of the close-loop
system will as well.

Lemma 27 (An LMI for D-Observer Design).

Suppose there exists X > 0 and Z such that[
−rP (PA+ ZC)T

PA+ ZC −rP

]
< 0,

(PA+ ZC)T + PA+ ZC + 2αP < 0, and
[

((PA+ ZC)T + PA+ ZC) c((PA+ ZC)T − (PA+ ZC))
c(PA+ ZC − (PA+ ZC)T ) ((PA+ ZC)T + PA+ ZC)

]
< 0

Then if L = P−1Z, the pole locations, z ∈ C of A+ LC satisfy |x| ≤ r,
Rex ≤ −α and z + z∗ ≤ −c|z − z∗|.
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One and Two-Step Discrete-Time Observers

x̂k+1 = Ax̂k +Buk + L(Cx̂k +Duk − yk)

This gives error (ek = xk − x̂k) dynamics

ek+1 = (A+ LC)ek

So the Problem is exactly the same as for the continuous-time case.

New Problem: Feedback at step k doesn’t include the latest measurements yk.
Instead take the output from the previous estimator and propagate it forward

x̄k = Ax̂k−1 +Buk−1, (Current State Estimate w/o update)

x̂k = x̄k + L(Cx̄k +Duk − yk)

Eliminating x̂, we get the Current State Estimator!

x̄k+1 = Ax̄k +Buk +AL(Cx̄k +Duk − yk)

The error dynamics then become

ek+1 = (A+ LCA)ek

This is not a more difficult problem to solve (replace C with CA)
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One and Two-Step Discrete-Time Observers

• The big difference is that in the 2-step case, we first propagate the
estimate, then do the correction.

• This means the propagation step uses the previous input and state, but
the correction term uses the current input and updated state estimate.



H∞ - A Space of Bounded Analytic Functions

Definition 28.

A function Ĝ : C̄+ → Cn×m is in H∞ if

1. Ĝ(s) is analytic on the CRHP, C+.

2. lim
σ→0+

Ĝ(σ + ıω) = Ĝ(ıω)

3. sup
s∈C+

σ̄(Ĝ(s)) <∞

• H∞ is a Banach Space with norm

‖Ĝ‖H∞ = ess sup
ω∈R

σ̄(Ĝ(ıω))
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H∞ - The space of “Transfer Functions”

From Paley-Wiener, if G = Λ−1MĜΛ

Theorem 29.

‖G‖L(L2) = ‖MĜ‖L(H2) = ‖Ĝ‖H∞

The Gain of the system G can be calculated as ‖Ĝ‖H∞
• This is the motivation for H∞ control

• minimize supu
‖Gu‖L2

‖u‖L2
.

I minimize maximum energy of the output.

Conclusion: H∞ provides a complete parametrization of the space of causal
bounded linear time-invariant operators.
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H∞ - The space of “Transfer Functions”

• Λ is the Laplace Transform

• G is the I/O system on L2

• Ĝ ∈ H∞ is the transfer function

• MĜ is the multiplication operator on L̂2



The KYP Lemma (AKA: The Bounded Real Lemma)

The most important theorem in this class.

Lemma 30.

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ‖G‖H∞ ≤ γ.

• There exists a X > 0 such that
[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

Can be used to calculate the H∞-norm of a system
• Originally used to solve LMI’s using graphs. (Before Computers)
• Now used directly instead of graphical methods like Bode.

The feasibility constraints are linear
• Can be combined with other methods.
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The KYP Lemma

Proof.

We will only show that ii) implies i). The other direction requires the
Hamiltonian, which we have not discussed.

• We will show that if y = Gu, then ‖y‖L2 ≤ γ‖u‖L2 .

• From the 1 x 1 block of the LMI, we know that ATX +XA < 0, which
means A is Hurwitz.

• Because the inequality is strict, there exists some ε > 0 such that

[
ATX +XA XB

BTX −(γ − ε)I

]
+

1

γ

[
CT

DT

] [
C D

]

=

[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
+

[
0 0
0 εI

]
< 0

• Let y = Gu. Then the state-space representation is

y(t) = Cx(t) +Du(t)

ẋ(t) = Ax(t) +Bu(t) x(0) = 0
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The KYP Lemma

Proof.
• Let V (x) = xTXx. Then the LMI implies

[
x(t)
u(t)

]T [[
ATX +XA XB

BTX −(γ − ε)I

]
+

1

γ

[
CT

DT

] [
C D

]
] [
x(t)
u(t)

]

=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ε)I

] [
x
u

]
+

1

γ

[
x
u

]T [
CT

DT

] [
C D

] [x
u

]

=

[
x
u

]T [
ATX +XA XB

BTX −(γ − ε)I

] [
x
u

]
+

1

γ
yT y

= xT (ATX +XA)x+ xTXBu+ uTBTXx− (γ − ε)uTu+
1

γ
yT y

= (Ax+Bu)TXx+ xTX(Ax+Bu)− (γ − ε)uTu+
1

γ
yT y

= ẋ(t)TXx(t) + x(t)TXẋ(t)− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2

= V̇ (x(t))− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2 < 0
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The KYP Lemma

Proof.

• Now we have V̇ (x(t))− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2 < 0

• Integrating in time, we get

∫ T

0

(
V̇ (x(t))− (γ − ε)‖u(t)‖2 +

1

γ
‖y(t)‖2

)
dt

= V (x(T ))− V (x(0))− (γ − ε)
∫ T

0

‖u(t)‖2dt+
1

γ

∫ T

0

‖y(t)‖2
)
dt < 0

• Because A is Hurwitz, limt→∞ x(t) = 0.

• Hence limt→∞ V (x(t)) = 0.

• Likewise, because x(0) = 0, we have V (x(0)) = 0.
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The KYP Lemma

Proof.

• Since V (x(0)) = V (x(∞)) = 0,

lim
T→∞

[
V̇ (x(T ))− V̇ (x(0))− (γ − ε)

∫ T

0

‖u(t)‖2dt+
1

γ

∫ T

0

‖y(t)‖2dt
]

= 0− 0− (γ − ε)
∫ ∞

0

‖u(t)‖2dt+
1

γ

∫ ∞

0

‖y(t)‖2dt

= −(γ − ε)‖u‖2L2
+

1

γ
‖y‖2L2

dt < 0

• Thus
‖y‖2L2

dt < (γ2 − εγ)‖u‖2L2

• By definition, this means ‖G‖2H∞ ≤ (γ2 − εγ) < γ2 or

‖G‖H∞ < γ
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Schur Complement

The KYP condition is
[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

Recall the Schur Complement

Theorem 31 (Schur Complement).

For any S ∈ Sn, Q ∈ Sm and R ∈ Rn×m, the following are equivalent.

1.

[
M R
RT Q

]
< 0

2. Q < 0 and M −RQ−1RT < 0

In this case, let Q = − 1
γ I < 0,

M =

[
ATX +XA XB

BTX −γI

]
R =

[
C D

]T

Note we are making the LMI Larger.
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H∞-Optimal Control via Schur Complement?

The Schur Complement says that

[
ATX +XA XB

BTX −γI

]
+

1

γ

[
CT

DT

] [
C D

]
< 0

if and only if 

ATX +XA XB CT

BTX −γI DT

C D −γI


 < 0

This leads to the
Full-State Feedback Condition




(A+B2F )TX +X(A+B2F ) XB1 (C1 +D12F )T

BT1 X −γI DT
11

(C1 +D12F ) D11 −γI


 < 0

which is now bilinear in X and F .
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The Positive Real Lemma
A Passivity Condition

A Variation on the KYP lemma is the positive-real lemma

Lemma 32.

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• G is passive. i.e. (〈u,Gu〉L2 ≥ 0).

• There exists a P > 0 such that
[
ATP + PA PB − CT
BTP − C −DT −D

]
≤ 0
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An LMI for the H2-norm of a System

Theorem 33.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ‖P̂‖2H2
< γ.

2. There exists some X > 0 such that

traceCXCT < γ

AX +XAT +BBT < 0
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An LMI for the H2-norm of a System

• The H2 norm of a system is conceptually identical to the Frobenius norm
on a matrix.

• Minimizing the H2-norm using full-state feedback is the LQR problem.

• However, minimizing the H2 norm reflects a view of the system based on
representation and not operation. That is, the controller minimizes the
size of the representation of the system as opposed to the performance of
the system.

• Like judging a book based on how many words it has.



2-input 2-output Framework
12 - 2 LFTs and stability 2001.11.07.04

2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

We introduce the control framework by separating internal signals from external
signals.
Output Signals:
• z: Output to be controlled/minimized

I Regulated output

• y: Output used by the controller
I Must be measured in real-time by sensor
I May replicate signals from regulated output
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2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

Input Signals:
• w: Disturbance, Tracking Signal, etc.

I exogenous input

• u: Output from controller
I Input to actuator
I Not related to external input
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The Optimal Control Framework

The controller closes the loop from y to u.

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

For a linear system P , we have 4 subsystems.
[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]

All Pij are MIMO

P11 : w 7→ z P12 : u 7→ z

P21 : w 7→ y P22 : u 7→ y
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The Regulator

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0






w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D




12 - 4 LFTs and stability 2001.11.07.04

Example: the regulator

If we define

z2 = u q = w1 + u

z1 = yp y = r + w2

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K
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z u2 =

++
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The plant P is given by

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
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

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P0 1 P0





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u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting
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z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
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C D I D



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Example: the regulator
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Example: the regulator

The reconfigured plant P is given by



z1(t)
z2(t)
y(t)


 =



P0 0 P0

0 0 I
P0 I P0





w1(t)
w2(t)
u(t)




If P0 = (A,B,C,D), then

P =




A B 0 B

C
0
C

D 0 D
0 0 I
D I D



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Tracking Control
12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−r = tracking input w2 = nproc w1 = r

e = tracking error w3 = nsensor u = u

nproc = process noise z1 = e y1 = r

nsensor = sensor noise z2 = u y2 = yp
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Tracking Control

12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−

P =




I −P0 0 −P0

0 0 0 I
I 0 0 0
0 P0 I P0




z1 = r − P0(nproc + u)

z2 = u

y1 = r

y2 = w3 + P0(nproc + u)
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Linear Fractional Transformation

Close the loop

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

Plant: [
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

C2

D11 D12

D21 D22




Controller:
u = Ky where K =

[
AK BK
CK DK

]
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Linear Fractional Transformation

z = P11w + P12u

y = P21w + P22u

u = Ky

Solving for u,
u = KP21w +KP22u

Thus

(I −KP22)u = KP21w

u = (I −KP22)−1KP21w

Now we solve for z:

z =
[
P11 + P12(I −KP22)−1KP21

]
w
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Linear Fractional Transformation

This expression is called the Linear Fractional Transformation of (P,K), denoted

S(P,K) := P11 + P12(I −KP22)−1KP21

AKA: Lower Star Product

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with
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where P̂ =



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


and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21
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Closed-Loop Dynamics

In state-space format:

[
ẋ(t)
ẋK(t)

]
=

[
A 0
0 AK

] [
x(t)
xK(t)

]
+

[
B2 0
0 BK

] [
u(t)
y(t)

]
+

[
B1

0

]
w(t)

z(t) =
[
C1 0

] [ x(t)
xK(t)

]
+
[
D12 0

] [u(t)
y(t)

]
+D11w(t)

From
u(t) = DKy(t) + CKxK(t)

y(t) = D22u(t) + C2x(t) +D21w(t)

We have [
I −DK

−D22 I

] [
u(t)
y(t)

]
=

[
0 CK
C2 0

] [
x(t)
xK(t)

]
+

[
0
D21

]
w(t)

Because the rest is state-space, the interconnection is well-posed if and only if

the matrix

[
I −DK

−D22 I

]
is invertible.
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Optimal Control

Choose K to minimize

‖P11 + P12(I −KP22)−1KP21‖H∞

Equivalently choose

[
AK BK
CK DK

]
to minimize

∥∥∥∥∥∥∥∥




[
A 0
0 AK

]
+

[
B2 0
0 BK

] [
I −DK
−D22 I

]−1 [
0 CK
C2 0

] B1 +B2DKQD21

BKQD21[
C1 0

]
+
[
D12 0

] [ I −DK
−D22 I

]−1 [
0 CK
C2 0

]
D11 +D12DKQD21




∥∥∥∥∥∥∥∥
H∞

where Q = (I −D22DK)−1.

In either case, the problem is Nonlinear.
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Optimal Full-State Feedback Control

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

For the full-state feedback case, we consider a controller of the form

u(t) = Fx(t)

Controller:
u = Ky where K =

[
0 0
0 F

]

Plant:
[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P =




A B1 B2

C1

I
D11 D12

0 0



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Optimal Full-State Feedback Control

Thus the closed-loop state-space representation is

S(P̂ , K̂) =

[
A+B2F B1

C1 +D12F D11

]

By the KYP lemma, ‖S(P̂ , K̂)‖H∞ < γ if and only if there exists some X > 0
such that

[
(A+B2F )TX +X(A+B2F ) XB1

BT1 X −γI

]

+
1

γ

[
(C1 +D12F )T

DT
11

] [
(C1 +D12F ) D11

]
< 0

This is a matrix inequality, but is nonlinear

• Quadratic (Not Bilinear)

• May NOT apply variable substitution trick.
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Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of
this LMI.

Lemma 34 (KYP Dual).

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ‖G‖H∞ ≤ γ.

• There exists a Y > 0 such that


Y AT +AY B Y CT

BT −γI DT

CY D −γI


 < 0
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Dual KYP Lemma

To apply the variable substitution trick, we must also construct the dual form of
this LMI.

Lemma 34 (KYP Dual).

Suppose

Ĝ(s) =

[
A B
C D

]
.

Then the following are equivalent.

• ‖G‖H∞ ≤ γ.

• There exists a Y > 0 such that


Y AT +AY B Y CT

BT −γI DT

CY D −γI


 < 0

2
0

1
9

-0
6

-0
3

Lecture 01
Optimal Control Framework

Dual KYP Lemma

Simply multiply the Primal KYP on the left and right byP−1 0 0
0 I 0
0 0 I


and let Y = P−1



An LMI for H∞-Optimal Full-State Feedback Control

We can now apply this result to the state-feedback problem.

Theorem 35.

The following are equivalent:

• There exists an F such that ‖S(P,K(0, 0, 0, F ))‖H∞ ≤ γ.

• There exist Y > 0 and Z such that


Y AT +AY + ZTBT2 +B2Z B1 Y CT1 + ZTDT

12

BT1 −γI DT
11

C1Y +D12Z D11 −γI


 < 0

Then F = ZY −1.
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An LMI for H∞-Optimal Output Feedback Control

Theorem 36.

The following are equivalent.

• There exists a K̂ =

[
AK BK
CK DK

]
such that ‖S(K,P )‖H∞ < γ.

• There exist X1, Y1, An, Bn, Cn, Dn such that

[
X1 I
I Y1

]
> 0



AY1+Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1+BnC2+CT2 B
T
n ∗T ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI


<0

Moreover,[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−1
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An LMI for H∞-Optimal Output Feedback Control

Theorem 36.

The following are equivalent.

• There exists a K̂ =

[
AK BK
CK DK

]
such that ‖S(K,P )‖H∞ < γ.

• There exist X1, Y1, An, Bn, Cn, Dn such that

[
X1 I
I Y1

]
> 0



AY1+Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1+BnC2+CT2 B
T
n ∗T ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −γI
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γI


<0

Moreover,[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−12
0

1
9

-0
6

-0
3

Lecture 01
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An LMI for H∞-Optimal Output Feedback Control

This LMI requires

• Two changes of variables

• A Half-Dual Transformation

• See slides online for complete proof.



Conclusion

Then, we construct our controller using

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK .

where

[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

.

and where X2 and Y2 are any matrices which satisfy X2Y
T
2 = I −X1Y1.

• e.g. Let Y2 = I and X2 = I −X1Y1.

• The optimal controller is NOT uniquely defined.

• Don’t forget to check invertibility of I −D22DK
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Conclusion

The H∞-optimal controller is a dynamic system.

• Transfer Function K̂(s) =

[
AK BK
CK DK

]

Minimizes the effect of external input (w) on external output (z).

‖z‖L2
≤ ‖S(P,K)‖H∞‖w‖L2

• Minimum Energy Gain
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H2-optimal control
Full-State Feedback

Lets consider the full-state feedback problem

Ĝ(s) =




A B1 B2

C1

I
0 D12

0 0




• D12 is the weight on control effort.

• D11 = 0 is a feed-through term and must be 0.

• C2 = I as this is state-feedback.

K̂(s) =

[
0 0
0 K

]
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H2-optimal control
Full-State Feedback

Lets consider the full-state feedback problem

Ĝ(s) =




A B1 B2

C1

I
0 D12

0 0




• D12 is the weight on control effort.

• D11 = 0 is a feed-through term and must be 0.

• C2 = I as this is state-feedback.

K̂(s) =

[
0 0
0 K

]

2
0

1
9

-0
6

-0
3

Lecture 01
Optimal Control Framework

H2-optimal control

The H2-norm of a constant (D11) is ∞!!!



H2-optimal control

Applying the Schur Complement gives the alternative formulation convenient for
control.

Theorem 37.

Suppose P̂ (s) = C(sI −A)−1B. Then the following are equivalent.

1. A is Hurwitz and ‖P̂‖H2
< γ.

2. There exists some X,W > 0 such that

[
ATX +XA XB

BTX −γI

]
< 0,

[
X CT

C W

]
> 0, TraceW < γ2
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H2-optimal control
Full-State Feedback

Theorem 38.

The following are equivalent.

1. ‖S(K,P )‖H2 < γ.

2. K = ZX−1 for some Z and X > 0 where

[
A B2

] [X
Z

]
+
[
X ZT

] [AT
BT2

]
+B1B

T
1 < 0

[
X (C1X +D12Z)T

C1X +D12Z W

]
> 0

TraceW < γ2

Thus we can solve the H2-optimal static full-state feedback problem.
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H2-optimal control
Relationship to LQR

To solve the LQR problem using H2 optimal state-feedback control, let

• C1 =

[
Q

1
2

0

]

• D12 =

[
0

R
1
2

]

• B2 = B and B1 = I.
So that

S(P̂ , K̂) =

[
A+B2K B1

C1 +D12K D11

]
=



A+BK I

Q
1
2

R
1
2K

0




And solve the H2 full-state feedback problem. Then if

ẋ(t) = ACLx(t) = (A+BK)x(t) = Ax(t) +Bu(t)

u(t) = Kx(t), x(0) = x0

Then ∫ ∞

0

x(t)TQx(t) + u(t)TRu(t)dt = ‖x0‖2‖S(K,P )‖2H2
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H2-optimal output feedback control

Theorem 39 (Scherer, Gahinet).

The following are equivalent.

• There exists a K̂ =

[
AK BK
CK DK

]
such that ‖S(K,P )‖H2

< γ.

• There exist X1, Y1, Z,An, Bn, Cn, Dn such that

AY1 +Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1 +BnC2 +CT2 B
T
n ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −I


<0,




Y1 I ∗T
I X1 ∗T

C1Y1 +D12Cn C1 +D12DnC2 Z


 > 0,

D11 +D12DnD21 = 0, trace(Z) < γ2
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H2-optimal output feedback control

As before, the controller can be recovered as

[
AK2 BK2

CK2 DK2

]
=

[
X2 X1B2

0 I

]−1 [[
An Bn
Cn Dn

]
−
[
X1AY1 0

0 0

]] [
Y T2 0
C2Y1 I

]−1

for any full-rank X2 and Y2 such that[
X1 X2

XT
2 X3

]
=

[
Y1 Y2

Y T2 Y3

]−1

To find the actual controller, we use the identities:

DK = (I +DK2D22)−1DK2

BK = BK2(I −D22DK)

CK = (I −DKD22)CK2

AK = AK2 −BK(I −D22DK)−1D22CK
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An LMI for Mixed H2-H∞ optimal output feedback control

Theorem 40.

The following are equivalent.

• There exists a K =

[
AK BK
CK DK

]
such that ‖S(K,P )‖H2

< γ1 and

‖S(K,P )‖H∞ < γ2.

• There exist X1, Y1, Z,An, Bn, Cn, Dn such that

AY1+Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1+BnC2+CT2 B
T
n ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −I


<0,




Y1 I ∗T
I X1 ∗T

C1Y1 +D12Cn C1 +D12DnC2 Z


 > 0,

D11 +D12DnD21 = 0, trace(Z) < γ2
1



AY1+Y1A

T +B2Cn+CTnB
T
2 ∗T ∗T ∗T

AT +An + [B2DnC2]T X1A+ATX1+BnC2+CT2 B
T
n ∗T ∗T

[B1 +B2DnD21]T [X1B1 +BnD21]T −γ2I ∗T
C1Y1 +D12Cn C1 +D12DnC2 D11+D12DnD21 −γ2I


<0
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An LMI for the Kalman Filter! - Continuous Time

System:
ẋ = Ax+Bu+ w

y = Cx+ v

Filter: ˙̂x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂

Error: ė(t) = (A+ LC)e(t) + w(t) + Lv(t)

The Kalman Filter chooses L to minimize the cost J = E[eT e].

L = ΣCTV −1
2

where V1 = E[w(t)w(t)T] and V2 = E[v(t)v(t)T] and Σ satisfies

AΣ + ΣAT + V1 = ΣCTV −1
2 CΣ

If we choose u = Kx̂ where A+BK is stable,
• A+ LC is stable if system is observable (not detectable).
• Closed-Loop is stable by the separation principle (has Luenberger form).
• A Dual to the LQR problem. Replace (A,B,Q,R,K) with

(AT , CT , V1, V2, L
T )
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What is Uncertainty?
The Known Unknowns

CASE 1: External Disturbances
• The most benign source of uncertainty.
• Finite Energy (L2-norm bounded).
• H∞ optimal control minimizes the effect of these uncertainties.

nproc nsensorypu

P
0

K + +

Formulate the above as

y u

P0

P

K

n wproc 1=

nsensor = w2

z1 = yp

z u2 =

++
r q

The plant P is given by


z1
z2
y


 =



P0 0 P0

0 0 1
P0 1 P0






w1

w2

u




Suppose P0 is

ẋ = Ax +Bq

r = Cx +Dq

Substituting

z2 = u q = w1 + w2

z1 = r y = r + w2

leads to

P =




A B 0 B
C D 0 D
0 0 0 I
C D I D




12 - 4 LFTs and stability 2001.11.07.04

Example: the regulator

Benign Sources:

• Vibrations, Wind, 60 Hz noise

• Initial Conditions

• Sensor Noise

• Changes in Reference Signal

Not-So-Benign Sources:

• Higher-Order Dynamics

• Nonlinearity (Saturation)

• Delay

• Modeling Errors (Parametric vs. Structural)

• Model Reduction

• Logical Switching
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What is Uncertainty?
Parametric Uncertainty

There are Three Main Types of Parametric Uncertainty

ÿ(t) =
c

m
ẏ(t) +

k

m
y(t) =

F (t)

m

• Uncertainty in Parameters c, k,m

State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 

- 0- a-' 0 -20, 0 0 - 

0- a-l 0 -wm 0 0 

-k -e 1 0 Wk Wc 

1 0 0 0  0 0  

- k O O O  0 0  
- 0  --E 0 0 0 0 -  

Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 

Y3 

Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 

1228 

Multiplicative Uncertainty

• m = m0(1 + ηmδm)

• c = c0(1 + ηcδc)

• k = k0(1 + ηkδk)

Where δm, δc, δk are bounded.

Additive Uncertainty

• m = m0 + ηmδm
• c = c0 + ηcδc
• k = k0 + ηkδk

Where δm, δc, δk are bounded.

Polytopic Uncertainty

m
c
k


 ∈







m
c
k


 :



m
c
k


 =

∑

i

δi



mi

ci
ki


 ,

∑
i δi=1,

δi ≥ 0.





where
[
mi ci ki

]T
describe possible model parameters.

1

1

1

δ1

δ3

δ2

O
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What is Uncertainty?
Parametric Uncertainty

There are Three Main Types of Parametric Uncertainty

ÿ(t) =
c

m
ẏ(t) +

k

m
y(t) =

F (t)

m

• Uncertainty in Parameters c, k,m

State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 

- 0- a-' 0 -20, 0 0 - 

0- a-l 0 -wm 0 0 

-k -e 1 0 Wk Wc 

1 0 0 0  0 0  

- k O O O  0 0  
- 0  --E 0 0 0 0 -  

Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 

Y3 

Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 
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Multiplicative Uncertainty

• m = m0(1 + ηmδm)

• c = c0(1 + ηcδc)

• k = k0(1 + ηkδk)

Where δm, δc, δk are bounded.

Additive Uncertainty

• m = m0 + ηmδm
• c = c0 + ηcδc
• k = k0 + ηkδk

Where δm, δc, δk are bounded.

Polytopic Uncertainty

m
c
k


 ∈







m
c
k


 :



m
c
k


 =

∑

i

δi



mi

ci
ki


 ,

∑
i δi=1,

δi ≥ 0.





where
[
mi ci ki

]T
describe possible model parameters.

1

1

1

δ1

δ3

δ2

O

2
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1
9
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Lecture 01
Uncertainty and Robust Control

What is Uncertainty?

• Additive or multiplicative uncertainty arises from guessing and error
tolerances.

• Polytopic Uncertainty arises from multiple conflicting measurements or
operating points



Linear-Fractional Representation

The Nominal System, M :[
p
z

]
=

[
M11 M12

M21 M22

] [
q
w

]

Nominal System Representations:

ẋ(t)
z(t)
p(t)


 =



A B2 B1

C2 D22 D21

C1 D12 D11





x(t)
w(t)
q(t)




M11 =
[

A B1
C1 D11

]
,M12 =

[
A B2
C1 D12

]
,M21 =

[
A B1
C2 D21

]
,M22 =

[
A B2
C2 D22

]
.

Closed-Loop: Can be expressed using only matrices
[
ẋ(t)
z(t)

]
= S̄(P,∆)

[
x(t)
w(t)

]
= (P22 + P21(I −∆P11)−1∆P12)

[
x(t)
w(t)

]

[
Acl Bcl
Ccl Dcl

]
= S̄(P,∆) =

[
A B2

C2 D22

]
+

[
B1

D21

]
(I −∆D11)−1∆

[
C1 D12

]

ẋ(t) = (A+B1(I −∆D11)−1∆C1)x(t) + (B2 +B1(I −∆D11)−1∆D12)w(t)

z(t) = (C2 +D21(I −∆D11)−1∆C1)x(t) + (D22 +D21(I −∆D11)−1∆D12)w(t)
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Example of Parametric Uncertainty

Nominal System: P
[
ẋ1

ẋ2

]
=

[
0 m−1

0

−k0 −c0

] [
x1

x2

]
+

[
0
1

]
F (t) +

[
−η 0 0
0 ηk ηc

]
q(t)

p(t) =




0 m−1
0

−k0 0
0 −c0



[
x1(t)
x2(t)

]
+



−ηm 0 0

0 0 0
0 0 0


 q(t)

z(t) = x1(t)

State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 

- 0- a-' 0 -20, 0 0 - 

0- a-l 0 -wm 0 0 

-k -e 1 0 Wk Wc 

1 0 0 0  0 0  

- k O O O  0 0  
- 0  --E 0 0 0 0 -  

Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 

Y3 

Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 
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Uncertain System: ∆

q = ∆p =



δm 0 0
0 δk 0
0 0 δc


 p

Closed-Loop:



ẋ1

ẋ2

z(t)


 = (P22+P21(I−∆P11)−1∆P12)



x1(t)
x2(t)
F (t)




where
P22 =

[
A B2
C2 D22

]
, P21 =

[
B1
D21

]
, P12 = [C1 D12] , P11 = D11,

Questions:

• How to formulate the uncertainty matrix?

• What if the uncertainty is time-varying?
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Formulating the LFT
Consider the Example From Gu, Petkoz, Konstantinov

Recall:
State-Space Systems can be
represented in Block-Diagram
Form. e.g.

ẋ = Ax+Bu

y = Cx+Du

mẍ+ cẋ+ kx = F x(s) =
1

ms2 + cs+ k
u(s)

Lets consider how to do this problem in General with Block Diagrams.
Step 1: Isolate all the uncertain parameters:

102 8 Robust Control of a Mass-Damper-Spring System

Fig. 8.1. Mass-damper-spring system

Fig. 8.2. Block diagram of the mass-damper-spring system

In a realistic system, the three physical parameters m, c and k are not
known exactly. However, it can be assumed that their values are within certain,
known intervals. That is,

m = m(1 + pmδm), c = c(1 + pcδc), k = k(1 + pkδk)

where m = 3, c = 1, k = 2 are the so-called nominal values of m, c and k. pm,
pc and pk and δm, δc and δk represent the possible (relative) perturbations on
these three parameters. In the present study, we let pm = 0.4, pc = 0.2, pk =
0.3 and −1 ≤ δm, δc, δk ≤ 1. Note that this represents up to 40% uncertainty
in the mass, 20% uncertainty in the damping coefficient and 30% uncertainty
in the spring stiffness.

The three constant blocks in Figure 8.2 can be replaced by block diagrams
in terms of m, pm, δm, etc., in a unified approach. We note that the quantity
1
m may be represented as a linear fractional transformation (LFT) in δm

1

m
=

1

m(1 + pmδm)
=

1

m
− pm

m
δm(1 + pmδm)−1

= FU (Mmi, δm)

with

Mmi =

[
−pm

1
m

−pm
1
m

]
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Formulating the LFT

Step 2: Rewrite all the uncertain blocks as LFTs

8.1 System Model 103

Similarly, the parameter c = c(1 + pcδc) may be represented as an upper
LFT in δc

c = FU (Mc, δc)

with

Mc =

[
0 c
pc c

]

and the parameter k = k(1 + pkδk) may be represented as an upper LFT in
δk,

k = FU (Mk, δk)

with

Mk =

[
0 k

pk k

]

All these LFTs are depicted by block diagrams in Figure 8.3.

Fig. 8.3. Representation of uncertain parameters as LFTs

To further represent the system model as an LFT of the unknown, real
perturbations δm, δc and δk, we use the block diagrams in Figure 8.3 and
denote the inputs and outputs of δm, δc and δk as ym, yc, yk and um, uc, uk,
respectively, as shown in Figure 8.4.

With the above substitutions, the equations relating all “inputs”to corre-
sponding “outputs”around these perturbed parameters can now be obtained
as [

ym
ẍ

]
=

[
−pm

1
m

−pm
1
m

] [
um

u− vc − vk

]

[
yc
vc

]
=

[
0 c
pc c

] [
uc

ẋ

]

[
yk
vk

]
=

[
0 k

pk k

] [
uk

x

]

um = δmym
uc = δcyc
uk = δkyk

For the 1
m0(1+ηmδm) Term:

1

m
=

1

m0(1 + ηmδm)
=

1

m0
− ηm
m0

(1 + ηmδm)−1 = S̄(Mm, δm)

where Mm =

[−ηm 1
m0

−ηm 1
m0

]
.

For the c0(1 + ηcδc) and k0(1 + ηkδk) Terms:

c = c0(1 + ηcδc) = S̄(Mc, δc) Mc =

[
0 c0
ηc c0

]

k = k0(1 + ηkδk) = S̄(Mk, δc) Mk =

[
0 k0

ηk k0

]
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Formulating the LFT

Step 3: Write down all your equations!104 8 Robust Control of a Mass-Damper-Spring System

Fig. 8.4. Block diagram of the mass-damper-spring system with uncertain param-
eters

Let us set
x1 = x, x2 = ẋ = ẋ1, y = x1

such that
ẋ2 = ẍ = ẍ1

As a result, we obtain the following equations

ẋ1 = x2

ẋ2 = −pmum + 1
m (u− vc − vk)

ym = −pmum + 1
m (u− vc − vk)

yc = cx2

yk = kx1

vc = pcuc + cx2

vk = pkuk + kx1

y = x1

um = δmym
uc = δcyc
uk = δkyk

By eliminating the variables vc and vk, the equations governing the system
dynamic behaviour are given by

Set x1 = x, x2 = ẋ, z = x1 so ẍ = ẋ2.
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Formulating the LFT

ẋ1 = x2

ẋ2 = −ηmum +
1

m0
(w − vc − vk)

ym = −ηmum +
1

m0
(w − vc − vk)

yc = c0x2

yk = k0x1

vc = ηcuc + c0x2, vk = ηkuk + k0x1

z = x1

um = δmym, uc = δcyc, uk = δkyk

104 8 Robust Control of a Mass-Damper-Spring System

Fig. 8.4. Block diagram of the mass-damper-spring system with uncertain param-
eters

Let us set
x1 = x, x2 = ẋ = ẋ1, y = x1

such that
ẋ2 = ẍ = ẍ1

As a result, we obtain the following equations

ẋ1 = x2

ẋ2 = −pmum + 1
m (u− vc − vk)

ym = −pmum + 1
m (u− vc − vk)

yc = cx2

yk = kx1

vc = pcuc + cx2

vk = pkuk + kx1

y = x1

um = δmym
uc = δcyc
uk = δkyk

By eliminating the variables vc and vk, the equations governing the system
dynamic behaviour are given by

Eliminating vc and vk, we get



ẋ1
ẋ2
ym
yc
yk
z




=




0 1

− k0
m0

− c0
m0

0 0 0
−ηm − ηc

m0
− ηk
m0

0
1
m0

− k0
m0

− c0
m0

0 c0
k0 0

−ηm − ηc
m0

− ηk
m0

0 0 0
0 0 0

1
m0

0
0

1 0 0 0 0 0







x1
x2
um
uc
uk
w




u =

[
δm 0 0
0 δk 0
0 0 δc

]
y
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Alternatives to the LFT
Additive Affine Time-Varying Interval and Polytopic Uncertainty

• Time-Varying Uncertainty can cause problems
• Because dealing with Structured Uncertainty is difficult, we often look for

alternative representations.
Consider the following form of time-varying uncertainty

ẋ(t) = (A0 + ∆A(t))x(t)

where
∆A(t) = A1δ1(t) + · · ·+Akδk(t)

where δ(t) lies in either the intervals

δi(t) ∈ [δ−i , δ
+
i ]

or the simplex

δ(t) ∈ {α :
∑

i

αi = 1, αi ≥ 0}

For convenience, we denote this Convex Hull as

Co(A1, · · · , Ak) :=

{∑

i

Aiαi : αi ≥ 0,
∑

i

αi = 1

}
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Alternatives to the LFT
Additive Affine Time-Varying Interval and Polytopic Uncertainty

For example,

mẍ+ cẋ+ kx = F x(s) =
1

ms2 + cs+ k
u(s)

Define x1 = y and x2 = mẏ
[
ẋ1

ẋ2

]
=

[
0 m−1

−k − c
m

] [
x1

x2

]
+

[
0
1

]
F

Then if m ∈ [m−,m+], c ∈ [c−, c+], k ∈ [k−, k+], then

m−1 ∈ [
1

m+
,

1

m−
]

c

m
∈ [

c−

m+
,
c+

m−
]

Note: This doesn’t always work!
• e.g. if in addition there were a c coefficient (appearing w/o 1/m).
• Need a change of parameters which becomes affine in the parameters.
• Then you are stuck with the LFT.
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Discrete-Time Case

All frameworks are readily adapted to the Discrete-Time Case:
LFT Framework: [

xk+1

zk

]
= S̄(P,∆)

[
xk
wk

]

Alternative Framework:

xk+1 = (A0 + ∆Ak)xk + (B0 + ∆Bk)uk

where
∆Ak = A1δ1,k + · · ·+AkδK,k

where δk lies in either the intervals

δi,k ∈ [δ−i , δ
+
i ]

or the simplex

δk ∈ {α :
∑

i

αi = 1, αi ≥ 0}
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Types of Uncertainty

To Summarize, we have many choices for our uncertainty Set, ∆
• Unstructured, Dynamic, norm-bounded:

∆ := {∆ ∈ L(L2) : ‖∆‖H∞ < 1}
• Structured, Static, norm-bounded:

∆ := {diag(δ1, · · · , δK ,∆1, · · ·∆N ) : |δi| < 1, σ̄(∆i) < 1}
• Structured, Dynamic, norm-bounded:

∆ := {∆1,∆2, · · · ∈ L(L2) : ‖∆i‖H∞ < 1}
• Unstructured, Parametric, norm-bounded:

∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}
• Parametric, Polytopic:

∆ := {∆ ∈ Rn×n : ∆ =
∑

i

αiHi, αi ≥ 0,
∑

i

αi = 1}
• Parametric, Interval:

∆ :=

{∑

i

∆iδi : δi ∈ [δ−i , δ
+
i ]

}

Each of these can be Time-Varying or Time-Invariant!
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Definitions: Use Robust Stability for Static Uncertainty

Definition 41.

The system
ẋ(t) = (A0 + ∆(t))x(t)

is Robustly Stable over ∆ if A0 + ∆ is Hurwitz for all ∆ ∈∆.

Note that Robust Stability DOES NOT imply stability if ∆(t) is time-varying.
• It implies that for any ∆ ∈∆, there exists a P (∆) > 0 such that

(A+ ∆)TP (∆) + P (∆)(A+ ∆) < 0 for all ∆ ∈∆

• For a fixed ∆, this implies stability using Lyapunov function
V (x) = xTP (∆)x.

• Does not imply stability for TV ∆ because if V (x, t) = xTP (∆(t))x,

d

dt
V (x(t), t) = x(t)T

(
(A+ ∆(t))TP (∆(t)) + P (∆(t))(A+ ∆(t))

)
x(t)

+ x(t)T
(
d

dt
P (∆(t))

)
x(t)

≤ x(t)T
(
d

dt
P (∆(t))

)
x(t)
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Definitions: Use Quadratic Stability for Static Uncertainty

Definition 42.

The system
ẋ(t) = (A0 + ∆(t))x(t)

is Quadratically Stable over ∆ if there exists a P > 0 such that

(A+ ∆)TP + P (A+ ∆) < 0 for all ∆ ∈∆.

Quadratic Stability Implies Stability of trajectories for any ∆(t) with
∆(t) ∈∆ for all t ≥ 0.

• Use the Lyapunov function V (x) = xTPx.

d

dt
V (x(t)) = x(t)T ((A+ ∆(t))TP + P (A+ ∆(t))x(t) < 0

Counterintuitive:

• Robust Stability does not imply stability!

• Stability does not imply quadratic stability!
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Definitions: Use Quadratic Stability for Static Uncertainty

Definition 42.

The system
ẋ(t) = (A0 + ∆(t))x(t)

is Quadratically Stable over ∆ if there exists a P > 0 such that

(A+ ∆)TP + P (A+ ∆) < 0 for all ∆ ∈∆.

Quadratic Stability Implies Stability of trajectories for any ∆(t) with
∆(t) ∈∆ for all t ≥ 0.

• Use the Lyapunov function V (x) = xTPx.

d

dt
V (x(t)) = x(t)T ((A+ ∆(t))TP + P (A+ ∆(t))x(t) < 0

Counterintuitive:

• Robust Stability does not imply stability!

• Stability does not imply quadratic stability!

2
0

1
9

-0
6

-0
3

Lecture 01
LMIs for Robust Stability

Definitions: Use Quadratic Stability for Static
Uncertainty

Quadratic Stability refers to the METHOD, rather than the system property



An LMI for Polytopic Quadratic Stability

Definition 43.

The pair (A+ ∆,∆) is Quadratically Stable over ∆ if there exists a P > 0
such that

(A+ ∆)TP + P (A+ ∆) < 0 for all ∆ ∈∆.

Theorem 44.

(A+ ∆,∆) is quadratically stable over ∆ := Co(A1, · · · , Ak) if and only if
there exists a P > 0 such that

(A+Ai)
TP + P (A+Ai) < 0 for i = 1, · · · , k

The theorem says the LMI only needs to hold at the
EXTREMAL POINTS or VERTICES of the polytope.

• In Fact, Quadratic Stability MUST be expressed as an LMI

• There is NO Ricatti Eqn. Equivalent.

1

1

1

δ1

δ3

δ2

O
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An LMI for Interval Quadratic Stability

Recall the system with Affine Time-Varying uncertainty.

ẋ(t) = (A0 + ∆(t))x(t)
where

∆(t) = A1δ1(t) + · · ·+Akδk(t)

where δi(t) ∈ [δ−i , δ
+
i ]. Note: δ(t) lies in a hypercube.

Interval Stability is a Kind of Polytopic Uncertainty.

The vertices of the hypercube define the vertices of the uncertainty set

V :=

{∑

i

Ai

(
1− (−1)di

2
δ−i +

1 + (−1)di

2
δ+
i

)
, di ∈ {0, 1}

}

Define the corner values: Ii,j :=
(

1−(−1)j

2 δ−i + 1+(−1)j

2 δ+
i

)

Theorem 45 (Quadratic Stability using 2k LMI constraints!).

(A+ ∆,∆) is quadratically stable over ∆ := Co(V ) if and only if there exists a
P > 0 such that(

A+
∑

i

AiIi,vi

)T
P + P

(
A+

∑

i

AiIi,vi

)
< 0 for every v ∈ {0, 1}k
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An LMI for Quadratic Polytopic Stabilization

Controller Synthesis is a simple application of the previous theorem:

Theorem 46.

There exists a K such that

ẋ(t) = (A+ ∆A + (B + ∆B)K)x(t)

is quadratically stable for (∆A,∆B) ∈ Co((A1, B2), · · · , (Ak, Bk)) if and only
if there exists some P > 0 and Z such that

(A+Ai)P +P (A+Ai)
T + (B+Bi)Z +ZT (B+Bi)

T < 0 for i = 1, · · · k.

with K = ZP−1.

Note that here the controller doesn’t depend on ∆!

• If you want K to depend on ∆, the problem is harder.

• But this would require sensing ∆ in real-time.
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An LMI for Quadratic D-Stabilization

Lemma 47 (An LMI for Quadratic D-Stabilization).

Suppose there exists X > 0 and Z such that[
−rP AP +BZ

(AP +BZ)T −rP

]
+

[
0 AiP +BiZ

(AiP +BiZ)T 0

]
< 0,

AP +BZ + (AP +BZ)T +AiP +BiZ + (AiP +BiZ)T + 2αP < 0, and
[

AP +BZ + (AP +BZ)T c(AP +BZ − (AP +BZ)T )
c((AP +BZ)T − (AP +BZ)) AP +BZ + (AP +BZ)T

]

+

[
AiP +BiZ + (AiP +BiZ)T c(AiP +BiZ − (AiP +BiZ)T )

c((AiP +BiZ)T − (AiP +BiZ)) AiP +BiZ + (AiP +BiZ)T

]
< 0

for i = 1, · · · , k. Then if K = ZP−1, the pole locations, z ∈ C of
A(∆) +B(∆)K satisfy |x| ≤ r, Rex ≤ −α and z + z∗ ≤ −c|z − z∗| for all
∆ ∈ Co(∆1, · · · ,∆k).
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This is ridiculous

• Eigenvalues are undefined for TV systems

• The behaviour of the CL would be completely unpredictable



An LMI for Quadratic Polytopic H∞-Optimal
State-Feedback Control

Recall the closed-loop in state feedback is:

S(P,K) =

[
A+B2F B1

C1 +D12F D11

]

Now add uncertainty to system matrices A,B1, B2, C1, D12 and D11.

Theorem 48.

There exists an F such that ‖S(P (∆),K(0, 0, 0, F ))‖H∞ ≤ γ for all
∆ ∈ Co(∆1, · · ·∆k) if there exist Y > 0 and Z such that
[
Y (A + Ai)

T + (A + Ai)Y + ZT (B2 + B2,i)
T + (B2 + B2,i)Z ∗T ∗T

(B1 + B1,i)
T −γI ∗T

(C1 + C1,i)Y + (D12 +D12,i)Z D11 +D11,i −γI

]
< 0 i = 1, · · · , k

Then F = ZY −1.

S(P (∆),K) =

[
A+B2F B1

C1 +D12F D11

]
+ ∆ ∆ ∈ Co(∆1, · · ·∆k)

∆i =

[
A1 +B2,iF B1,i

C1,i +D12,iF D11,i

]
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An LMI for Quadratic Polytopic H2-Optimal
State-Feedback Control

Similarly

Theorem 49.
There exists an F such that ‖S(P (∆),K(0, 0, 0, F ))‖2H2

≤ γ for all
∆ ∈ Co(∆1, · · ·∆k) if there exist X > 0 and Z such that

[
AX + B2Z +XAT + ZTBT2 B1

BT1 −I

]
+

AiX + B2,iZ +XATi + ZTBT2,i B1,i

BT1,i 0

 < 0 i = 1, · · · , k

[
X (C1X +D12Z)T

C1X +D12Z W

]
+

[
0 (C1,iX +D12,iZ)T

C1,iX +D12,iZ 0

]
> 0 i = 1, · · · , k

TraceW < γ

Then F = ZY −1.

Similar Steps can be taken for robust estimator design, using the LMIs in Duan.

• However, I am not aware of a robust version of the general optimal output
feedback LMI for polytopic uncertainty.
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An LMI for Quadratic Schur Stabilization

State Equations: uk = Fxk

xk+1 = Axk +Buk

= Axk +BFxk

= (A+BF )xk

Lemma 50.

Suppose there exists some X > 0 and Z such that

[
X AX +BZ

(AX +BZ)T X

]
+

[
0 AiX +BiZ

(AiX +BiZ)T 0

]
> 0

then if F = ZX−1, then trajectories of the closed-loop system (A+BK) are
stable for any ∆ ∈ Co(∆1, · · ·∆k).
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Types of Uncertainty

In this Lecture, we will cover
• Unstructured, Dynamic, norm-bounded:

∆ := {∆ ∈ L(L2) : ‖∆‖H∞ < 1}
• Structured, Static, norm-bounded:

∆ := {diag(δ1, · · · , δK ,∆1, · · ·∆N ) : |δi| < 1, σ̄(∆i) < 1}
• Structured, Dynamic, norm-bounded:

∆ := {∆1,∆2, · · · ∈ L(L2) : ‖∆i‖H∞ < 1}
• Unstructured, Static, norm-bounded:

∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}
• Parametric, Polytopic:

∆ := {∆ ∈ Rn×n : ∆ =
∑

i

αiHi, αi ≥ 0,
∑

i

αi = 1}
• Parametric, Interval:

∆ := {
∑

i

∆iδi : δi ∈ [δ−i , δ
+
i ]}

Each of these can be Time-Varying or Time-Invariant!
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Back to the Linear Fractional Transformation

The interval and polytopic cases rely on Linearity of the
uncertain parameters.

ẋ(t) = (A0 + ∆(t))x(t)

The Linear-Fractional Transformation, however

[
ẋ1

z(t)

]
= S̄(P,∆)

[
x1(t)
F (t)

]
= (P22+P21(I−∆P11)−1∆P12)

[
x(t)
F (t)

]

is an arbitrary rational function.

qp M

¢

We focus on two results:

• The S-Procedure for Unstructured Uncertainty Sets

• The Structured Singular Value for Structured Uncertainty Sets.
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Robust Stability

qp M

¢

Questions:

• Is S(∆,M) stable for all ∆ ∈∆?

• Is I −∆M11 invertible for all ∆ ∈∆?
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Redefine Robust and Quadratic Stability
Suppose we have the system

M =

[
M11 M12

M21 M22

]

Definition 51.

The pair (M,∆) is Robustly Stable if (I −M22∆) is invertible for all ∆ ∈∆.

Alternatively, if
[
ẋ(t)
z(t)

]
= S̄(M,∆)

[
x(t)
w(t)

]

Definition 52 (Continuous-Time).

The pair (M,∆) is Robustly Stable if for some β > 0,
M22 +M21∆(I −M11∆)−1M12 + βI is Hurwitz for all ∆ ∈∆.

Alternatively, if
[
xk+1

zk

]
= S̄(M,∆)

[
xk
wk

]

Definition 53 (Discrete-Time).

The pair (M,∆) is Robustly Stable if
ρ(M22 +M21∆(I −M11∆)−1M12) = β < 1 for all ∆ ∈∆.
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Quadratic Stability - Parametric Uncertainty

Focus on the 1,1 block of S̄(M,∆):
If ẋ(t) = S̄(M,∆)x(t),

Definition 54 (Continuous Time).

The pair (M,∆) is Quadratically Stable if there exists a P > 0 such that

S̄(M,∆)TP + PS̄(M,∆) < −βI for all ∆ ∈∆

Alternatively, if xk+1 = S̄(M,∆)xk,

Definition 55 (Discrete Time).

The pair (M,∆) is Quadratically Stable if there exists a P > 0 such that

S̄(M,∆)TPS̄(M,∆)− P < −βI for all ∆ ∈∆

for all ∆ ∈∆.
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Parametric, Norm-Bounded Time-Varying Uncertainty

Consider the state-space representation:

ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆(t) ∈∆

• Parametric, Norm-Bounded Uncertainty:

∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}
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Parametric, Norm-Bounded Uncertainty

Quadratic Stability: There exists a P > 0 such that

P (Ax(t)+Mp)+(Ax(t)+Mp)TP < 0 for all p ∈
{
p : p = ∆q,

q = Nx+Qp,
∆ ∈∆

}

Theorem 56.

The system

ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some P > 0 such that

[
x
p

] [
ATP + PA PM
MTP 0

] [
x
p

]
< 0

for all

[
x
p

]
∈
{[
x
p

]
:

[
x
p

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
p

]
≤ 0

}

M. Peet Lecture 01: LMIs for Robust Stability 111 / 131



Parametric, Norm-Bounded Uncertainty

If.

If
[
x
p

] [
ATP + PA PM
MTP 0

] [
x
p

]
< 0

for all

[
x
p

]
∈
{[
x
p

]
:

[
x
p

] [
−NTN −NTQ
−QTN I −QTQ

] [
x
p

]
≤ 0

}

then
xTP (Ax+Mp) + (Ax+Mp)TPx < 0

for all x, p such that
‖p‖2 ≤ ‖Nx+Qp‖2

Therefore, since p = ∆q implies ‖p‖ ≤ ‖q‖, we have quadratic stability.
The only if direction is similar.

M. Peet Lecture 01: LMIs for Robust Stability 112 / 131



The S-Procedure
A Significant LMI for your Toolbox

Quadratic stability here requires positivity of a matrix on a subset.

• This is Generally a very hard problem

• NP-hard to determine if xTFx ≥ 0 for all x ≥ 0. (Matrix Copositivity)

S-procedure to the rescue!

The S-procedure asks the question:

• Is zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0}?

Corollary 57 (S-Procedure).

zTFz ≥ 0 for all z ∈ {x : xTGx ≥ 0} if there exists a scalar τ ≥ 0 such that
F − τG � 0.

The S-procedure is Necessary if {x : xTGx > 0} has an interior point.
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Parametric, Norm-Bounded Uncertainty

Theorem 58 (Dual Version).

The system
ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0 and P > 0 such that[
AP + PAT PNT

NP 0

]
+ µ

[
MMT MQT

QMT QQT − I

]
< 0}

Noting that the LMI can be written as
[
AP + PAT PNT

NP −µI

]
+ µ

[
M
Q

] [
M
Q

]T
< 0

or 

AP + PAT PNT MT

NP −µI QT

M Q − 1
µI


 < 0

we see that this condition is simply an H∞ gain condition on the nominal
system ‖·‖H∞ < 1.
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Necessity of the Small-Gain Condition

This leads to the interesting result:

qp M

¢

If ∆ := {∆ ∈ L(L2) : ‖∆‖ ≤ 1}, then

• S̄(P,∆) ∈ H∞ if and only if ‖P11‖H∞ < 1

• The small gain condition is necessary and sufficient for stability.

• Quadratic Stability is equivalent to stability.

• Holds for Dynamic and Parametric Uncertainty
I Does this mean Quadratic and Robust Stability are Equivalent?
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Quadratic Stability and Equivalence to Robust Stability

Consider Quadratic Stability in Discrete-Time: xk+1 = Sl(M,∆)xk.

Definition 59.

(Sl,∆) is QS if

Sl(M,∆)TPSl(M,∆)− P < 0 for all ∆ ∈∆

Theorem 60 (Packard and Doyle).

Let M ∈ R(n+m)×(n+m) be given with ρ(M11) ≤ 1 and σ(M22) < 1. Then the
following are equivalent.

1. The pair (M,∆ = Rm×m) is quadratically stable.

2. The pair (M,∆ = Cm×m) is quadratically stable.

3. The pair (M,∆ = Cm×m) is robustly stable.
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Quadratically Stabilizing Controllers with Parametric
Norm-Bounded Uncertainty

However, we can add controllers:

Theorem 61.

The system with u(t) = Kx(t) and

ẋ(t) = A0x(t) +Bu(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t) +D12u(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0 and P > 0 such that

[
(A+BK)P + P (A+BK)T P (N +D12K)T

(N +D12K)P 0

]
+µ

[
MMT MQT

QMT QQT − I

]
< 0}

Of course, this is bilinear in P and K, so we make the change of variables
Z = KP .
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An LMI for Quadratically Stabilizing Controllers with
Parametric Norm-Bounded Uncertainty

Theorem 62.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t) +D12u(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}

is quadratically stable if and only if there exists some µ ≥ 0, Z and P > 0 such
that
[
AP +BZ + PAT + ZTBT PNT + ZTDT

12

NP +D12Z 0

]
+µ

[
MMT MQT

QMT QQT − I

]
< 0}.

Then K = ZP−1 is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H∞ norm.
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An LMI for H∞-Optimal Quadratically Stabilizing
Controllers with Parametric Norm-Bounded Uncertainty

In this case, we set Q = 0.

Theorem 63.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mp(t) +B2w(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +D12u(t), ∆ ∈∆ := {∆ ∈ Rn×n : ‖∆‖ ≤ 1}
y(t) = Cx(t) +D22u(t)

satisfies ‖y‖L2
≤ γ‖u‖L2

if there exists some µ ≥ 0, Z and P > 0 such thatAP +BZ + PAT + ZTBT +B2B
T
2 + µMMT (CP +D22Z)T PNT + ZTDT

12

CP +D22Z −γ2I 0
NP +D12Z 0 −µI

 < 0.

Then K = ZP−1 is the corresponding controller.
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This is from Boyd page 110.
I believe it relies on the following alternative to the S-procedure [Xie, 1992],
which is similar to Finsler’s Lemma

Theorem 64.
The following are equivalent

1.
Q+ F∆E + ET∆FT > 0 for all ‖∆‖ < 1

2. There exists some ε > 0 such that

Q+ εFFT + ε−1ETE > 0

Unfortunately, to put the LMI in the form of 1 requires us to eliminate the
pass-through term Q.



Structured, Norm-Bounded Uncertainty

For the case of structured parametric uncertainty, we define the structured set

∆ = {∆ = diag(δ1In1, · · · , δsIns,∆s+1, · · · ,∆s+f ) : δi ∈ R, ∆ ∈ Rnk×nk}

∆ =




δ1In1

· · ·
δsIns

∆s+1

· · ·
∆s+f




• δ and ∆ represent unknown parameters.

• s is the number of scalar parameters.

• f is the number of matrix parameters.
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

Definition 65.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

‖∆‖

Of course, S̄(M,∆) is stable if and only if µ(M11,∆) < 1.

• Obviously, µ(M,∆) < ‖M‖
• For ∆ := {∆ ∈ L(L2) : ‖∆‖ ≤ 1}, µ(M,∆) = ‖M‖
• µ(αM,∆) = |α|µ(M,∆)

• Can increase M by a factor 1
µ(M,∆) before losing stability.

• In general, computing µ is NP-hard unless uncertainty is unstructured.
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Scalings and The Structured Singular Value

Suppose Θ = {Θ : Θ∆ = ∆Θ for all ∆ ∈∆}
• Then µ(M,∆) = infΘ∈Θ‖ΘMΘ−1‖.
• Θ is the set of scalings.
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Scalings and The Structured Singular Value

∆ = {∆ = diag(δ1In1, · · · , δsIns,∆s+1, · · · ,∆s+f ) : δi ∈ R, ∆ ∈ Rnk×nk}

Define the set of scalings

PΘ := {diag(Θ1, · · · ,Θs, θs+1I, · · · , θs+fI : Θi > 0, θj > 0}

Theorem 66.

Suppose system M has transfer function M̂(s) = C(sI −A)−1B +D with
M̂ ∈ H∞. The following are equivalent

• There exists Θ ∈ Θ such that ‖ΘMΘ−1‖2 < γ.

• There exists Θ ∈ PΘ and X > 0 such that
[
ATX +XA XB

BTX −Θ

]
+

1

γ2

[
CT

DT

]
Θ
[
C D

]
< 0

Note: To minimize γ, you must use bisection.
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An LMI for Stability of Structured, Norm-Bounded
Uncertainty

This allows us to generalize the S-procedure to structured uncertainty

Theorem 67.

The system
ẋ(t) = Ax(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆, ‖∆‖ ≤ 1

is quadratically stable if and only if there exists some Θ ∈ PΘ and P > 0 such
that [

AP + PAT PNT

NP 0

]
+

[
MΘMT MΘQT

QΘMT QΘQT −Θ

]
< 0}

This is an LMI in Θ and P .

• The constraint Θ ∈ PΘ is linear

PΘ := {diag(Θ1, · · · ,Θs, θs+1I, · · · , θs+fI) : Θi > 0, θj > 0}
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An LMI for Stability with Structured, Norm-Bounded
Uncertainty

To prove the theorem, we can take a closer look at the scalings:

Since T∆ = ∆T for T ∈ PΘ, the system can equivalently be written as

ẋ(t) = Ax(t) +MT−1p(t), p(t) = ∆(t)q(t),

q(t) = TNx(t) + TQT−1p(t), ∆ ∈∆, ‖∆‖ ≤ 1

for any T ∈ PΘ. Then

[
AP + PAT PNT

NP 0

]
+

[
MMT MQT

QMT QQT − I

]
< 0

becomes[
AP + PAT PNTTT

TNP 0

]
+

[
MT−2MT MT−2QTTT

TQT−2MT TQT−2QTTT − I

]
< 0}

Pre- and Post-multiplying by

[
I 0
0 T−1

]
, and using Θ = T−2 ∈ PΘ, we recover

the LMI condition.
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An LMI for Stabilizing State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Theorem 68.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t) +D12u(t), ∆ ∈∆, ‖∆‖ ≤ 1

is quadratically stable if and only if there exists some Θ ∈ PΘ, P > 0 and Z
such that
[
AP +BZ + PAT + ZTBT PNT + ZTDT

12

NP +D12Z 0

]
+

[
MΘMT MΘQT

QΘMT QΘQT −Θ

]
< 0.

Then K = ZP−1 is a quadratically stabilizing controller.

We can also extend this result to optimal control in the H∞ norm.
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An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

In this case, we set Q = 0.

Theorem 69.

There exists a K such that the system with u(t) = Kx(t)

ẋ(t) = Ax(t) +Bu(t) +Mp(t) +B2w(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +D12u(t), ∆ ∈∆, ‖∆‖ ≤ 1

y(t) = Cx(t) +D22u(t)

satisfies ‖y‖L2
≤ γ‖u‖L2

if there exists some Θ ∈ PΘ, Z and P > 0 such thatAP +BZ + PAT + ZTBT +B2B
T
2 +MΘMT (CP +D22Z)T PNT + ZTDT

12

CP +D22Z −γ2I 0
NP +D12Z 0 −Θ

 < 0.

Then K = ZP−1 is the corresponding controller.
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An LMI for Optimal State-Feedback Controllers with
Structured Norm-Bounded Uncertainty

Using the equivalent scaled system

ẋ(t) = Ax(t) +Bu(t) +MT−1p(t) +B2w(t), p(t) = ∆(t)q(t),

q(t) = TNx(t) + TD12u(t), ∆ ∈∆, ‖∆‖ ≤ 1

y(t) = Cx(t) +D22u(t)

we get

AP + BZ + PAT + ZTBT + B2B
T
2 +MT−2MT (CP +D22Z)T PNT TT + ZTDT12T

T

CP +D22Z −γ2I 0
TNP + TD12Z 0 −I

 < 0.

Pre- and Post-multiplying by



I 0 0
0 I 0
0 0 T−1


, and using Θ = T−2 ∈ PΘ, we

recover the LMI condition.
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Output-Feedback Robust Controller Synthesis

How to Solve the Output Feedback Case???

inf
K

sup
∆∈∆
‖S(S̄(G,∆),K)‖H∞
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D-K Iteration
A Heuristic for Dynamic Output Feedback Synthesis

Finally, we mention a Heuristic for Output-Feedback Controller synthesis.

Initialize: Θ = I.
Define:

ĜΘ(s) =




A B1Θ−
1
2 B2

Θ
1
2C1

C2

Θ
1
2D11Θ−

1
2 Θ

1
2D12

D21Θ−
1
2 0




Step 1: Fix Θ and solve
inf
K
‖S(GΘ,K)‖H∞

Step 2: Fix K and minimize γ such that there exists Θ ∈ PΘ ( or
Θ ∈ PΘ× I if you include the regulated output channel.) and X > 0 such that

[
ATclX +XAcl XBcl

BTclX −Θ

]
+

1

γ2

[
CTcl
DT
cl

]
Θ
[
Ccl Dcl

]
< 0

where Acl, Bcl, Ccl, Dcl define S(GI ,K). (Requires Bisection).

Step 3: GOTO Step 1
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A Word on D-K Iteration with Static Uncertainty
A Heuristic for Dynamic Output Feedback Synthesis

The D-K iteration outlined in this lecture is only valid for Dynamic Uncertainty :
∆(t).

• Our Scalings Θ are time-invariant.

For Static uncertainties, we should search for Dynamic Scaling Factors

• Θ(s) is a Transfer Function

• This is much harder to represent as an LMI (Or by any other method!).

• Matlab has built-in functionality, but it is hard to use.

We will return to µ analysis for static uncertainties when we consider more
advanced forms of optimization.

M. Peet Lecture 01: LMIs for Robust Stability 131 / 131


	Optimization
	Positive Matrices and LMI's
	Stability LMI's
	Controller Synthesis
	H-optimal Control
	Optimal Control Framework
	Systems with Uncertainty
	Uncertainty and Robust Control
	LMIs for Robust Stability

