Full-State Feedback of Delayed Systems using SOS: A New Theory of Duality

Matthew M. Peet Arizona State University Tempe, AZ USA

International Federation of Automatic Control Workshop on Time-Delay Systems Grenoble, France

February 4, 2013

Control of Linear Systems with Delays

Consider an autonomous linear Discrete-Time system.

$$\dot{x}(t) = A_0 x(t) + \sum_{i=1}^{K} A_i x(t - \tau_i) + B u(t)$$
 for all $t \ge 0$

Stability Analysis of linear discrete-delay systems is a CLOSED PROBLEM.

- Lets move on to optimal control.
- Analysis of PDEs and other DPS is still open

We would like to use LMI and SOS methods to design controllers for this system.

- LMI methods optimize positive matrices
- SOS methods optimize positive polynomials

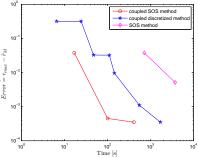


Figure: Comparison of asymptotic algorithms for maximum stable delay

Differential Form of Delay System

A linear time-delay system can be represented without delay as the interconnection of an ODE and a simple transport PDE with point actuation and point observation.

ODE: The system G_1 $\dot{x}_1(t) = Ax_1(t) + Bu_1(t)$ (A, B, C, D) $y_1(t) = Cx_1(t) + Du_1(t)$ $\left| \begin{array}{c|c} A & B \\ \hline C & D \end{array} \right| \left| \begin{array}{c|c} A_0 & [A_1 & \cdots & A_n] \\ \hline I & 0 \end{array} \right|$ **PDE:** The system G_2 $\frac{\partial}{\partial t}x_2(t,s) = \frac{\partial}{\partial s}x_2(t,s) \quad x_2(t,0) = u_2(t),$ G.,

Of course, the solution is just $x_2(t, s) = u_2(t - s)$.

Operator Representation

Solving for u and y, we get the differential operator

 $\dot{x}(t) = \mathcal{A}x(t)$

where

$$\left(\mathcal{A}x\right)(s) = \begin{bmatrix} A_0 x_1 + \sum_{i=1}^{K} A_i x_2(-\tau_i) \\ \frac{d}{ds} x_2(s) \end{bmatrix}.$$

and where the combined state is $x \in X := \mathbb{R}^n \times L_2$ with inner product $\langle u, v \rangle = \langle u_1, y_1 \rangle_{\mathbb{R}^n} + \langle u_2, y_2 \rangle_{L_2}.$

Let \mathcal{A} be the infinitesimal generator of a \mathcal{C}_0 semigroup $T(t) : L_2 \to L_2$ on Hilbert space X with domain $\mathcal{D}(A) := \{x \in \mathbb{R}^n \times W^2, x_1 = x_2(0)\}.$

• $\mathcal{D}(A)$ defines properties of the solution.

Theorem 1 (e.g. Curtain and Zwart).

 $T(t):X\to X$ is exponentially stable if and only if there exists a positive linear operator, P, such that

$$\langle Az, Pz \rangle_X + \langle Pz, Az \rangle_X = -\langle z, z \rangle_X$$
 for all $z \in \mathcal{D}(A)$

Controller Synthesis

Now suppose we add an input to the time-delay system

$$\dot{x}_1(t) = A_0 x_1(t) + \sum_{i=1}^K A_i x_2(t, -\tau_i) + Bu(t)$$

In differential form, this is

$$\dot{x}(t) = \mathcal{A}x(t) + \mathcal{B}u(t)$$

where $\mathcal{B} = \begin{bmatrix} B \\ 0 \end{bmatrix}$ and $u(t) \in \mathbb{R}^m.$

Static State-Feedback u(t) = Kx(t).

- K can be any operator $K : \mathbb{R}^n \times L_2 \to \mathbb{R}^m$.
- Here recall the state of a TDS is $X = \mathbb{R}^n \times L_2$.

This approach is in contrast to output feedback of the form

$$u(t) = Kx(t)$$
 or $u(t) = Kx(t - \tau)$.

We will return to this subject later.

M. Peet

An Intractable Controller Synthesis Condition

Lemma 2.

Suppose that $\dot{x} = Ax$ generates a strongly continuous semigroup on L_2 with domain $\mathcal{D}(A)$ and $B: U \to \mathcal{D}(A)$. Further suppose there exists a positive operator $P: L_2 \to L_2$ which is self-adjoint with respect to the L_2 inner product and an operator $K: \mathcal{D}(A) \to U$ such that

 $\langle (P\mathcal{A} + PBK) x, x \rangle + \langle x, (P\mathcal{A} + PBK) x \rangle \leq -\langle x, x \rangle$

for all $x \in X$. Then $\dot{x}(t) = (\mathcal{A} + BK) x$ generates an exponentially stable semigroup.

The theorem requires the existence of two variables

- The Lyapunov operator, P
- The Controller, K

The constraints have a bilinear term $PBK,\,{\rm making}$ the conditions difficult to verify using current algorithms.

We need the dual formulation:

$$AP + PA^* + BKP + PK^*B^* < 0$$

Theorem 3.

Suppose that \mathcal{A} generates a strongly continuous semigroup on L_2 with domain $\mathcal{D}(A)$. Further suppose there exists a positive operator $P : \mathcal{D}(A) \to \mathcal{D}(A)$ which is self-adjoint with respect to L_2 and

$$\langle \mathcal{A}Px, x \rangle + \langle x, \mathcal{A}Px \rangle \le -\langle x, x \rangle$$

for all $x \in \mathcal{D}(A)$. Then the dynamical system $\dot{x}(t) = \mathcal{A}x$ generates an exponentially stable semigroup.

The key constraints on P are

- Self-Adjoint $\langle Px, y \rangle = \langle x, Py \rangle$ for any $x, y \in L_2$.
- **Positive** $\langle x, Px \rangle > 0$ for any $x \neq 0$.
- Invertible We need to be able to find the inverse.
- ***Preserves the Space*** must map $\mathcal{D}(A) \to \mathcal{D}(A)$.
 - This is harder than the Curtain+Zwart primal condition.

Proof Outline

Consider an operator P > 0, with

$$\langle APz, z \rangle + \langle z, PAz \rangle = -\langle z, z \rangle$$
 for all $z \in \mathcal{D}(A)$

Since $P: \mathcal{D}(A) \to \mathcal{D}(A)$ is a positive operator, it has a positive inverse $P^{-1}: \mathcal{D}(A) \to \mathcal{D}(A)$.

Thus for any $y \in \mathcal{D}(A)$, let $x = P^{-1}y \in \mathcal{D}(A)$. Then y = Px and

$$\begin{split} \langle \mathcal{A}y, P^{-1}y \rangle + \langle P^{-1}y, \mathcal{A}y \rangle \\ &= \langle \mathcal{A}Px, x \rangle + \langle x, \mathcal{A}Px \rangle \\ &\leq -\langle x, x \rangle = -\langle P^{-1}y, P^{-1}y \rangle \\ &\leq -\alpha \langle y, y \rangle \end{split}$$

Problem: What is the structure of the operator P? **PDE and Delay Systems:** Many transport and diffusion systems are stable iff there exists some P > 0 with $\mathcal{A}^*P + P\mathcal{A} < 0$ where

$$(Px)(s) = M(s)x(s) + \int_{-\tau_K}^0 N(s,\theta)x(\theta)d\theta.$$

This P defines the "complete-quadratic functional"

$$V(x) = \langle Px, x \rangle = \int_{-\tau_K}^0 x(s)^T M(s) x(s) + \int_{-\tau_K}^0 \int_{-\tau_K}^0 x(s)^T N(s, \theta) x(\theta) ds d\theta$$

Unfortunately,

• This operator does not map $\mathcal{D}(A) \to \mathcal{D}(A)$.

A Class of Structure-Preserving Operators

In order to ensure that $P:\mathcal{D}(A)\to\mathcal{D}(A),$ and $P=P^*,$ we suppose that P has the form

$$(Px)(s) := \begin{bmatrix} (\bar{P}x)(0) \\ (\bar{P}x)(s) \end{bmatrix} = \begin{bmatrix} (\tau Q_2(0,0) + Q_1(0))x_1 + \int_{-\tau}^0 Q_2(0,s)x_2(s)ds \\ \tau Q_2(s,0)x_2(0) + Q_1(s)x_2(s) + \int_{-\tau}^0 Q_2(s,\theta)x_2(\theta)d\theta \end{bmatrix}$$

Where

$$(\bar{P}x)(x) = \tau Q_2(s,0)x_2(0) + Q_1(s)x_2(s) + \int_{-\tau}^0 Q_2(s,\theta)x_2(\theta)d\theta$$

for some continuous functions Q_1 and Q_2 .

Lemma 4.

Suppose that $Q_2(s,\theta) = Q_2(\theta,s)^T$ and $Q_1(s) \in \mathbb{S}^n$. Then P maps $\mathcal{D}(A) \to \mathcal{D}(A)$ and is self-adjoint with respect to L_2 .

Note:
$$(P^{-1}x)(s) = \begin{bmatrix} (\bar{P}^{-1}x)(0) \\ (\bar{P}^{-1}x)(s) \end{bmatrix}$$

Previous Work

SDP and sum-of-Squares Conditions

In previous work we gave conditions on M and N.

Theorem 5.

Let M be piecewise-continuous, then following are equivalent

1.
$$\int_{-h}^{0} \begin{bmatrix} x(0) \\ x(s) \end{bmatrix}^{T} M(s) \begin{bmatrix} x(0) \\ x(s) \end{bmatrix} ds \ge \epsilon ||x||^{2}$$

2.
$$\int_{-h}^{0} T(s) ds = 0 \quad \text{and} \quad M(s) + \begin{bmatrix} T(s) & 0 \\ 0 & 0 \end{bmatrix} \succeq \epsilon' I \text{ for some } T$$

Theorem 6 (Denoted $N \in \Sigma_k$ **).**

Suppose N(s,t) is a polynomial of degree 2d and Z_d is a polynomial basis of degree d. The following are equivalent:

•
$$\int_{-h}^{0} \int_{-h}^{0} x(s)^{T} N(s,t) x(t) ds dt \ge 0 \quad \text{for all } x \in \mathcal{C}$$

• There exists a $Q \ge 0$ such that $N(s,t) + N(t,s)^T = Z_d(s)^T Q Z_d(t)$

A Dual LMI for stability via SOS

Theorem 7.

Suppose there exist polynomials Q_1, Q_2, T such that the following hold

$$\begin{bmatrix} \tau Q_2(0,0) + Q_1(0) & \tau Q_2(0,s) \\ \tau Q_2(s,0) & Q_1(s) \end{bmatrix} + \begin{bmatrix} T(s) & 0 \\ 0 & 0 \end{bmatrix} - \epsilon I \in \Sigma_s, \\ - \begin{bmatrix} S_{11} + S_{11}^T & *^T & *^T \\ S_{12}^T & S_{22} & *^T \\ S_{13}(s)^T & 0 & \dot{Q}_1(s) \end{bmatrix} + \begin{bmatrix} U_{11}(s) & U_{21}(s)^T & 0^T \\ U_{21}(s) & U_{22}(s) & 0^T \\ 0 & 0 & 0 \end{bmatrix} - \epsilon I \in \Sigma_s, \\ S_{11} = A_0(\tau Q_2(0,0) + Q_1(0)) + \tau A_1 Q_2(-\tau,0) + \frac{1}{2\tau} Q_1(0), \quad S_{12} = A_1 Q_1(-\tau), \\ S_{22} = -\frac{1}{\tau} Q_1(-\tau), \quad S_{13}(s) = \tau A_0 Q_2(0,s) + \tau A_1 Q_2(-\tau,s) + \tau \dot{Q}_2(s,0)^T, \\ \int_{-\tau}^0 \begin{bmatrix} U_{11}(s) & *^T \\ U_{21}(s) & U_{22}(s) \end{bmatrix} ds = 0, \qquad \int_{-\tau}^0 T(s) ds = 0, \\ \frac{d}{ds} Q_2(s,\theta) + \frac{d}{d\theta} Q_2(s,\theta) \in \Sigma_k, \qquad Q_2(s,\theta) \in \Sigma_k. \end{cases}$$

Then the system defined by $\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau)$ is exponentially stable.

Consider the simple delayed system

$$\dot{x}(t) = -x(t-\tau)$$

which is known to be stable for $\tau \in [0, \frac{\pi}{2}]$.

- The dual stability condition is only able to prove stability for $\tau \in [0, .7]$.
 - ► Required polynomials of degree 8
- Primal condition using SOS yields $\tau = \frac{\pi}{2}$ to 6 decimal places.
- Other system work better, but a gap remains.
- A result of structure imposed on the operator.

However, controllers based on this operator are not so conservative.

Again, we would like to add a controller

$$\dot{x}_1(t) = A_0 x_1(t) + \sum_{i=1}^K A_i x_2(t, -\tau_i) + Bu(t)$$

Static State-Feedback u(t) = Kx.

- Recall the state of a TDS is $X = \mathbb{R}^n \times L_2$.
- Hence we can expect $K : \mathbb{R}^n \times L_2 \to \mathbb{R}^m$.

Corollary 8 (Full-State Feedback).

Suppose that $\dot{x} = Ax$ generates a strongly continuous semigroup on L_2 with domain $\mathcal{D}(A)$ and $B: U \to \mathcal{D}(A)$. Further suppose there exists a positive operator $P: \mathcal{D}(A) \to \mathcal{D}(A)$ which is self-adjoint with respect to the L_2 inner product and an operator $Z: \mathcal{D}(A) \to U$ such that

 $\langle (\mathcal{A}P + BZ) x, x \rangle + \langle x, (\mathcal{A}P + BZ) x \rangle \leq -\langle x, x \rangle$

for all $x \in X$. Let $K = ZP^{-1}$. Then the dynamical system $\dot{x}(t) = (A + BK)x$ generates an exponentially stable semigroup.

Recall the question of controller

$$\dot{x}_1(t) = A_0 x_1(t) + \sum_{i=1}^K A_i x_2(t, -\tau_i) + B u(t)$$

Static State-Feedback: u(t) = Kx.

- K is recovered as $K = ZP^{-1}$.
- Hence structure of $K : \mathbb{R}^n \times L_2 \to \text{is inherited from } P^{-1} \text{ and } Z$.
- Let

$$(Zx)(s) = Z_0 x_1 + Z_1 x_2(-\tau) + \int_{-\tau}^0 Z_2(s) x_2(s) ds$$

But what is the structure of P^{-1} ???

Previously (TDS 2009): An explicit inverse of the positive operator P > 0.

Theorem 9.

Consider the linear operator P defined by

$$Px(s) = M(s)x(s) + \int_{I} N(s,\theta)x(\theta)d\theta,$$

where M(s) > 0 for all $s \in I$ and N has a representation $N(s,\theta) = Z(s)^T R Z(\theta)$ where R > 0. Define the linear operator \hat{P} by

$$\hat{P}x(s) = M(s)^{-1}x(s) + \int_{I} \hat{N}(s,\theta)x(\theta)d\theta$$

Where

$$\begin{split} \hat{N}(s,\theta) &= M(s)^{-1}Z(s)^{T}QZ(\theta)M(\theta)^{-1} \qquad Q = -R(S^{-1}+R)^{-1}S^{-1} \\ S &= \int_{I} Z(s)M(s)^{-1}Z(s)^{T}ds. \end{split}$$

Then $\hat{P}Px = P\hat{P}x = x$ for any integrable function x.

However, in this paper, our operator has an extra term:

$$(Px)(s) = \tau Q_2(s,0)x(0) + Q_1(s)x(s) + \int_{-\tau}^{0} Q_2(s,\theta)x(\theta)d\theta$$

M. Peet

Theorem 10 (Expanded Operator Inversion Formula).

Consider

$$(Px)(s) := L(s)x(0) + M(s)x(s) + \int_I N(s,\theta)x(\theta) \, d\theta$$

where M(s) > 0 for all $s \in I$ and N has a representation $N(s,\theta) = Z(s)^T T Z(\theta)$ where T > 0. Then $(P^{-1}x)(s) := Y_0(s)x(0) + Y_1(s)x(s) + \int_I Y_2(s,\theta)x(\theta) \, d\theta.$

where

$$\begin{split} Y_0(s) &= -H(s)(I+J)^{-1}M^{-1}(0), \quad Y_2(s,\theta) = R(s,\theta) - H(s)(I+J)^{-1}R(0,\theta), \\ Y_1(s) &= M^{-1}(s), \qquad H(s) = M^{-1}(s)L(s) + \int_I R(s,\theta)L(\theta) \, d\theta, \\ R(s,\theta) &= M(s)^{-1}Z(s)^T Q Z(\theta) M(\theta)^{-1}, \qquad Q = -T(S^{-1}+T)^{-1}S^{-1}, \\ S &= \int_I Z(s)M(s)^{-1}Z(s)^T ds, \qquad J := Q(0)K(0) + \int_I R(0,s)K(s) \, ds. \end{split}$$

- This formula requires $\rho(J) < 1$.
- This formula can be implemented in Matlab/Maple/Mathematica.

A Full-State Feedback Controller

Now we know what the controller $K = ZP^{-1}$ will look like! Lyapunov Operator:

$$(\bar{P}^{-1}x)(s) = Y_0(s)x_1 + Y_1(s)x_2(s) + \int_{-\tau}^0 Y_2(s,\theta)x(\theta)d\theta$$

Pseudo-Variable, *Z*:

$$(Zx)(s) = Z_0 x_1 + Z_1 x_2(-\tau) + \int_{-\tau}^0 Z_2(s) x_2(s) ds$$

Then the controller u(t) has the form:

$$u(t) = Kx = K_0 x_1(t) + K_1 x_2(t-\tau) + \int_{-\tau}^0 K_2(s) x_2(t+s) ds$$

<u>_</u>

where

$$K_0 = Z_0 Y_0(0) + Z_1 Y_0(-\tau) + \int_{-\tau}^{0} Z_2(s) Y_0(s) ds + Z_0 Y_1(0)$$

$$K_1 = Z_1 Y_1(-\tau)$$

$$K_2(s) = Z_0 Y_2(0,s) + Z_1 Y_2(-\tau,s) + Z_2(s) Y_1(s) + \int_{-\tau}^{0} Z_2(\theta) Y_2(\theta,s) d\theta$$

Contrast with output feedback forms u(t) = Kx(t) or $u(t) = Kx(t - \tau)$.

n

Full-state Feedback Control: An LMI via SOS

Theorem 11.

Suppose there exist matrices Z_0 , Z_1 and polynomials Q_1, Q_2, Z_2, U, T such that the following hold $\begin{bmatrix} \tau Q_2(0,0) + Q_1(0) + T(s) & \tau Q_2(0,s) \\ \tau Q_2(s,0) & Q_1(s) \end{bmatrix} - \epsilon I \in \Sigma_s,$ $-\begin{bmatrix} S_{11}+S_{11}^T+L_{11}+L_{11}^T & *^T & *^T \\ S_{21}+L_{12}^T & S_{22} & *^T \\ S_{31}(s)+L_{13}(s)^T & 0 & \dot{Q}_1(s) \end{bmatrix} + \begin{bmatrix} U_{11}(s) & U_{21}(s)^T & 0 \\ U_{21}(s) & U_{22}(s) & 0 \\ 0 & 0 & 0 \end{bmatrix} - \epsilon I \in \Sigma_s,$ $S_{11} = A_0(\tau Q_2(0,0) + Q_1(0)) + \tau A_1 Q_2(-\tau,0) + \frac{1}{2\tau} Q_1(0), \qquad S_{21} = Q_1(-\tau)^T A_1^T,$ $S_{22} = -\frac{1}{\tau}Q_1(-\tau), \qquad S_{31}(s) = \tau Q_2(0,s)^T A_0^T + \tau Q_2(-\tau,s)^T A_1^T + \tau \dot{Q}_2(s,0),$ $L_{11} = B_0 Z_0, \qquad L_{12} = B_0 Z_1, \qquad L_{13} = \tau B_0 Z_2(s)$ $\int_{-\infty}^{0} \begin{bmatrix} U_{11}(s) & *^{T} \\ U_{21}(s) & U_{22}(s) \end{bmatrix} ds = 0, \qquad \int_{-\infty}^{0} T(s) ds = 0,$ $\frac{d}{ds}Q_2(s,\theta) + \frac{d}{d\theta}Q_2(s,\theta) \in \Sigma_k,$ $Q_2(s,\theta) \in \Sigma_k.$

Then $\dot{x}(t) = A_0 x(t) + A_1 x(t - \tau) + B_0 u(t)$ is full-state feedback stabilizable.

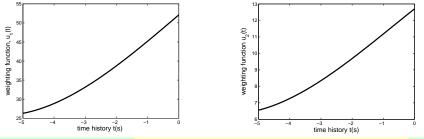
Full-state Feedback Controller: Numerical Example

Consider a numerical example.

$$\dot{x}(t) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} -2 & -.5 \\ 0 & -1 \end{bmatrix} x(t-\tau) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

Using a value of $\tau=5s,$ we compute the following controller:

$$\begin{aligned} u(t) &= \begin{bmatrix} -3601 \\ -944 \end{bmatrix}^T x(t) + \begin{bmatrix} -.00891 \\ .872 \end{bmatrix}^T x(t-\tau) \\ &+ \int_{-5}^0 \begin{bmatrix} 52.1 + 6.98s + .00839s^2 - .0710s^3 \\ 12.7 + 1.50s - .0407s^2 - .0190s^3 \end{bmatrix}^T x(t+s)ds \end{aligned}$$



M. Peet

Numerical Example

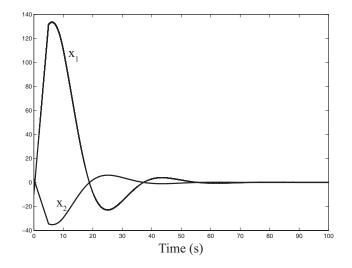


Figure: Trajectory of a delayed system ($\tau = 5s$) with full-state feedback

Conclusions:

- A Dual approach to controller synthesis
 - Convexifies the problem
 - Can be applied to any Lyapunov-Krasovskii-based approach.
 - NOT limited to SOS.
 - Biggest technical hurdle is operator inversion.

Numerical Code Produced:

- Operator Inversion Code
 - Code in Mathematica
 - Complicated multi-state systems require polynomial approximation before inversion of M(s) > 0 as per Theorem 9.

Available for download at http://control.asu.edu

- Practical Implications
 - First numerical solution to Full-State Feedback of multi-state delayed systems.

- Controller Synthesis Code
 - Uses DelayTools toolbox of functions
 - Coupled with Mathematica Code (Must be run separately)
- Simulation Code
 - Approximates distributed delay with 10 discrete delays
 - Very slow for large delays