Sum of Squares (SOS)

Matthew M. Peet
Arizona State University

Lecture 02: Sum of Squares (SOS)
The Dual Problem of Polynomial Programming

Polynomial Programming (NOT CONVEX): \(n \) decision variables

\[
\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
g_i(x) & \geq 0
\end{align*}
\]

- \(f \) and \(g_i \) must be convex for the problem to be convex.

Optimization of Polynomials IS Convex: Lifting to a higher-dimensional space

\[
\begin{align*}
\max_{g, \gamma} & \quad \gamma \\
f(x) - \gamma & = g(x) \quad \text{for all} \quad x \in \mathbb{R}^n \\
g(x) & \geq 0 \quad \text{for all} \quad x \in \{x \in \mathbb{R}^n : h(x) \geq 0\}
\end{align*}
\]

- The decision variables are functions (e.g. \(g \))
 - **Infinite Dimensional Contraints:** One constraint for every value of \(x \).
- But how to parameterize functions?????
- How to enforce an infinite number of constraints???
- Advantage: Problem is convex, even if \(f, g, h \) are not convex.
The Dual Problem of Polynomial Programming

- Hopefully you know what convexity is.
- Parameterize functions as polynomials.
- Feasibility of a point x is easy to show.
- Infeasibility of a constraint requires a certificate

For Polynomial Programming
- Feasibility of a point x is easy to show.
- Infeasibility of a constraint requires a certificate

For Optimization of Polynomials
- Infeasibility is easy to show (give a counterexample).
- Feasibility of a function requires a certificate
Optimization of Polynomials:
Some Examples: Matrix Copositivity

Stability of Systems with Positive States: Not all states can be negative...
- Cell Populations/Concentrations
- Volume/Mass/Length

We want:

\[
V(x) = x^T P x \geq 0 \quad \text{for all} \quad x \geq 0
\]

\[
\dot{V}(x) = x^T (A^T P + PA) x \leq 0 \quad \text{for all} \quad x \geq 0
\]

Formulation:
- Matrix Copositivity (An NP-hard Problem)

Verify:

\[
x^T P x \geq 0 \quad \text{for all} \quad x \geq 0
\]

Implementation: sosdemo4p.m
Recall: Systems with Uncertainty

\[
\dot{x}(t) = A(\delta)x(t) + B_1(\delta)w(t) + B_2(\delta)u(t)
\]
\[
y(t) = C(\delta)x(t) + D_{12}(\delta)u(t) + D_{11}(\delta)w(t)
\]

Theorem 1.

There exists an $F(\delta)$ such that $\|S(P(\delta), K(0, 0, 0, F(\delta)))\|_{H_\infty} \leq \gamma$ for all $\delta \in \Delta$ if there exist $Y > 0$ and $Z(\delta)$ such that

\[
\begin{bmatrix}
YA(\delta)^T + A(\delta)Y + Z(\delta)B_1^T(\delta)B_2^T(\delta) + B_2(\delta)Z(\delta)
\hline
B_1(\delta)^T
\hline
C_1(\delta)Y + D_{12}(\delta)Z(\delta)
\end{bmatrix}
\begin{bmatrix}
^T
\hline
-\gamma I
\hline
D_{11}(\delta)
\hline
-\gamma I
\end{bmatrix}
< 0
\]

for all $\delta \in \Delta$.

Then $F(\delta) = Z(\delta)Y^{-1}$.
The Structured Singular Value, μ

Definition 2.

Given system $M \in \mathcal{L}(L_2)$ and set Δ as above, we define the **Structured Singular Value** of (M, Δ) as

$$
\mu(M, \Delta) = \inf_{\Delta \in \Delta} \frac{1}{\|\Delta\|} \text{ where } I - M\Delta \text{ is singular}
$$

The system

$$
M = \begin{bmatrix}
A_0 & M \\
N & Q
\end{bmatrix}
$$

Lower Bound for μ: $\mu \geq \gamma$ if there exists a $P(\delta)$ such that

$$
P(\delta) \geq 0 \quad \text{for all } \delta \quad \text{AND}$$

$$
P(\delta)(A_0x + Mp) + (A_0x + Mp)^T P(\delta) < \epsilon I \quad \text{for all } x, p, \delta \text{ such that}
$$

$$(x, p, \delta) \in \left\{ x, p, \delta : p = \text{diag}(\delta_i)(Nx + Qp), \sum_i \delta_i^2 \leq \gamma \right\}
$$

Implementation (Simplified Version): sosdemo5p.m
In this lecture, we will show how the LMI framework can be expanded dramatically to other forms of control problems.

1. Positivity of Polynomials
 1.1 Sum-of-Squares

2. Positivity of Polynomials on Semialgebraic sets
 2.1 Inference and Cones
 2.2 Positivstellensatz

3. Applications
 3.1 Nonlinear Analysis
 3.2 Robust Analysis and Synthesis
 3.3 Global optimization
A Generic Convex Optimization Problem:

\[
\begin{align*}
\max_{x} & \quad bx \\
\text{subject to} & \quad Ax \in C
\end{align*}
\]

The problem is *convex optimization* if
- \(C\) is a convex cone.
- \(b\) and \(A\) are affine.

Computational Tractability: Convex Optimization over \(C\) is tractable if
- The set membership test for \(y \in C\) is in P (polynomial-time verifiable).
- The variable \(x\) is a finite dimensional vector (e.g. \(\mathbb{R}^n\)).
Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables $V \in C[\mathbb{R}^n]$ and $\gamma \in \mathbb{R}$

$$\max_{V, \gamma} \gamma$$

subject to

$$V(x) - x^T x \geq 0 \quad \forall x$$

$$\nabla V(x)^T f(x) + \gamma x^T x \leq 0 \quad \forall x$$

V is the decision variable (infinite-dimensional)

- How to make it finite-dimensional???

The set of polynomials is an infinite-dimensional (but *Countable*) vector space.

- It is **Finite Dimensional** if we bound the degree
- All finite-dimensional vector spaces are equivalent!

But we need a way to parameterize this space...
To Begin: How do we Parameterize Polynomials???

A Parametrization consists of a **basis** and a **set of parameters** (coordinates)
- We use a **Finite Dimensional** space of polynomials of degree \(d\) or less.
 - The monomials are a simple basis for the space of polynomials

Definition 3.

Define \(Z_d(x)\) to be the vector of monomial bases of degree \(d\) or less.

For example, if \(x \in \mathbb{R}^2\), then the vector of basis functions is

\[
Z_2(x_1, x_2)^T = \begin{bmatrix} 1 & x_1 & x_2 & x_1x_2 & x_1^2 & x_2^2 \end{bmatrix}
\]

and

\[
Z_4(x_1)^T = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \end{bmatrix}
\]

Linear Representation

- Any polynomial of degree \(d\) can be represented with a vector \(c \in \mathbb{R}^m\)

 \[
p(x) = c^T Z_d(x)
 \]

 - \(c\) is the vector of **parameters** (decision variables).

\[
2x_1^2 + 6x_1x_2 + 4x_2 + 1 = \begin{bmatrix} 1 & 0 & 4 & 6 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_2 & x_1x_2 & x_1^2 & x_2^2 \end{bmatrix}^T
\]

Implementation: \(Z_d=\text{monomials}([[x_1 \ x_2],0:4])\)
Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables $V \in C[\mathbb{R}^n]$ and $\gamma \in \mathbb{R}$

$$\max_{V,\gamma} \gamma$$

subject to

$$V(x) - x^T x \geq 0 \quad \forall x$$

$$\nabla V(x)^T f(x) + \gamma x^T x \leq 0 \quad \forall x$$

Now use the polynomial parametrization $V(x) = c^T Z(x)$

- Now c is the decision variable.

Convex Optimization of Polynomials: Variables $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$

$$\max_{c,\gamma} \gamma$$

subject to

$$c^T Z(x) - x^T x \geq 0 \quad \forall x$$

$$c^T \nabla Z(x) f(x) + \gamma x^T x \leq 0 \quad \forall x$$
Can LMIs be used for Optimization of Polynomials???

Optimization of Polynomials is NP-Hard!!

Problem: Use a finite number of variables:

\[
\begin{align*}
\max & \quad b^T x \\
\text{subject to} & \quad A_0(y) + \sum_{i} x_i A_i(y) \succeq 0 \quad \forall y
\end{align*}
\]

The \(A_i \) are matrices of polynomials in \(y \). e.g. Using multi-index notation,

\[
A_i(y) = \sum_{\alpha} A_{i,\alpha} y^\alpha
\]

The FEASIBILITY TEST is Computationally Intractable

The problem: “Is \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \)” (i.e. “\(p \in \mathbb{R}^+[x] \)”) is NP-hard.
How Hard is it to Determine Positivity of a Polynomial???

Certificates

Definition 4.

A Polynomial, f, is called Positive SemiDefinite (PSD) if

$$f(x) \geq 0 \quad \text{for all } x \in \mathbb{R}^n$$

The Primary Problem: How to enforce the constraint $f(x) \geq 0$ for all x?

Easy Proof: Certificate of Infeasibility

- A Proof that f is NOT PSD.
- i.e. To show that
 $$f(x) \geq 0 \quad \text{for all } x \in \mathbb{R}^n$$
 is FALSE, we need only find a point x with $f(x) < 0$.

Complicated Proof: It is much harder to identify a **Certificate of Feasibility**

- A Proof that f is PSD.
Global Positivity Certificates (Proofs and Counterexamples)

Question: How does one prove that $f(x)$ is positive semidefinite?

What Kind of Functions do we Know are PSD?

- Any squared function is positive.
- The sum of squared forms is PSD
- The product of squared forms is PSD
- The ratio of squared forms is PSD

So $V(x) \geq 0$ for all $x \in \mathbb{R}^n$ if

$$V(x) = \prod_k \frac{\sum_i f_{ik}(x)^2}{\sum_j h_{jk}(x)^2}$$

But is any PSD polynomial the sum, product, or ratio of squared polynomials?

- An old Question....
Definition 5.

A polynomial, $p(x) \in \mathbb{R}[x]$ is a **Sum-of-Squares (SOS)**, denoted $p \in \Sigma_s$ if there exist polynomials $g_i(x) \in \mathbb{R}[x]$ such that

$$p(x) = \sum_{i}^{k} g_i(x)^2.$$

David Hilbert created a famous list of 23 then-unsolved mathematical problems in 1900.

- Only 10 have been fully resolved.
- The 17th problem has been resolved.

“*Given a multivariate polynomial that takes only non-negative values over the reals, can it be represented as a sum of squares of rational functions?*”
- D. Hilbert, 1900
Hilbert’s 17th was resolved in the **affirmative** by E. Artin in 1927.

- Any PSD polynomial is the sum, product and ratio of squared polynomials.
- If \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \), then

\[
p(x) = \frac{g(x)}{h(x)}
\]

where \(g, h \in \Sigma_s \).

- If \(p \) is positive **definite**, then we can assume \(h(x) = (\sum_i x_i^2)^d \) for some \(d \).
 That is,

\[
(x_1^2 + \cdots + x_n^2)^d p(x) \in \Sigma_s
\]

- If we can’t find a SOS representation (certificate) for \(p(x) \), we can try \((\sum_i x_i^2)^d p(x) \) for higher powers of \(d \).

Of course this doesn’t answer the question of how we find SOS representations.
How to use LMIs to Prove Polynomial Positivity?

Basic Idea: If there exists a Positive Matrix $P \geq 0$ such that

$$V(x) = Z_d(x)^T P Z_d(x)$$

Then $V(x)$ is positive

Why? Positive Matrices ($P \geq 0$) have square roots!

$$P = Q^T Q$$

Hence

$$V(x) = Z_d(x)^T Q^T Q Z_d(x) = (QZ_d(x))^T (QZ_d(x))$$

$$= h(x)^T h(x) \geq 0$$

Conclusion:

$$V(x) \geq 0 \quad 	ext{for all} \quad x \in \mathbb{R}^n$$

if there exists a $P \geq 0$ such that

$$V(x) = Z_d(x)^T P Z_d(x)$$

- Such a function is called **Sum-of-Squares** (SOS), denoted $V \in \Sigma_s$.
- This is an LMI! Equality constraints relate the coefficients of V (decision
SOS as an LMI
Conversion between Linear and Quadratic Representation

Let

\[V(x) = c^T Z_{2d}(x) \]

\[V \text{ is SOS iff there exists a } P \geq 0 \text{ such that} \]

\[V(x) = Z_d(x)^T P Z_d(x) \]

Construct \(A \) so that

\[Z_d(x)^T P Z_d(x) = \text{vec}(P) A Z_{2d}(x) \]

becomes

\[V(x) = Z_d(x)^T P Z_d(x) \]

\[c^T Z_{2d}(x) = \text{vec}(P) A Z_{2d}(x) \]

or

\[A^T \text{vec}(P) = c \]
Quadratic Parameterization of Polynomials

Quadratic Representation

- Alternative to Linear Parametrization, a polynomial of degree d can be represented by a matrix $M \in \mathbb{S}^m$ as

$$p(x) = Z_d(x)^T M Z_d(x)$$

- However, now the problem may be under-determined

$$\begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}^T \begin{bmatrix} M_1 & M_2 & M_3 \\ M_2 & M_4 & M_5 \\ M_3 & M_5 & M_6 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix} = M_1 x^4 + 2M_2 x^3 y + (2M_3 + M_4)x^2 y^2 + 2M_5 xy^3 + M_6 y^4$$

Thus, there are infinitely many quadratic representations of p. For the polynomial

$$f(x) = 4x^4 + 4x^3 y - 7x^2 y^2 - 2xy^3 + 10y^4,$$

we can use the alternative solution

$$4x^4 + 4x^3 y - 7x^2 y^2 - 2xy^3 + 10y^4 = M_1 x^4 + 2M_2 x^3 y + (2M_3 + M_4)x^2 y^2 + 2M_5 xy^3 + M_6 y^4$$
For the polynomial

\[f(x) = 4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4, \]

we require

\[
4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4 = M_1 x^4 + 2M_2 x^3y + (2M_3 + M_4)x^2y^2 + 2M_5 xy^3 + M_6 y^4
\]

Constraint Format:

\[
M_1 = 4; \quad 2M_2 = 4; \quad 2M_3 + M_4 = -7; \quad 2M_5 = -2; \quad 10 = M_6.
\]

An underdetermined system of linear equations (6 variables, 5 equations).

- This yields a family of quadratic representations, parameterized by \(\lambda \) as

\[
4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4 = \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}^T \begin{bmatrix} 4 & 2 & -\lambda \\ 2 & -7 + 2\lambda & -1 \\ -\lambda & -1 & 10 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}
\]

which holds for any \(\lambda \in \mathbb{R} \)
Positive Matrix Representation of SOS

Sufficiency

Quadratic Form:

\[p(x) = Z_d(x)^T M Z_d(x) \]

Consider the case where the matrix \(M \) is positive semidefinite.

Suppose: \(p(x) = Z_d(x)^T M Z_d(x) \) where \(M > 0 \).

- Any positive semidefinite matrix, \(M \geq 0 \) has a square root \(M = PP^T \)

Hence

\[p(x) = Z_d(x)^T M Z_d(x) = Z_d(x)^T PP^T Z_d(x). \]

Which yields

\[p(x) = \sum_i \left(\sum_j P_{i,j} Z_{d,j}(x) \right)^2 \]

which makes \(p \in \Sigma_s \) an SOS polynomial.
Positive Matrix Representation of SOS

Necessity

Moreover: Any SOS polynomial has a quadratic rep. with a PSD matrix.

Suppose: \(p(x) = \sum_i g_i(x)^2 \) is degree 2d \((g_i \text{ are degree } d) \).

- Each \(g_i(x) \) has a linear representation in the monomials.
 \[g_i(x) = c_i^T Z_d(x) \]

- Hence
 \[
 p(x) = \sum_i g_i(x)^2 = \sum_i Z_d(x)c_i c_i^T Z_d(x) = Z_d(x) \left(\sum_i c_i c_i^T \right) Z_d(x)
 \]

- Each matrix \(c_i c_i^T \geq 0 \). Hence \(Q = \sum_i c_i c_i^T \geq 0 \).
- We conclude that if \(p \in \Sigma_s \), there is a \(Q \geq 0 \) with \(p(x) = Z_d(x)QZ_d(x) \).

Lemma 6.

Suppose \(M \) is polynomial of degree 2d. \(M \in \Sigma_s \) if and only if there exists some \(Q \geq 0 \) such that
\[
M(x) = Z_d(x)^T Q Z_d(x).
\]
Thus we can express the search for a SOS certificate of positivity as an LMI.

Take the numerical example

$$4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4$$

The question of an SOS representation is equivalent to

Find

$$M = \begin{bmatrix} M_1 & M_2 & M_3 \\ M_2 & M_4 & M_5 \\ M_3 & M_5 & M_6 \end{bmatrix} \geq 0$$

such that

$$M_1 = 4; \quad 2M_2 = 4; \quad 2M_3 + M_4 = -7; \quad 2M_5 = -2; \quad M_6 = 10.$$

In fact, this is feasible for

$$M = \begin{bmatrix} 4 & 2 & -6 \\ 2 & 5 & -1 \\ -6 & -1 & 10 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & -3 \end{bmatrix}$$
We can use this solution to construct an SOS certificate of positivity.

\[4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4 = \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}^T \begin{bmatrix} 4 & 2 & -6 \\ 2 & 5 & -1 \\ -6 & -1 & 10 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix} \]

\[= \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix}^T \begin{bmatrix} 0 & 2 \\ 2 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ y^2 \end{bmatrix} \]

\[= \begin{bmatrix} 2xy + y^2 \\ 2x^2 + xy + 3y^2 \end{bmatrix}^T \begin{bmatrix} 2xy + y^2 \\ 2x^2 + xy + 3y^2 \end{bmatrix} \]

\[= (2xy + y^2)^2 + (2x^2 + xy + 3y^2)^2 \]
Quadratic Representation: (Using Matrix $M \in \mathbb{R}^{p \times p}$):

$$p(x) = Z_d(x)^T M Z_d(x)$$

Linear Representation: (Using Vector $c \in \mathbb{R}^q$)

$$q(x) = c^T Z_{2d}(x)$$

To constrain $p(x) = q(x)$, we write $[Z_d]_i = x^{\alpha_i}$, $[Z_{2d}]_j = x^{\beta_j}$ and reformulate

$$p(x) = Z_d(x)^T M Z_d(x) = \sum_{i,j} M_{i,j} x^{\alpha_i + \alpha_j} = \text{vec}(M)^T A Z_{2d}(x)$$

where $A \in \mathbb{R}^{p^2 \times q}$ is defined as

$$A_{i,j} = \begin{cases}
1 & \text{if } \alpha_{\text{mod}(i,p)} + \alpha_{[i]_{p+1}} = \beta_j \\
0 & \text{otherwise}
\end{cases}$$

This then implies that

$$Z_d(x)^T M Z_d(x) = \text{vec}(M)^T A Z_{2d}(x)$$

Hence if we constrain $c = \text{vec}(M)^T A$, this is equivalent to $p(x) = q(x)$
Summarizing, e.g., for Lyapunov stability, we have variables $M > 0, Q > 0$ with the constraint

$$-\text{vec}(M)^T A = \text{vec}(Q)^T AB$$

Feasibility implies stability since

$$V(x) = Z(x)^T Q Z(x) \geq 0$$
$$\dot{V}(x) = \text{vec}(Q)^T A \nabla Z_{2d}(x)$$
$$= \text{vec}(Q)^T A B Z_{2d}(x)$$
$$= -\text{vec}(M)^T A Z_{2d}(x)$$
$$= -Z(x)^T M Z(x) \geq 0$$
Sum-of-Squares

YALMIP SOS Programming

YALMIP has SOS functionality

Link: YALMIP SOS Manual

To test whether

\[4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4 \]

is a positive polynomial, we use:

```
> sdpvar x y
> p = 4 * x^4 + 4 * x^3 * y - 7 * x^2 * y^2 - 2 * x * y^3 + 10 * y^4;
> F=[];
> F=[F;sos(p)];
> solvesos(F);
```

To retrieve the SOS decomposition, we use

```
> sdisplay(p)

> ans =
> '1.7960 * x^2 - 3.0699 * y^2 + 0.6468 * x * y'
> ' - 0.6961 * x^2 - 0.7208 * y^2 - 1.4882 * x * y'
> '0.5383 * x^2 + 0.2377 * y^2 - 0.3669 * x * y'
```
In this class, we will use instead SOSTOOLS
Link: SOSTOOLS Website

To test whether

\[4x^4 + 4x^3y - 7x^2y^2 - 2xy^3 + 10y^4 \]

is a positive polynomial, we use:

```matlab
> pvar x y
> p = 4 * x^4 + 4 * x^3 * y - 7 * x^2 * y^2 - 2 * x * y^3 + 10 * y^4;
> prog=sosprogram([x y]);
> prog=sosineq(prog,p);
> prog=sossolve(prog);
```
This also works for matrix-valued polynomials.

\[
M(y, z) = \begin{bmatrix}
(y^2 + 1)z^2 & yz \\
yz & y^4 + y^2 - 2y + 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
(y^2 + 1)z^2 & yz \\
yz & y^4 + y^2 - 2y + 1
\end{bmatrix} = \begin{bmatrix} z & 0 \\
yz & 0 \\
0 & 1 \\
y & 0 \\
y^2 & 0
\end{bmatrix}^T \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & -1 & 0 \\
0 & 1 & 1 & -1 & 0 \\
0 & -1 & -1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix} z & 0 \\
yz & 0 \\
0 & 1 \\
y & 0 \\
y^2 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix} z & 0 \\
yz & 0 \\
0 & 1 \\
y & 0 \\
y^2 & 0
\end{bmatrix}^T \begin{bmatrix} 1 & 1 & -1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix} z & 0 \\
yz & 0 \\
0 & 1 \\
y & 0 \\
y^2 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix} yz & 1 - y \\
z & y^2
\end{bmatrix}^T \begin{bmatrix} yz & 1 - y \\
z & y^2
\end{bmatrix} \in \Sigma_s
\]
This also works for matrix-valued polynomials.

\[M(y, z) = \begin{bmatrix} (y^2 + 1)z^2 & yz \\ yz & y^4 + y^2 - 2y + 1 \end{bmatrix} \]

SOSTOOLS Code: Matrix Positivity

```plaintext
> pvar x y
> M = [(y^2 + 1) * z^2  y * z; y * z  y^4 + y^2 - 2 * y + 1];
> prog=sosprogram([y z]);
> prog=sosmatrixineq(prog,M);
> prog=sossolve(prog);
```
An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from Moore-Greitzer).

\[
\begin{align*}
\dot{x} &= -y - \frac{3}{2}x^2 - \frac{1}{2}x^3 \\
\dot{y} &= 3x - y
\end{align*}
\]

SOSTOOLS Code: Global Stability

```matlab
> pvar x y
> f = [-y - 1.5 * x^2 - 0.5 * x^3; 3 * x - y];
> prog=sosprogram([x y]);
> Z=monomials([x,y],0:2);
> [prog,V]=sossosvar(prog,Z);
> V = V + 0.0001 * (x^4 + y^4);
> prog=soseq(prog,subs(V,[x; y],[0; 0]));
> nablaV=[diff(V,x);diff(V,y)];
> prog=sosineq(prog,-nablaV'*f);
> prog=sossolve(prog);
> Vn=sosgetsol(prog,V)
```

Finds a Lyapunov Function of degree 4.
An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from Moore-Greitzer).

\[
\begin{align*}
\dot{x} &= -y - \frac{3}{2}x^2 - \frac{1}{2}x^3 \\
\dot{y} &= 3x - y
\end{align*}
\]

YALMIP Code: Global Stability

```matlab
> sdpvar x y
> f = [-y - 1.5 * x^2 - 0.5 * x^3; 3 * x - y];
> [V,Vc]=polynomial([x y],4);
> F=[Vc(1)==0];
> F = [F; sos(V - 0.0001 * (x^2 + y^2))];
> nablaV=jacobian(V,[x y]);
> F=[F;sos(-nablaV*f)];
> solvesos(F,[],[],[Vc])
```

Finds a Lyapunov Function of degree 4.

- Going forward, we will use mostly SOSTOOLS
There is a third relatively new Parser called SOSOPT

Link: SOSOPT Website

And I can plug my own mini-toolbox version of SOSTOOLS:

Link: DelayTOOLS Website

- However, I don’t expect you to need this toolbox for this Lecture.
An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from Moore-Greitzer).

\[\dot{x} = -y - \frac{3}{2}x^2 - \frac{1}{2}x^3 \]
\[\dot{y} = 3x - y \]

This is feasible with

\[V(x) = 4.5819x^2 - 1.5786xy + 1.7834y^2 - 0.12739x^3 + 2.5189x^2y - 0.34069xy^2 + 0.61188y^3 + 0.47537x^4 - 0.052424x^3y + 0.44289x^2y^2 + 0.090723y^4 \]
Proposition 1.

Suppose: \(p(x) = Z_d(x)^T Q Z_d(x) \) for some \(Q > 0 \). Then \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \).

Refinement 1: Suppose \(Z_d(x)^T P Z_d(x) p(x) = Z_d(x)^T Q Z_d(x) \) for some \(Q, P > 0 \). Then \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \).

Refinement 2: Suppose \((\sum_i x_i^2)^q p(x) = Z_d(x)^T Q Z_d(x) \) for some \(P > 0, q \in \mathbb{N} \). Then \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \).

Ignore these Refinements

- SOS by itself is sufficient. The refinements are Necessary and Sufficient.
- Almost never necessary in practice...
Problems with SOS

Unfortunately, a Sum-of-Squares representation is not necessary for positivity.

- Artin included ratios of squares.

Counterexample: The Motzkin Polynomial

\[
M(x, y) = x^2y^4 + x^4y^2 + 1 - 3x^2y^2
\]

However, \((x^2 + y^2 + 1)M(x, y)\) is a Sum-of-Squares.

\[
(x^2 + y^2 + 1)M(x, y) = (x^2y - y)^2 + (xy^3 - x)^2 + (x^2y^2 - 1)^2
\]
\[
+ \frac{1}{4}(xy^3 - x^3y)^2 + \frac{3}{4}(xy^3 + x^3y - 2xy)^2
\]
Problems with SOS

The problem is that most nonlinear stability problems are **local**.

- Global stability requires a unique equilibrium.
- Very few nonlinear systems are globally stable.

Figure: The Lorentz Attractor

Figure: The van der Pol oscillator in reverse
Local Positivity

A more interesting question is the question of local positivity.

Question: Is \(y(x) \geq 0 \) for \(x \in X \), where \(X \subset \mathbb{R}^n \).

Examples:

- **Matrix Cpositivity:**
 \[
 y^T M y \geq 0 \quad \text{for all } y \geq 0
 \]

- **Integer Programming (Upper bounds)**
 \[
 \min \gamma \\
 \gamma \geq f_i(y) \\
 \text{for all } y \in \{-1, 1\}^n \text{ and } i = 1, \ldots, k
 \]

- **Local Lyapunov Stability**
 \[
 V(x) \geq \|x\|^2 \quad \text{for all } \|x\| \leq 1
 \]
 \[
 \nabla V(x)^T f(x) \leq 0 \quad \text{for all } \|x\| \leq 1
 \]

All these sets are **Semialgebraic**.
Positivity on Which Sets?
Semialgebraic Sets (Defined by *Polynomial* Inequalities)

How are these sets represented???

Definition 7.
A set \(X \subset \mathbb{R}^n \) is **Semialgebraic** if it can be represented using polynomial equality and inequality constraints.

\[
X := \left\{ x : \begin{array}{c} p_i(x) \geq 0 \quad i = 1, \ldots, k \\ q_j(x) = 0 \quad j = 1, \ldots, m \end{array} \right\}
\]

If there are only equality constraints, the set is **Algebraic**.

Note: A semialgebraic set can also include \(\neq \) and \(< \).

Discrete Values

\(\{-1, 1\}^n = \{ y \in \mathbb{R}^n : y_i^2 - 1 = 0 \} \)

The Ball of Radius 1

\(\{ x : \|x\| \leq 1 \} = \{ x : 1 - x^T x \geq 0 \} \)

The representation of a set is **NOT UNIQUE**.

- Some representations are better than others...
Consider the dynamics of the rotation matrix on SO(3)

- Gives the orientation in the Body-fixed frame for a body rotating with angular velocity ω.

$$\dot{C} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} C$$

where $C = \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_7 & C_8 & C_9 \end{bmatrix} \in \mathbb{R}^{3\times3}$ which satisfies $C^T C = I$ and $\det C = 1$.

Define

$$S := \left\{ \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_7 & C_8 & C_9 \end{bmatrix} : \det(C) = 1, \ C^T C = I \right\}$$

So we would like a Lyapunov function $V(C)$ which satisfies

$$\nabla V(C)^T f(C) \leq 0 \quad \text{for all } C \text{ such that } C \in S$$
Proposition 2.

Suppose: $p(x) = Z_d(x)^T Q Z_d(x)$ for some $Q > 0$. Then $p(x) \geq 0$ for all $x \in \mathbb{R}^n$.

Recall the SOS Conditions
Corollary 8 (S-Procedure).

\[z^T F z \geq 0 \text{ for all } z \in S := \{ x \in \mathbb{R}^n : x^T G x \geq 0 \} \text{ if there exists a scalar } \tau \geq 0 \text{ such that } F - \tau G \succeq 0. \]

This works because

- \(\tau \geq 0 \) and \(z^T G z \geq 0 \) for all \(z \in S \)
- Hence \(\tau z^T G z \geq 0 \) for all \(z \in S \)

If \(F \geq \tau G \), then

\[z^T F z \geq \tau z^T G z \quad \text{for all } z \in \mathbb{R}^n \]

\[\geq 0 \quad \text{for all } z \in S \]

Now Consider Polynomials

Proposition 3.

Suppose \(\tau(x) \) is SOS (\(\geq 0 \ \forall x \)). If \(f(x) - \tau(x)g(x) \) is SOS (\(\geq 0 \ \forall x \)), then

\[f(x) \geq 0 \quad \text{for all } x \in S := \{ x : g(x) \geq 0 \} \]
Proposition 4.

Suppose $s_i(x)$ are SOS and t_i are polynomials (not necessarily positive). If

$$f(x) = s_0(x) + \sum_i s_i(x)g_i(x) + \sum_j t_j(x)h_j(x)$$

then

$$f(x) \geq 0 \quad \text{for all} \quad x \in S := \{x : g_i(x) \geq 0, h_i(x) = 0\}$$

This works because

- $s_i(x) \geq 0$ for all $z \in S$
- $g_i(x) \geq 0$ for all $z \in S$
- $h_i(x) = 0$ for all $z \in S$

Question: Is it Necessary and Sufficient???

Answer: Yes, but only if we represent S in the *right way*.

- The Dark Art of the *Positivstellensatz*!
How to Represent a Set???
A Problem of Representation and Inference

Consider how to represent a semialgebraic set:

Example: A representation of the interval $S = [a, b]$.

- A first order representation:
 \[
 \{ x \in \mathbb{R} : x - a \geq 0, \ b - x \geq 0 \}
 \]

- A quadratic representation:
 \[
 \{ x \in \mathbb{R} : (x - a)(b - x) \geq 0 \}
 \]

- We can add arbitrary polynomials which are PSD on X to the representation.
 \[
 \{ x \in \mathbb{R} : (x - a)(b - x) \geq 0, \ x - a \geq 0 \}
 \]
 \[
 \{ x \in \mathbb{R} : (x^2 + 1)(x - a)(b - x) \geq 0 \}
 \]
 \[
 \{ x \in \mathbb{R} : (x - a)(b - x) \geq 0, \ (x^2 + 1)(x - a)(b - x) \geq 0, \ (x - a)(b - x) \geq 0 \}
 \]

There are infinite ways to represent the same set

- Some Work well and others Don’t!
Why are all these representations valid?

- We are adding redundant constraints to the set.
- \(x - a \geq 0 \) and \(b - x \geq 0 \) for \(x \in [a, b] \) implies
 \[
 (x - a)(b - x) \geq 0.
 \]

- \(x^2 + 1 \) is SOS, so is obviously positive on \(x \in [a, b] \).

How are we creating these redundant constraints?

- **Logical Inference**
- Using existing polynomials which are positive on \(X \) to create new ones.

Note: If \(f(x) \geq 0 \) for \(x \in S \)
- So \(f \) is positive on \(S \) if and only if it is a valid constraint...

Big Question:
- Can ANY polynomial which is positive on \([a, b]\) be constructed this way?
Definition 9.

Given a semialgebraic set S, a function f is called a \textbf{valid inequality} on S if

$$f(x) \geq 0 \quad \text{for all } x \in S$$

\textbf{Question:} How to construct valid inequalities?

- Closed under addition: If f_1 and f_2 are valid, then $h(x) = f_1(x) + f_2(x)$ is valid.
- Closed under multiplication: If f_1 and f_2 are valid, then $h(x) = f_1(x)f_2(x)$ is valid.
- Contains all Squares: $h(x) = g(x)^2$ is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.
Definition 10.
The set of polynomials $C \subset \mathbb{R}[x]$ is called a **Cone** if

- $f_1 \in C$ and $f_2 \in C$ implies $f_1 + f_2 \in C$.
- $f_1 \in C$ and $f_2 \in C$ implies $f_1 f_2 \in C$.
- $\Sigma_s \subset C$.

Note: this is **NOT** the same definition as in optimization.
The set of inferences is a cone

Definition 11.
For any set, \(S \), the cone \(C(S) \) is the set of polynomials PSD on \(S \)

\[
C(S) := \{ f \in \mathbb{R}[x] : f(x) \geq 0 \text{ for all } x \in S \}
\]

The big question: how to test \(f \in C(S) \)??

Corollary 12.
\(f(x) \geq 0 \text{ for all } x \in S \) if and only if \(f \in C(S) \)
Suppose S is a semialgebraic set and define its *monoid*.

Definition 13. For given polynomials $\{f_i\} \subset \mathbb{R}[x]$, we define $\text{monoid}(\{f_i\})$ as the set of all products of the f_i

$$\text{monoid}(\{f_i\}) := \{ h \in \mathbb{R}[x] : h(x) = \prod f_i^{a_1}(x) f_i^{a_k}(x) \cdots f_i^{a_k}(x), a \in \mathbb{N}^k \}$$

- $1 \in \text{monoid}(\{f_i\})$
- $\text{monoid}(\{f_i\})$ is a subset of the cone defined by the f_i.
- The monoid does not include arbitrary sums of squares
The Cone of Inference

If we combine $\text{monoid} \left(\{ f_i \} \right)$ with Σ_s, we get $\text{cone}(\{ f_i \})$.

Definition 14.

For given polynomials $\{ f_i \} \subset \mathbb{R}[x]$, we define $\text{cone}(\{ f_i \})$ as

$$\text{cone}(\{ f_i \}) := \{ h \in \mathbb{R}[x] : h = \sum s_i g_i, g_i \in \text{monoid}(\{ f_i \}), s_i \in \Sigma_s \}$$

If

$$S := \{ x \in \mathbb{R}^n : f_i(x) \geq 0, i = 1 \cdots, k \}$$

$\text{cone}(\{ f_i \}) \subset C(S)$ is an approximation to $C(S)$.

- The key is that it is possible to test whether $f \in \text{cone}(\{ f_i \}) \subset C(S)$!!!
 - Sort of... (need a degree bound)
 - Use e.g. SOSTOOLS
Corollary 15.

\[h \in \text{cone}(\{f_i\}) \subset C(S) \text{ if and only if there exist } s_i, r_{ij}, \ldots \in \Sigma_s \text{ such that } \]

\[h(x) = s_0 + \sum_i s_i f_i + \sum_{i \neq j} r_{ij} f_i f_j + \sum_{i \neq j \neq k} r_{ijk} f_i f_j f_k + \ldots \]

Note we must include all possible combinations of the \(f_i \)

- A finite number of variables \(s_i, r_{ij} \).
- \(s_i, r_{ij} \in \Sigma_s \) is an SDP constraint.

This gives a sufficient condition for \(h(x) \geq 0 \) for all \(x \in S \).

- Can be tested using, e.g. SOSTOOLS
Numerical Example

Example: Show that \(h(x) = 5x - 9x^2 + 5x^3 - x^4 \) is PSD on the interval \([0, 1] = \{ x \in \mathbb{R}^n : f_1(x) = x(1 - x) \geq 0 \}\).

A single inequality \(f_1(x) = x(1 - x) \). The cone \(\text{cone}(f_1) \) only has 2 terms

\[
s_0(x) + x(1 - x)s_1(x)
\]

We find \(f \in \text{cone}(f_1) \) using \(s_0(x) = 0, s_1(x) = (2 - x)^2 + 1 \) so that

\[
h(x) = 5x - 9x^2 + 5x^3 - x^4 = 0 + ((2 - x)^2 + 1)x(1 - x)
\]

Which is a certificate of non-negativity of \(h \) on \(S = [0, 1] \)

Note: the original representation of \(S \) matters:

- If we had used \(S = \{ x \in \mathbb{R} : x \geq 0, 1 - x \geq 0 \} \), then we would have had 4 SOS variables

\[
h(x) = s_0(x) + xs_1(x) + (1 - x)s_2(x) + x(1 - x)s_3(x)
\]

The complexity can be *decreased* through judicious choice of representation.
Stengle’s Positivstellensatz

We have two big questions

- How close an approximation is $\text{cone}(\{f_i\}) \subset C(S)$ to $C(S)$?
 - Cannot always be exact since not every positive polynomial is SOS.
- Can we reduce the complexity?

Both these questions are answered by Positivstellensatz Results. Recall

$$S := \{x \in \mathbb{R}^n : f_i(x) \geq 0, \ i = 1 \cdots, k\}$$

Theorem 16 (Stengle’s Positivstellensatz).

$S = \emptyset$ if and only if $-1 \in \text{cone}(\{f_i\})$. That is, $S = \emptyset$ if and only if there exist $s_i, r_{ij}, \cdots \in \Sigma_s$ such that

$$-1 = s_0 + \sum_i s_i f_i + \sum_{i \neq j} r_{ij} f_i f_j + \sum_{i \neq j \neq k} r_{ijk} f_i f_j f_k + \cdots$$

Note that this is not exactly what we were asking.

- We would prefer to know whether $h \in \text{cone}(\{f_i\})$
- Difference is important for reasons of convexity.
Problem: We want to know whether \(f(x) > 0 \) for all \(x \in \{x : g_i(x) \geq 0\} \).

Corollary 17 (Stengle’s Positivstellensatz).

\[f(x) > 0 \text{ for all } x \in \{x : g_i(x) \geq 0\} \text{ if and only if there exist } s_i, q_{ij}, r_{ij}, \cdots \in \Sigma_s \text{ such that} \]

\[
f \left(s_{-1} + \sum_{i} q_i g_i + \sum_{i \neq j} q_{ij} g_i g_j + \sum_{i \neq j \neq k} q_{ijk} g_i g_j g_k + \cdots \right) \]

\[= 1 + s_0 + \sum_{i} s_i g_i + \sum_{i \neq j} r_{ij} g_i g_j + \sum_{i \neq j \neq k} r_{ijk} g_i g_j g_k + \cdots \]

We have to include all possible combinations of the \(g_i \)!!!

- But assumes **Nothing** about the \(g_i \)
- The worst-case scenario
- Also bilinear in \(s_i \) and \(f \) (Can’t search for both)

We can do better if we choose our \(g_i \) more carefully!
Stengle’s Weak Positivstellensatz

Non-Negativity: Considers whether $f(x) \geq 0$ for all $x \in \{x : g_i(x) \geq 0\}$.

Corollary 18 (Stengle’s Positivstellensatz).

$f(x) \geq 0$ for all $x \in \{x : g_i(x) \geq 0\}$ if and only if there exist $s_i, q_{ij}, r_{ij}, \cdots \in \Sigma_s$ and $q \in \mathbb{N}$ such that

$$f \left(s_{-1} + \sum_i q_i g_i + \sum_{i \neq j} q_{ij} g_i g_j + \sum_{i \neq j \neq k} q_{ijk} g_i g_j g_k + \cdots \right)$$

$$= f^{2q} + s_0 + \sum_i s_i g_i + \sum_{i \neq j} r_{ij} g_i g_j + \sum_{i \neq j \neq k} r_{ijk} g_i g_j g_k + \cdots$$

Lyapunov Functions are **NOT** strictly positive!

- The only P-Satz to deal with functions not *Strictly* Positive.
Schmudgen’s Positivstellensatz

If the set S is closed, bounded, then the problem can be simplified.

Theorem 19 (Schmudgen’s Positivstellesatz).

Suppose that $S = \{ x : g_i(x) \geq 0, h_i(x) = 0 \}$ is compact. If $f(x) > 0$ for all $x \in S$, then there exist $s_i, r_{ij}, \cdots \in \Sigma_s$ and $t_i \in \mathbb{R}[x]$ such that

$$f = 1 + \sum_j t_j h_j + s_0 + \sum_i s_i g_i + \sum_{i\neq j} r_{ij} g_i g_j + \sum_{i\neq j\neq k} r_{ijk} g_i g_j g_k + \cdots$$

Note that Schmudgen’s Positivstellensatz is essentially the same as Stengle’s except for a single term.

- Now we can include both f and s_i, r_{ij} as variables.
- Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).
Putinar’s Positivistellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 20 (P-Compact).

We say that \(f_i \in \mathbb{R}[x] \) for \(i = 1, \ldots, n_K \) define a **P-compact** set \(K_f \), if there exist \(h \in \mathbb{R}[x] \) and \(s_i \in \Sigma_s \) for \(i = 0, \ldots, n_K \) such that the level set \(\{ x \in \mathbb{R}^n : h(x) \geq 0 \} \) is compact and such that the following holds.

\[
 h(x) - \sum_{i=1}^{n_K} s_i(x) f_i(x) \in \Sigma_s
\]

The condition that a region be P-compact may be difficult to verify. However, some important special cases include:

- Any region \(K_f \) such that all the \(f_i \) are linear.
- Any region \(K_f \) defined by \(f_i \) such that there exists some \(i \) for which the superlevel set \(\{ x : f_i(x) \geq 0 \} \) is compact.
P-Compact is not hard to satisfy.

Corollary 21.

Any compact set can be made P-compact by inclusion of a redundant constraint of the form $f_i(x) = \beta - x^T x$ for sufficiently large β.

Thus P-Compact is a property of the *representation* and not the set.

Example: The interval $[a, b]$.

- Not Obviously P-Compact:
 \[
 \{x \in \mathbb{R} : x^2 - a^2 \geq 0, b - x \geq 0\}
 \]

- P-Compact:
 \[
 \{x \in \mathbb{R} : (x - a)(b - x) \geq 0\}
 \]
If S is P-Compact, Putinar’s Positivstellensatz dramatically reduces the complexity

Theorem 22 (Putinar’s Positivstellesatz).

Suppose that $S = \{ x : g_i(x) \geq 0, h_i(x) = 0 \}$ is P-Compact. If $f(x) > 0$ for all $x \in S$, then there exist $s_i \in \sum_s$ and $t_i \in \mathbb{R}[x]$ such that

$$ f = s_0 + \sum_i s_i g_i + \sum_j t_j h_j $$

A single multiplier for each constraint.

- We are back to the original condition
- A Good representation of the set is P-compact
Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Let

\[X := \left\{ x : p_i(x) \geq 0 \quad i = 1, \ldots, k \right\} \]

Theorem 23.

Suppose there exists a \(V \), an \(\epsilon > 0 \), and \(s_0, s_i, t_0, t_i \in \Sigma_s \) such that

\[
V(x) = s_0(x) + \sum_i s_i(x)p_i(x) + \epsilon x^T x
\]

\[
-\dot{V}(x) = -\nabla V(x)^T f(x) = t_0(x) + \sum_i t_i(x)p_i(x) + \epsilon x^T x
\]

Then the system is exponentially stable on any \(Y_\gamma := \{ x : v(x) \leq \gamma \} \) where \(Y_\gamma \subset X \).

Note: Find the largest \(Y_\gamma \) via bisection.
Local Stability Analysis

Van-der-Pol Oscillator

\[
\begin{align*}
\dot{x}(t) &= -y(t) \\
\dot{y}(t) &= -\mu(1 - x(t)^2)y(t) + x(t)
\end{align*}
\]

Procedure:

1. Use Bisection to find the largest ball on which you can find a Lyapunov function.
2. Use Bisection to find the largest level set of that Lyapunov function on which you can find a Lyapunov function. Repeat
Local Stability Analysis

First, Find the Lyapunov function

SOSTOOLS Code: Find a Local Lyapunov Function

```plaintext
> pvar x y
> mu=1; r=2.8;
> g = r - (x^2 + y^2);
> f = [-y; -mu*(1 - x^2)*y + x];
> prog=sosprogram([x y]);
> Z2=monomials([x y],0:2);
> Z4=monomials([x y],0:4);
> [prog,V]=sossosvar(prog,Z2);
> V = V + 0.0001*(x^4 + y^4);
> prog=soseq(prog,subs(V,[x, y]',[0, 0]'));
> nablaV=[diff(V,x);diff(V,y)];
> [prog,s]=sossosvar(prog,Z2);
> prog=sosineq(prog,-nablaV'*f-s*g);
> prog=sossolve(prog);
> Vn=sosgetsol(prog,V)
```

This finds a Lyapunov function which is decreasing on the ball of radius $\sqrt{2.8}$.

- Lyapunov function is of degree 4.
Next find the largest level set which is contained in the ball of radius $\sqrt{2.8}$.

```matlab
> pvar x y
> gamma=6.6;
> Vg=gamma-Vn;
> g = r - (x^2 + y^2);
> prog=sosprogram([x y]);
> Z2=monomials([x y],0:2);
> [prog,s]=sossosvar(prog,Z2);
> prog=sosineq(prog,g-s*Vg);
> prog=sossolve(prog);
```

In this case, the maximum γ is 6.6

- Estimate of the DOA will increase with degree of the variables.
\[-\dot{V}(x) - g(x) \cdot s(x) \geq 0 \quad \forall x\]

means

\[\dot{V}(x) \leq -g(x) \cdot s(x) \leq 0\]

when \(g(x) \geq 0\) (since \(s(x) \geq 0\) and \(g(x) \geq 0\) on \(x \in X\)).

- but \(||x||^2 \leq r\) implies \(g(x) \geq 0\)
- hence \(\dot{V}(x) \leq 0\) for all \(x \in B_{\sqrt{r}}\)

Likewise

\[g(x) - s(x) \cdot (\gamma - V(x)) \geq 0 \quad \forall x\]

means

\[g(x) \geq s(x) \cdot (\gamma - V(x)) \geq 0\]

whenever \(V(x) \leq \gamma\).

- So \(g(x) \geq 0\) whenever \(x \in V_\gamma\)
- But \(g(x) \geq 0\) means \(||x|| \leq \sqrt{r}\)
- So if \(x \in V_\gamma\), then \(g(x) \geq 0\) and hence \(||x|| \leq \sqrt{r}\).
- So \(V_\gamma \subset B_{\sqrt{r}}\)
An Example of Global Stability Analysis

SOSTOOLS Code: Globally Stabilizing Controller

```plaintext
> pvar w1 w2 w3
> J1=2; J2=1; J3=1;
> k1=1; k2=1; k3=1;
> u1=-k1*w1; u2=-k2*w2; u3=-k3*w3;
> f = [(J2 - J3)/J1 * w2 * w3 + u1; 
>      (J3 - J1)/J2 * w3 * w1 + u2; 
>      (J1 - J2)/J3 * w1 * w2 + u3];
> prog=sosprogram([w1 w2 w3]);
> Z=monomials([w1 w2 w3],1:2);
> [prog,V]=sossosvar(prog,Z);
> V = V + .0001 * (w1^4 + w2^4 + w3^4);
> prog=soseq(prog,subs(V,[w1; w2; w3],[0; 0; 0]));
> nablaV=[diff(V,w1); diff(V,w2); diff(V,w3)];
> prog=sosineq(prog,-nablaV'*f-4.0*V);
> prog=sossolve(prog);
> Vn=sosgetsol(prog,V)
```

\[J_1 \dot{\omega}_1 = (J_2 - J_3)\omega_2\omega_3 + u_1 \]
\[J_2 \dot{\omega}_2 = (J_3 - J_1)\omega_3\omega_1 + u_2 \]
\[J_3 \dot{\omega}_3 = (J_1 - J_2)\omega_1\omega_2 + u_3 \]
\[u_1 = -k_1\omega_1 \]
\[u_2 = -k_2\omega_2 \]
\[u_3 = -k_3\omega_3 \]

This is feasible and proves exponential stability with decay rate \(\gamma = 4 \)
An Example of Globally Stabilizing Controller Synthesis

SOSTOOLS Code: Globally Stabilizing Controller

```matlab
> pvar x1 x2 x3
> prog=sosprogram([x1 x2 x3]);
> Z4=monomials([x1 x2 x3],0:3);
> Z2=monomials([x1 x2 x3],0:3);
> [prog,k1]=sospolyvar(prog,Z4);
> [prog,k2]=sospolyvar(prog,Z4);
> u1=k1; u2=k2;
> f=[-x1+x2-x3;-x1*x3-x2+u1;-x1+u2];
> V = x1^2 + x2^2 + x3^2;
> prog=soseq(prog,subs(V,[x1, x2, x3]',[0, 0, 0]'));
> nablaV=[diff(V,x1);diff(V,x2);diff(V,x3)];
> prog=sosineq(prog,-(nablaV'*f));
> prog=sossolve(prog);
> k1n=sosgetsol(prog,k1)
> k2n=sosgetsol(prog,k2)
```

$$
\dot{x}_1 = -x_1 + x_2 - x_3 \\
\dot{x}_2 = -x_1 x_3 - x_2 + u_1 \\
\dot{x}_3 = -x_1 + u_2
$$

Find $u_1(t) = k_1(x(t))$, $u_2(t) = k_2(x(t))$
Example of Parametric Uncertainty

Recall The Spring-Mass Example

\[\ddot{y}(t) + c \dot{y}(t) + \frac{k}{m} y(t) = \frac{F(t)}{m} \]

Multiplicative Uncertainty

- \(m \in [m_-, m_+] \)
- \(c \in [c_-, c_+] \)
- \(k[k_-, k_+] \)

Questions:

- Can we do robust optimal control without the LFT framework??
- Consider static uncertainty?
 - Can we do better than Quadratic Stabilization??

General Formulation

\[\dot{x} = A(\delta)x(t) + B(\delta)u(t) \]
\[y(t) = C(\delta)x(t) + D(\delta)u(t) \]
Let's Start with Stability with Static Uncertainty

General Formulation

\[\dot{x}(t) = A(\delta)x(t) + B(\delta)u(t) \]
\[y(t) = C(\delta)x(t) + D(\delta)u(t) \]

Where \(A, B, C, D \) are rational (denominators \(d(\delta) > 0 \) for all \(\delta \in \Delta \))

Theorem 24.

Suppose there exists \(P(\delta) - \epsilon I \geq 0 \) for all \(\delta \in \Delta \) and such that

\[A(\delta)^T P(\delta) + P(\delta)A(\delta) \leq 0 \quad \text{for all } \delta \in \Delta \]

Then \(A(\delta) \) is Hurwitz for all \(\delta \in \Delta \).

Theorem 25.

Suppose there exists \(s_i, r_i \in \Sigma_s \) such that \(P(\delta) = s_0(\delta) + \sum_i s_i(\delta)g_i(\delta) \) and

\[-A(\delta)^T P(\delta) - P(\delta)A(\delta) = r_0(\delta) + \sum_i r_i(\delta)g_i(\delta) \]

Then \(A(\delta) \) is Hurwitz for all \(\delta \in \{ \delta : g_i(\delta) \geq 0 \} \).

Proof: Use \(V(x) = x^T P(\delta)x \).
Let's start with stability.

Apply this to the Spring-Mass Example

\[
\ddot{y}(t) = -c\dot{y}(t) - \frac{k}{m}y(t) = \frac{F(t)}{m}
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-c & -\frac{k}{m}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} + \begin{bmatrix}
0 \\
\frac{1}{m}
\end{bmatrix} u(t)
\]

Semi-Algebraic Form:

- \(g_1(m) = (m - m_-)(m_+ - m) \geq 0 \)
- \(g_2(c) = (c - c_-)(c_+ - c) \geq 0 \)
- \(g_3(k) = (k - k_-)(k_+ - k) \geq 0 \)

We are searching for a \(P, s_i, r_i \in \Sigma_s \) such that

\[
P(c, k, m) = s_0(c, k, m) + s_1(c, k, m)g_i(m) + s_2(c, k, m)g_2(c) + s_3(c, k, m)g_3(k)
\]

such that

\[
-mA(c, k, m)^T P(c, k, m) - P(c, k, m)mA(c, k, m)
\]

\[
= m(r_0(c, k, m) + r_1(c, k, m)g_i(m) + r_2(c, k, m)g_2(c) + r_3(c, k, m)g_3(k))
\]
SOSTOOLS does not work with Matrix-Valued Problems
You should instead download SOSMOD

SOSMOD_vMAE598 is my personal toolbox and is compatible with the code presented in these lecture notes.

- May have issues with versions of Matlab 2016a and later. Working to correct these.
- Folder Must be added to the Matlab PATH
- Also contains example scripts for the code listed in the lecture notes.

Link: [SOSMOD for download](#)
- Also on Code Ocean
SOSTOOLS Code for Robust Stability Analysis

```matlab
> pvar m c k
> Am=[0 m; -c*m -k];
> mmin=.1; mmax=1; cmin=.1; cmax=1; kmin=.1; kmax=1;
> g1=(mmax-m)(m-mmin); g2=(cmax-c)(c-cmin); g3=(kmax-k)(k-kmin);
> vartable=[m c k];
> prog=sosprogram(vartable);
> [prog,S0]=sosposmatrvar(prog,2,4,vartable);
> [prog,S1]=sosposmatrvar(prog,2,4,vartable);
> [prog,S2]=sosposmatrvar(prog,2,4,vartable);
> [prog,S3]=sosposmatrvar(prog,2,4,vartable);
> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);
> [prog,R0]=sosposmatrvar(prog,2,4,vartable);
> [prog,R1]=sosposmatrvar(prog,2,4,vartable);
> [prog,R2]=sosposmatrvar(prog,2,4,vartable);
> [prog,R3]=sosposmatrvar(prog,2,4,vartable);
> [prog,R4]=sosposmatrvar(prog,2,4,vartable);
> constr=-(Am'*P+P*Am)-m*(R0+R1*g1+R2*g2+R3*g3);
> prog=sosmateq(prog,constr);
> prog=sossolve(prog);
> Pn=sosgetsol(prog,P)
```
Now we can do Time-Varying Uncertainty

Time-Varying Formulation:
\[
\dot{x}(t) = A(\delta(t))x(t) + B(\delta(t))u(t) \quad \delta(t) \in \Delta_1 \\
y(t) = C(\delta(t))x(t) + D(\delta(t))u(t) \quad \dot{\delta}(t) \in \Delta_2
\]

Simple Example: Angle of attack \((\alpha)\)

\[
\dot{\alpha}(t) = -\frac{\rho(t)v(t)^2c_{\alpha}(\alpha(t), M(t))}{2I} \alpha(t)
\]

The time-varying parameters are:
- velocity, \(v\) and Mach number, \(M\) (\(M\) depends on Reynolds \#);
- density of air, \(\rho\);
- Also, we sometimes treat \(\alpha\) itself as an uncertain parameter.
Exponential Stability with Time-Varying Uncertainty

\[\dot{x}(t) = A(\delta(t))x(t) \]

Theorem 26.

Suppose there exists \(P(\delta) - \epsilon I \geq 0 \) for all \(\delta \in \Delta \) and such that

\[A(\delta)^T P(\delta) + P(\delta) A(\delta) + \sum_i \frac{\partial}{\partial \delta_i} P(\delta) \dot{\delta}_i \leq 0 \quad \text{for all } \delta \in \Delta_2, \quad \dot{\delta} \in \Delta_2 \]

Then \(\dot{x}(t) = A(\delta(t))x(t) \) is exponentially stable.

Proof: Use \(V(t, x) = x^T P(\delta(t))x \).

- Treat \(\delta_i \) and \(\dot{\delta}_i \) as independent (Usually not conservative).
- If \(\Delta_2 = \mathbb{R}^n \), then requires \(\frac{\partial}{\partial \delta_i} P(\delta) = 0 \) (Quadratic Stability).

Example: Gain Scheduling Choose \(K_i \) based on \(\delta \)

\[\dot{x}(t) = \left\{ (A(\delta) + B K_i)x(t) \quad \delta \in \Delta_i \right\} \]

No Bound on rate of variation! \((\Delta_2 = \mathbb{R}^n) \)
- Unless \(\delta \) depends on \(x \).
We have two cases

- **Time-Varying Parametric Uncertainty** \(\dot{x}(t) = A(\delta(t))x(t) \)
- **Static Parametric Uncertainty** \(\dot{x}(t) = A(\delta)x(t) \)

Most of the LMIs in this course can be adapted to either case using the Positivstellensatz.

- Need to be careful with TV uncertainty, however.

Popular Uses:

- **\(H_2 \) optimal control with uncertainty**
 - Makes \(H_2 \) robust (\(H_\infty \) is already robust to some extent).
 - **NOT RIGOROUS** when \(\delta(t) \) is time-varying.

- **Robust Kalman Filtering**
 - The Kalman Filter is not always stable in closed-Loop...
H₂-optimal robust control

Static Formulation

\[
\dot{x}(t) = A(\delta)x(t) + B(\delta)u(t)
\]
\[
y(t) = C(\delta)x(t) + D(\delta)u(t)
\]

H₂-optimal State Feedback Synthesis

Theorem 27.

Suppose \(\hat{P}(s, \delta) = C(\delta)(sI - A(\delta))^{-1}B(\delta) \). Then the following are equivalent.

1. \(\|S(K(\delta), P(\delta))\|_{H_2} < \gamma \) for all \(\delta \in \Delta \).

2. \(K(\delta) = Z(\delta)X(\delta)^{-1} \) for some \(Z(\delta) \) and \(X(\delta) \) such that \(X(\delta) > 0 \) for all \(\delta \in \Delta \) and

\[
\begin{bmatrix}
A(\delta) & B_2(\delta) \\
C_1(\delta)X(\delta) + D_{12}(\delta)Z(\delta)
\end{bmatrix}
\begin{bmatrix}
X(\delta) \\
Z(\delta)
\end{bmatrix}
+ \begin{bmatrix}
X(\delta) & Z(\delta)^T
\end{bmatrix}
\begin{bmatrix}
A(\delta)^T \\
B(\delta)_2^T
\end{bmatrix}
+ B_1(\delta)B_1(\delta)^T < 0
\]

\[
\begin{bmatrix}
X(\delta) \\
C_1(\delta)X(\delta) + D_{12}(\delta)Z(\delta)
\end{bmatrix}
\begin{bmatrix}
C_1(\delta)X(\delta) + D_{12}(\delta)Z(\delta)
\end{bmatrix}^T > 0
\]

\[
\text{Trace}W(\delta) < \gamma^2
\]

for all \(\delta \in \Delta \).
Lemma 28.

Suppose

\[G(\delta(t)) = \begin{bmatrix} A(\delta(t)) & B\delta(t) \\ C\delta(t) & D\delta(t) \end{bmatrix}. \]

Then \(\|G(\delta(t))\|_{\mathcal{L}(L_2)} \leq \gamma \) for all \(\delta(t) \) with \(\delta(t) \in \Delta_1 \) and \(\dot{\delta}(t) \in \Delta_2 \) if there exists a \(X(\delta) \) such that \(X(\delta) > 0 \) for all \(\delta \in \Delta_1 \) and

\[
\begin{bmatrix}
A(\delta)^T X(\delta) + X(\delta) A(\delta) + \sum_i \beta_i \frac{\partial}{\partial \delta_i} X(\delta) & X(\delta) B(\delta) \\
B(\delta)^T X(\delta) & -\gamma I
\end{bmatrix}
+ \frac{1}{\gamma} \begin{bmatrix} C(\delta)^T \\ D(\delta)^T \end{bmatrix} \begin{bmatrix} C(\delta) & D(\delta) \end{bmatrix} < 0
\]

for all \(\delta \in \Delta_1 \) and \(\beta \in \Delta_2 \).
The KYP Lemma with Time-Varying Uncertainty

\[\dot{x}(t) = A(\delta(t))x(t) + B(\delta(t))u(t) \quad \delta(t) \in \Delta_1 \]
\[y(t) = C(\delta(t))x(t) + D(\delta(t))u(t) \quad \dot{\delta}(t) \in \Delta_2 \]

Proof.
Let \(V(x, t) = x^T X(\delta(t))x \). Then

\[
\dot{V}(x(t), t) - (\gamma - \epsilon)\|u(t)\|^2 + \frac{1}{\gamma} \|y(t)\|^2 < 0
\]

\[
= \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} A(\delta)^T X(\delta) + X(\delta)A(\delta) + \sum_i \dot{\delta}_i \frac{\partial}{\partial \delta} X(\delta) & X(\delta)B(\delta) \\ B(\delta)^T X(\delta) & -(\gamma - \epsilon)I \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}
\]

\[
+ \frac{1}{\gamma} \begin{bmatrix} C(\delta)^T \\ D(\delta)^T \end{bmatrix} \begin{bmatrix} C(\delta) & D(\delta) \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}
\]

\[
\leq 0
\]
H_∞-optimal robust control with Time-Varying Uncertainty

However, Controller Synthesis is a Problem!

- Schur Complement Still works.
- Duality Doesn’t work.

Lemma 29.

Suppose

$$G(\delta(t)) = \begin{bmatrix} A(\delta(t)) & B(\delta(t)) \\ C(\delta(t)) & D(\delta(t)) \end{bmatrix}.$$

Then $\|G(\delta(t))\|_{L^2} \leq \gamma$ for all $\delta(t)$ with $\delta(t) \in \Delta_1$ and $\dot{\delta}(t) \in \Delta_2$ if there exists a $X(\delta)$ such that $X(\delta) > 0$ for all $\delta \in \Delta_1$ and

$$\begin{bmatrix} (A(\delta) + B_2(\delta)K(\delta))^T X(\delta) + X(\delta)(A(\delta) + B_2(\delta)K(\delta)) + \sum_i \beta_i \frac{\partial}{\partial \delta_i} X(\delta) & *^T & *^T \\ B_1(\delta)^T X(\delta) & -\gamma I & *^T \\ C_1(\delta) + D_{12}(\delta)K(\delta) & D_{11}(\delta) & -\gamma I \end{bmatrix} < 0$$

for all $\delta \in \Delta_1$ and $\beta \in \Delta_2$.

We fall back on iterative methods (Similar to D-K iteration)

- Optimize P, then optimize K.
- rinse and repeat.
Robust Local Stability
Search for a Parameter-Dependent Lyapunov Function

The Rayleigh Equation:

\[\ddot{y} - 2\zeta(1 - \alpha\dot{y}^2)\dot{y} + y = u \]

Uncertainty:

\[\zeta \in [1.8, 2.2] \]
\[\alpha \in [0.8, 1.2] \]

Define \(G \) by

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} = \begin{bmatrix} 2\zeta(1 - \alpha x_1^2) & x_2 \\
x_1 & 0 \end{bmatrix}
\]

Find a Lyapunov Function: \(V(y, \dot{y}, \alpha, \zeta) \)

\[V(x_1, x_2, \alpha, \zeta) \geq 0.01 \times (x_1^2 + x_2^2) \quad \forall x \in B_r, \quad \alpha, \zeta \in \Delta \]

and \(V(0, 0, \alpha, \zeta) = 0 \) and

\[\nabla_x V(x_1, x_2, \alpha, \zeta)^T f(x_1, x_2, \alpha, \zeta) \leq 0 \quad \forall x \in B_r, \quad \alpha, \zeta \in \Delta \]
SOSTOOLS Code for Robust Nonlinear Stability Analysis

```matlab
> pvar x1 x2 z a
> zmin = .8; zmax = 1.2; amin = 1.8; amax = 2.2; g1 = r - (x1^2 + x2^2);
> r = .3; g2 = (amax - a)(a - amin); g3 = (zmax - z)(z - zmin);
> f = [2 * z * (1 - a * x2^2) * x2 - x1; x1];
> vartable=[x1 x2 a z];
> prog=sosprogram(vartable);
> Z1=monomials(vartable,0:1); Z2=monomials(vartable,0:2);
> Z3=monomials(vartable,0:3);
> [prog,V0]=sossosvar(prog,Z2);
> [prog,r1]=sossosvar(prog,Z1); [prog,r2]=sossosvar(prog,Z1);
> [prog,r3]=sossosvar(prog,Z1);
> V = V0 + .001 * (x1^2 + x2^2) + g1 * r1 + g2 * r2 + g3 * r3;
> prog=soseq(prog,subs(V,[x1, x2]',[0, 0]'));
> nablaV=[diff(V,x1);diff(V,x2)];
> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);
> [prog,s1]=sossosvar(prog,Z2); [prog,s2]=sossosvar(prog,Z2);
> [prog,s3]=sossosvar(prog,Z2);
> prog=sosineq(prog,-nablaV'*f-s1*g1-s2*g2-s3*g3);
> prog=sossolve(prog);
```
Integer Programming Example

MAX-CUT

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index $x_i = -1$ or $x_j = 1$ to maximize overall cost.

- The cost if x_i and x_j do not share the same index is w_{ij}.
- The cost if they share an index is 0.
- The weight $w_{i,j}$ are given.
- Thus the total cost is

$$\frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j)$$
MAX-CUT

The optimization problem is the integer program:

$$\max_{x^2=1} \frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j)$$

The MAX-CUT problem can be reformulated as

$$\min \gamma :$$

$$\gamma \geq \max_{x^2=1} \frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j) \quad \text{for all} \quad x \in \{ x : x_i^2 = 1 \}$$

We can compute a bound on the max cost using the Nullstellensatz

$$\min_{p_i \in \mathbb{R}[x], s_0 \in \Sigma_s} \gamma :$$

$$\gamma - \frac{1}{2} \sum_{i,j} w_{i,j} (1 - x_i x_j) + \sum_i p_i(x)(x_i^2 - 1) = s_0(x)$$
Consider the MAX-CUT problem with 5 nodes

\[w_{12} = w_{23} = w_{45} = w_{15} = 0.5 \quad \text{and} \quad w_{14} = w_{24} = w_{25} = w_{34} = 0 \]

where \(w_{ij} = w_{ji} \). The objective function is

\[f(x) = 2.5 - 0.5x_1x_2 - 0.5x_2x_3 - 0.5x_3x_4 - 0.5x_4x_5 - 0.5x_1x_5 \]

We use SOSTOOLS and bisection on \(\gamma \) to solve

\[
\min_{p_i \in \mathbb{R}[x], s_0 \in \Sigma_s} \gamma : \gamma - f(x) + \sum_i p_i(x)(x_i^2 - 1) = s_0(x)
\]

We achieve a least upper bound of \(\gamma = 4 \).

However:

- we don’t know if the optimization problem achieves this objective.
- Even if it did, we could not recover the values of \(x_i \in [-1, 1] \).
Upper bounds can be used to VERIFY optimality of a cut. We Propose the Cut

- \(x_1 = x_3 = x_4 = 1 \)
- \(x_2 = x_5 = -1 \)

This cut has objective value

\[
f(x) = 2.5 - 0.5x_1x_2 - 0.5x_2x_3 - 0.5x_3x_4 - 0.5x_4x_5 - 0.5x_1x_5 = 4
\]

Thus verifying that the cut is optimal.
MAX-CUT code

```matlab
pvar x1 x2 x3 x4 x5;
vartable = [x1; x2; x3; x4; x5];
prog = sosprogram(vartable);

gamma = 4;
f = 2.5 - .5*x1*x2 - .5*x2*x3 - .5*x3*x4 - .5*x4*x5 - .5*x5*x1;

bc1 = x1^2 - 1;
bc2 = x2^2 - 1;
bc3 = x3^2 - 1;
bc4 = x4^2 - 1;
bc5 = x5^2 - 1;

for i = 1:5
    [prog, p{1+i}] = sospolyvar(prog,Z);
end;

expr = (gamma-f)+p{1}*bc1+p{2}*bc2+p{3}*bc3+p{4}*bc4+p{5}*bc5;
prog = sosineq(prog,expr);
prog = sossolve(prog);
```
The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured singular value.

\[\Delta = \{ \Delta = \text{diag}(\delta_1 I_{n_1}, \ldots, \delta_s I_{n_s} : \delta_i \in \mathbb{R}) \} \]

- \(\delta_i \) represent unknown parameters.

Definition 30.

Given system \(M \in \mathcal{L}(L_2) \) and set \(\Delta \) as above, we define the **Structured Singular Value** of \((M, \Delta)\) as

\[\mu(M, \Delta) = \frac{1}{\inf_{\Delta \in \Delta} \frac{\|\Delta\|}{I - M\Delta \text{ is singular}}} \]

The fundamental inequality we have is \(\Delta_\gamma = \{\text{diag}(\delta_i), : \sum_i \delta_i^2 \leq \gamma\} \). We want to find the largest \(\gamma \) such that \(I - M\Delta \) is stable for all \(\Delta \in \Delta_\gamma \).
The Structured Singular Value, μ

The system

\[
\dot{x}(t) = A_0 x(t) + M p(t), \quad p(t) = \Delta(t) q(t), \\
q(t) = N x(t) + Q p(t), \quad \Delta \in \Delta
\]

is stable if there exists a $P(\delta) \in \Sigma_s$ such that

\[
\dot{V} = x^T P(\delta) (A_0 x + M p) + (A_0 x + M p)^T P(\delta) x < \epsilon x^T x
\]

for all x, p, δ such that

\[
(x, p, \delta) \in \left\{ x, p, \delta : p = \text{diag}(\delta_i)(N x + Q p), \sum_i \delta_i^2 \leq \gamma \right\}
\]

Proposition 5 (Lower Bound for μ).

$\mu \geq \gamma$ if there exist polynomial $h \in \mathbb{R}[x, p, \delta]$ and $s_i \in \Sigma_s$ such that

\[
x^T P(\delta) (A_0 x + M p) + (A_0 x + M p)^T P(\delta) x - \epsilon x^T x \\
= -s_0(x, p, \delta) - (\gamma - \sum_i \delta_i^2) s_1(x, p, \delta) - (p - \text{diag}(\delta_i)(N x + Q p)) h(x, p, \delta)
\]
Recall that Hilbert’s 17th was resolved in the **affirmative** by E. Artin in 1927.

- Any PSD polynomial p is the sum, product and ratio of squared polynomials.

 $$p(x) = \frac{g(x)}{h(x)}$$

 where $g, h \in \Sigma_s$.

It was later shown by Habricht that if p is strictly positive, then we may assume $h(x) = (\sum_i x_i^2)^d$ for some d. That is,

$$(x_1^2 + \cdots + x_n^2)^d p(x) \in \Sigma_s$$

Question: Given properties of p, may we assume a structure for h?

Yes: Polya was able to show that if $p(x)$ has the structure

$$p(x) = \tilde{p}(x_i^2, \cdots, x_n^2),$$

then we may assume that s is a sum of squared monomials (prima facie SOS).

$$s(x) = \sum_{\alpha \in \mathbb{N}^n} (c_\alpha x^\alpha)^2$$

where $x^\alpha = \prod_i x_i^{\alpha_i}$.

Consider polynomials on the positive orthant:

\[X := \{ x : x_i \geq 0, \ i = 1, \cdots \} \]

Then: \(f(x_1, \cdots, x_n) > 0 \) for all \(x \in X \) iff \(f(x_1^2, \cdots, x_n^2) \geq 0 \) for all \(x \in \mathbb{R}^n \).

Polya’s result: if \(f(x_1, \cdots, x_n) > 0 \) for all \(x \in X \), then

\[
\left(\sum_i x_i^2 \right)^{d_p} f(x_1^2, \cdots, x_n^2) = \sum_{\alpha \in \mathbb{N}^n} (c_\alpha x_\alpha^2)^2
\]

for some \(d_p > 0 \).

Now making the substitution \(x_i^2 \rightarrow y_i \) and \(c_\alpha^2 \rightarrow b_\alpha \), we have the condition

Theorem 31.

If \(f(x_1, \cdots, x_n) > 0 \) for all \(x \in X \) then there exist \(b_\alpha \geq 0 \) and \(d_p \geq 0 \) such that

\[
\left(\sum_i y_i \right)^{d_p} f(y_1, \cdots, y_n) = \sum_{\alpha \in \mathbb{N}^n} b_\alpha y_\alpha^\alpha
\]

where \(d \) is the degree of polynomial \(f \).
Define the Unit Simplex:

\[\Delta := \{ x \in \mathbb{R}^n : \sum_{i=1}^{n} x_i = 1, x_i \geq 0 \} \]

Theorem 32 (Polya’s Theorem).

Suppose \(F \) is a homogeneous polynomial and \(F(x) > 0 \) for all \(x \in \Delta \). Then for a sufficiently large \(d \in \mathbb{N} \),

\[(x_1 + x_2 + \cdots + x_n)^d F(x) \]

has all its coefficients strictly positive.

The algorithmic nature was noted by Polya himself:

“The theorem gives a systematic process for deciding whether a given form \(F \) is strictly positive for positive \(x \). We multiply repeatedly by \(\sum x \), and, if the form is positive, we shall sooner or later obtain a form with positive coefficients.”

-G. Pólya, 1934
Variations - Polya’s Formulation

For example, if we have a finite number of operating points A_i, and want to ensure performance for all combinations of these points.

$$\dot{x}(t) = Ax(t) \quad \text{where} \quad A \in \left\{ \sum_i A_i \mu_i : \mu_i \geq 0, \sum_i \mu_i = 1 \right\}$$

This is equivalent to the existence of a polynomial P such that $P(\mu) > 0$ for all $\mu \in \Delta$ and such that

$$A(\mu)^T P(\mu) + P(\mu) A(\mu) < 0 \quad \text{for all} \quad \mu \in \Delta$$

where

$$A(\mu) = \sum_i A_i \mu_i$$
Variations - Polya’s Formulation

A more challenging case is if $A(\alpha)$ is nonlinear in some parameters, α.

Simple Example: Angle of attack (α)

$$\dot{\alpha}(t) = -\frac{\rho v^2 c_\alpha(\alpha, M)}{2I} \alpha(t)$$

The time-varying parameters are:

* velocity, v and Mach number, M (M depends on Reynolds #);
* density of air, ρ;
* Also, we sometimes treat α itself as an uncertain parameter.

Figure: C_M vs. α and Re #

Figure: C_M vs. Mach # and α
Parameter-dependent LMIs associated to polytopic systems (parameters lying in the simplex) as continuous-time stability \((A(\alpha)'P(\alpha) + P(\alpha)A(\alpha) < 0) \), discrete-time stability \((A(\alpha)'P(\alpha)A(\alpha) - P(\alpha) < 0) \), \(\mathcal{H}_2 \) and \(\mathcal{H}_\infty \) norms computation, controller synthesis, etc., can be put in the general form

\[
X(\alpha) = \sum \alpha_1^{k_1} \alpha_2^{k_2} \cdots \alpha_N^{k_N} (X_{k_1\cdots k_N})
\]

where \(\alpha_1^{k_1} \alpha_2^{k_2} \cdots \alpha_N^{k_N} \) are monomials and \(X_{k_1\cdots k_N} \) are matrix-valued coefficients depending affinely on the decision variables (Lyapunov matrix and possibly some slack variables).

How to check the positivity of \(X(\alpha) \)? Easy sufficient test: as \(\alpha_1^{k_1} \alpha_2^{k_2} \cdots \alpha_N^{k_N} \) are always non-negative, just impose \(X_{k_1\cdots k_N} > 0 \) (linear matrix inequality) for all monomials.

Problem: How to obtain \(X_{k_1\cdots k_N} \) systemically, for decision variables (Lyapunov matrix and slack variables) of arbitrary degrees, possibly with some Pólya’s relaxations?
Solution: With ROLMIP your problems are over, because all trick polynomial manipulations are performed for you and the LMIs are delivered automatically. For instance, consider the problem of continuous-time robust stability analysis of a polytopic system with dynamic matrix given by

\[A(\alpha) = \alpha_1 A_1 + \alpha_2 A_2, \quad A_i \in \mathbb{R}^{2 \times 2} \]

where \(A_1 \) and \(A_2 \) are given. Considering a Lyapunov matrix of degree \(g \) and \(d \) Pólya’s relaxations, we have the code:

\[
\begin{align*}
N &= 2; \\
n &= 2; \\
A &= \text{rolmipvar}\{A1,A2\},'A(\alpha)',N,1); \\
P &= \text{rolmipvar}(n,n,'P',\text{'symmetric'},N,g); \\
\text{LMIs} &= \left[\text{polya}(A'P+P*A,d) \leq 0, \quad \text{polya}(P,d) \geq 0.000001*\text{eye}(n) \right]; \\
optimize(\text{LMIs},[])
\end{align*}
\]

Polya was not alone in looking for structure on s.
Recall Schmudgen’s Positivstellensatz.

Theorem 33 (Schmudgen).

Suppose that $S = \{x : g_i(x) \geq 0\}$ is compact. If $f(x) > 0$ for all $x \in S$, then there exist $s_i, r_{ij}, \cdots \in \sum_s$ such that

$$f = s_0 + \sum_i s_i g_i + \sum_{i \neq j} r_{ij} g_i g_j + \sum_{i \neq j \neq k} r_{ijk} g_i g_j g_k + \cdots$$

Suppose that S is a **CONVEX** polytope

$$S := \{x \in \mathbb{R}^n : a_i^T x \leq b_i, \ i = 1, \cdots \}$$

Then we may assume all the s_i are positive scalars.
Variations - Handelman’s Formulation

Let $S := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \}$.

Theorem 34 (Handelman).

Suppose that $S := \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \}$ is compact and convex with non-empty interior. If $p(x) > 0$ for all $x \in S$, then there exist **CONSTANTS** $s_i, r_{ij}, \cdots > 0$ such that

$$p = s_0 + \sum_i s_i g_i + \sum_{i \neq j} r_{ij} g_i g_j + \sum_{i \neq j \neq k} r_{ijk} g_i g_j g_k + \cdots$$
Handelman’s Formulation (LP Implementation)

Example: Consider the hypercube

\[S := \{(x, y) : -1 \leq x \leq 1, \ -1 \leq y \leq 1\} \]

Now the polytope is defined by 4 inequalities

\[g_1(x, y) = -x + 1; \quad g_2(x, y) = x + 1; \quad g_3(x, y) = -y + 1; \quad g_4(x, y) = y + 1 \]

Which yields the following vector of bases

\[
\begin{bmatrix}
g_1 \\
g_2 \\
g_3 \\
g_4
\end{bmatrix} =
\begin{bmatrix}
-x + 1 \\
x + 1 \\
-y + 1 \\
y + 1 \\
x^2 - 2x + 1 \\
x^2 + 2x + 1 \\
y^2 - 2y + 1 \\
y^2 + 2y + 1 \\
x^2 + 1 \\
-x^2 + 1 \\
xy - x - y + 1 \\
-xy - x + y + 1 \\
x - y + 1 \\
xy + x - y + 1 \\
-y^2 + 1
\end{bmatrix}
\]
Handelman’s Basis (LP Implementation)

First put the function in the linear basis

\[p(x) = -(y^2 + xy + y) + 3 = \begin{bmatrix} 3 & 0 & -1 & -1 & 0 & -1 \end{bmatrix} \]

Then convert the Handelman basis to the original basis
Now the positivity constraint becomes $c_i > 0$ and

$$p(x) = \begin{bmatrix} c_1^T \\ \vdots \\ c_{13}^T \end{bmatrix} \begin{bmatrix} g_1(x) \\ \vdots \\ g_3(x)g_4(x) \end{bmatrix}.$$

Therefore, substituting the expressions of the previous slide
Finally, we have that positivity of p can be expressed as the search for $c_i > 0$ such that

$$
\begin{bmatrix}
1 & -1 \\
1 & 1 \\
1 & -1 \\
1 & 1 \\
1 & -2 & 1 \\
1 & 2 & 1 \\
1 & -2 & 1 \\
1 & 2 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
c_1 \\
\vdots \\
c_{13}
\end{bmatrix}
=
\begin{bmatrix}
3 \\
0 \\
-1 \\
-1 \\
0 \\
-1
\end{bmatrix}
$$

Which is of the form $A^T x = b$ in variables $x > 0$.

Recall: Optimization over the positive orthant is called *Linear Programming*.

- b is determined by the coefficients of the polynomial, p
- b may itself be a variable if we are searching over positive polynomials.
Handelman’s Basis (LP Implementation)

For the polynomial

\[p(x) = -(y^2 + xy + y) + 3 = \begin{bmatrix} 3 & 0 & -1 & -1 & 0 & -1 \end{bmatrix} \]

The Linear Program is feasible with

\[x = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \]

This corresponds to the form

\[
\begin{align*}
p(x) &= g_3(x)g_4(x) + g_2(x)g_4(x) + g_1(x) \\
&= (-y^2 + 1) + (-xy + x - y + 1) + (-x + 1) \\
&= -y^2 - xy - y + 3
\end{align*}
\]
Problems with Interior ZEROS!!!

Failure of Handelman

Now consider the polynomial

\[p(x) = x^2 + y^2 = [0 \ 0 \ 0 \ 0 \ 1 \ 1][1 \ x \ y \ xy \ x^2 \ y^2]^T \]

Clearly, \(p(x, y) \geq 0 \) for all \((x, y) \in S\). However the LP is NOT feasible. Consider the point \((x, y) = (0, 0)\). Then \(p(0, 0) = 0 \) and

\[
p(0) = \begin{bmatrix} 0 \\ 0 \\ x \\ y \\ xy \\ x^2 \\ y^2 \end{bmatrix}_{(x,y) = 0}^T = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}^T = \begin{bmatrix} c_1 \\ \vdots \\ c_{13} \end{bmatrix}^T = \begin{bmatrix} -x + 1 \\ x + 1 \\ -y + 1 \\ y + 1 \\ x^2 - 2x + 1 \\ x^2 + 2x + 1 \\ y^2 - 2y + 1 \\ y^2 + 2y + 1 \\ -x^2 + 1 \\ xy - x - y + 1 \\ -xy - x + y + 1 \\ -xy + x - y + 1 \\ -y^2 + 1 \end{bmatrix}_{(x,y) = (0,0)}^T
\]

Which implies \(\sum_i c_i = 0 \). Since the \(c_i \geq 0 \), this means \(c = 0 \) - NOT FEASIBLE!
Variations - Handelman’s Formulation

Conclusion: For many representations, the strict positivity is necessary.

- Polya’s representation precludes interior-point zeros.
- Handelman's representation precludes interior-point zeros.
- Bernstein’s representation precludes interior-point zeros.

In each of these cases, we may have zeros at vertices of the set.

- This makes searching for a Lyapunov function impossible.

 - Must be positive on a neighborhood of the $x = 0$ with $V(0) = 0$.

One Solution: Partition the space so that the zero point is a vertex of each set.