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Control of Linear Systems with Delays

Consider an autonomous linear Discrete-Time system.

ẋ(t) = A0x(t) +

K∑
i=1

Aix(t− τi) +Bu(t) for all t ≥ 0

Stability Analysis of linear discrete-delay systems
is a CLOSED PROBLEM.

• Lets move on to optimal control.

• Analysis of PDEs and other DPS is still open.

We would like to use LMI and SOS methods to
design controllers for this system.

• LMI methods optimize positive matrices

• SOS methods optimize positive polynomials
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Differential Form of Delay System

A linear time-delay system can be represented without delay as the
interconnection of an ODE and a simple transport PDE with point actuation
and point observation.

ODE: The system G1

ẋ1(t) = Ax1(t) +Bu1(t)

y1(t) = Cx1(t) +Du1(t)[
A B
C D

] [
A0

[
A1 · · · An

]
I 0

]
PDE: The system G2

∂

∂t
x2(t, s) =

∂

∂s
x2(t, s) x2(t, 0) = u2(t),

y2(t) =

x2(−τ1)
...

x2(−τK)


Of course, the solution is just x2(t, s) = u2(t − s).
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Operator Representation

Solving for u and y, we get the differential operator

ẋ(t) = Ax(t)

where
(Ax) (s) =

[
A0x1 +

∑K
i=1Aix2(−τi)

d
dsx2(s)

]
.

and where the combined state is x ∈ X := Rn × L2 with inner product
〈u, v〉 = 〈u1, y1〉Rn + 〈u2, y2〉L2

.

Let A be the infinitesimal generator of a C0 semigroup T (t) : L2 → L2 on
Hilbert space X with domain D(A) := {x ∈ Rn ×W 2 , x1 = x2(0)}.
• D(A) defines properties of the solution.

Theorem 1 (e.g. Curtain and Zwart).

T (t) : X → X is exponentially stable if and only if there exists a positive linear
operator, P , such that

〈Az, Pz〉X + 〈Pz,Az〉X = −〈z, z〉X for all z ∈ D(A)
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Controller Synthesis

Now suppose we add an input to the time-delay system

ẋ1(t) = A0x1(t) +

K∑
i=1

Aix2(t,−τi) +Bu(t)

In differential form, this is

ẋ(t) = Ax(t) + Bu(t)

where B =

[
B
0

]
and u(t) ∈ Rm.

Static State-Feedback u(t) = Kx(t).

• K can be any operator K : Rn × L2 → Rm.

• Here recall the state of a TDS is X = Rn × L2.

This approach is in contrast to output feedback of the form

u(t) = Kx(t) or u(t) = Kx(t− τ).

We will return to this subject later.
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An Intractable Controller Synthesis Condition

Lemma 2.

Suppose that ẋ = Ax generates a strongly continuous semigroup on L2 with
domain D(A) and B : U → D(A). Further suppose there exists a positive
operator P : L2 → L2 which is self-adjoint with respect to the L2 inner product
and an operator K : D(A)→ U such that

〈(PA+ PBK)x, x〉+ 〈x, (PA+ PBK)x〉 ≤ −〈x, x〉

for all x ∈ X. Then ẋ(t) = (A+BK)x generates an exponentially stable
semigroup.

The theorem requires the existence of two variables
• The Lyapunov operator, P
• The Controller, K

The constraints have a bilinear term PBK, making the conditions difficult to
verify using current algorithms.

We need the dual formulation:

AP + PA∗ +BKP + PK∗B∗ < 0
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Dual Stability Condition

Theorem 3.

Suppose that A generates a strongly continuous semigroup on L2 with domain
D(A). Further suppose there exists a positive operator P : D(A)→ D(A)
which is self-adjoint with respect to L2 and

〈APx, x〉+ 〈x,APx〉 ≤ −〈x, x〉

for all x ∈ D(A). Then the dynamical system ẋ(t) = Ax generates an
exponentially stable semigroup.

The key constraints on P are

• Self-Adjoint - 〈Px, y〉 = 〈x, Py〉 for any x, y ∈ L2.

• Positive - 〈x, Px〉 > 0 for any x 6= 0.

• Invertible - We need to be able to find the inverse.

• ***Preserves the Space*** - must map D(A)→ D(A).
I This is harder than the Curtain+Zwart primal condition.
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Proof Outline

Consider an operator P > 0, with

〈APz, z〉+ 〈z, PAz〉 = −〈z, z〉 for all z ∈ D(A)

Since P : D(A)→ D(A) is a positive operator, it has a positive inverse
P−1 : D(A)→ D(A).

Thus for any y ∈ D(A), let x = P−1y ∈ D(A). Then y = Px and

〈Ay, P−1y〉+ 〈P−1y,Ay〉
= 〈APx, x〉+ 〈x,APx〉
≤ −〈x, x〉 = −〈P−1y, P−1y〉
≤ −α〈y, y〉
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A Parametrization of Operators

Problem: What is the structure of the operator P?
PDE and Delay Systems: Many transport and diffusion systems are stable iff
there exists some P > 0 with A∗P + PA < 0 where

(Px)(s) = M(s)x(s) +

∫ 0

−τK
N(s, θ)x(θ)dθ.

This P defines the “complete-quadratic functional”

V (x) = 〈Px, x〉 =

∫ 0

−τK
x(s)TM(s)x(s) +

∫ 0

−τK

∫ 0

−τK
x(s)TN(s, θ)x(θ)dsdθ

Unfortunately,

• This operator does not map D(A)→ D(A).
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A Class of Structure-Preserving Operators

In order to ensure that P : D(A)→ D(A), and P = P ∗, we suppose that P has
the form

(Px)(s) :=

[
(P̄ x)(0)
(P̄ x)(s)

]
=

[
(τQ2(0, 0) +Q1(0))x1 +

∫ 0

−τ Q2(0, s)x2(s)ds

τQ2(s, 0)x2(0) +Q1(s)x2(s) +
∫ 0

−τ Q2(s, θ)x2(θ)dθ

]

Where

(P̄ x)(x) = τQ2(s, 0)x2(0) +Q1(s)x2(s) +

∫ 0

−τ
Q2(s, θ)x2(θ)dθ

for some continuous functions Q1 and Q2.

Lemma 4.

Suppose that Q2(s, θ) = Q2(θ, s)T and Q1(s) ∈ Sn. Then P maps
D(A)→ D(A) and is self-adjoint with respect to L2.

Note: (P−1x)(s) =

[
(P̄−1x)(0)
(P̄−1x)(s)

]
.
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Previous Work
SDP and sum-of-Squares Conditions

In previous work we gave conditions on M and N .

Theorem 5.

Let M be piecewise-continuous, then following are equivalent

1.

∫ 0

−h

[
x(0)
x(s)

]T
M(s)

[
x(0)
x(s)

]
ds ≥ ε‖x‖2

2.

∫ 0

−h
T (s)ds = 0 and M(s) +

[
T (s) 0

0 0

]
� ε′I for some T

Theorem 6 (Denoted N ∈ Σk).

Suppose N(s, t) is a polynomial of degree 2d and Zd is a polynomial basis of
degree d. The following are equivalent:

•
∫ 0

−h

∫ 0

−h
x(s)TN(s, t)x(t)dsdt ≥ 0 for all x ∈ C

• There exists a Q ≥ 0 such that N(s, t) +N(t, s)T = Zd(s)
TQZd(t)
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A Dual LMI for stability via SOS

Theorem 7.

Suppose there exist polynomials Q1, Q2, T such that the following hold[
τQ2(0, 0) +Q1(0) τQ2(0, s)

τQ2(s, 0) Q1(s)

]
+

[
T (s) 0

0 0

]
− εI ∈ Σs,

−

S11 + ST11 ∗T ∗T
ST12 S22 ∗T

S13(s)T 0 Q̇1(s)

+

U11(s) U21(s)T 0T

U21(s) U22(s) 0T

0 0 0

− εI ∈ Σs,

S11 = A0(τQ2(0, 0) +Q1(0)) + τA1Q2(−τ, 0) +
1

2τ
Q1(0), S12 = A1Q1(−τ),

S22 = −1

τ
Q1(−τ), S13(s) = τA0Q2(0, s) + τA1Q2(−τ, s) + τQ̇2(s, 0)T ,∫ 0

−τ

[
U11(s) ∗T
U21(s) U22(s)

]
ds = 0,

∫ 0

−τ
T (s)ds = 0,

d

ds
Q2(s, θ) +

d

dθ
Q2(s, θ) ∈ Σk, Q2(s, θ) ∈ Σk.

Then the system defined by ẋ(t) = A0x(t) +A1x(t− τ) is exponentially stable.
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Accuracy of Dual Stability Condition

Consider the simple delayed system

ẋ(t) = −x(t− τ)

which is known to be stable for τ ∈ [0, π2 ].

• The dual stability condition is only able to prove stability for τ ∈ [0, .7].
I Required polynomials of degree 8

• Primal condition using SOS yields τ = π
2 to 6 decimal places.

• Other system work better, but a gap remains.

• A result of structure imposed on the operator.

However, controllers based on this operator are not so conservative.
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Controllers

Again, we would like to add a controller

ẋ1(t) = A0x1(t) +

K∑
i=1

Aix2(t,−τi) +Bu(t)

Static State-Feedback u(t) = Kx.

• Recall the state of a TDS is X = Rn × L2.

• Hence we can expect K : Rn × L2 → Rm.
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An LOI for Full-State Feedback Synthesis

Corollary 8 (Full-State Feedback).

Suppose that ẋ = Ax generates a strongly continuous semigroup on L2 with
domain D(A) and B : U → D(A). Further suppose there exists a positive
operator P : D(A)→ D(A) which is self-adjoint with respect to the L2 inner
product and an operator Z : D(A)→ U such that

〈(AP +BZ)x, x〉+ 〈x, (AP +BZ)x〉 ≤ −〈x, x〉

for all x ∈ X. Let K = ZP−1. Then the dynamical system ẋ(t) = (A+BK)x
generates an exponentially stable semigroup.
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Full-State Feedback Controllers

Recall the question of controller

ẋ1(t) = A0x1(t) +

K∑
i=1

Aix2(t,−τi) +Bu(t)

Static State-Feedback: u(t) = Kx.

• K is recovered as K = ZP−1.

• Hence structure of K : Rn × L2 → is inherited from P−1 and Z.

• Let

(Zx)(s) = Z0x1 + Z1x2(−τ) +

∫ 0

−τ
Z2(s)x2(s)ds

But what is the structure of P−1???
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Previously (TDS 2009): An explicit inverse of the positive operator P > 0.

Theorem 9.

Consider the linear operator P defined by

Px(s) = M(s)x(s) +

∫
I

N(s, θ)x(θ)dθ,

where M(s) > 0 for all s ∈ I and N has a representation
N(s, θ) = Z(s)TRZ(θ) where R > 0. Define the linear operator P̂ by

P̂ x(s) = M(s)−1x(s) +

∫
I

N̂(s, θ)x(θ)dθ

Where

N̂(s, θ) = M(s)−1Z(s)TQZ(θ)M(θ)−1 Q = −R(S−1 +R)−1S−1

S =

∫
I

Z(s)M(s)−1Z(s)T ds.

Then P̂Px = PP̂x = x for any integrable function x.

However, in this paper, our operator has an extra term:

(Px)(s) = τQ2(s, 0)x(0) +Q1(s)x(s) +

∫ 0

−τ
Q2(s, θ)x(θ)dθ
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Theorem 10 (Expanded Operator Inversion Formula).

Consider

(Px)(s) := L(s)x(0) +M(s)x(s) +

∫
I

N(s, θ)x(θ) dθ

where M(s) > 0 for all s ∈ I and N has a representation
N(s, θ) = Z(s)TT Z(θ) where T > 0. Then

(P−1x)(s) := Y0(s)x(0) + Y1(s)x(s) +

∫
I

Y2(s, θ)x(θ) dθ.

where

Y0(s) = −H(s)(I + J)−1M−1(0), Y2(s, θ) = R(s, θ)−H(s)(I + J)−1R(0, θ),

Y1(s) = M−1(s), H(s) = M−1(s)L(s) +

∫
I

R(s, θ)L(θ) dθ,

R(s, θ) = M(s)−1Z(s)TQZ(θ)M(θ)−1, Q = −T (S−1 + T )−1S−1,

S =

∫
I

Z(s)M(s)−1Z(s)T ds, J := Q(0)K(0) +

∫
I

R(0, s)K(s) ds.

• This formula requires ρ(J) < 1.

• This formula can be implemented in Matlab/Maple/Mathematica.
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A Full-State Feedback Controller

Now we know what the controller K = ZP−1 will look like!
Lyapunov Operator:

(P̄−1x)(s) = Y0(s)x1 + Y1(s)x2(s) +

∫ 0

−τ
Y2(s, θ)x(θ)dθ

Pseudo-Variable, Z:

(Zx)(s) = Z0x1 + Z1x2(−τ) +

∫ 0

−τ
Z2(s)x2(s)ds

Then the controller u(t) has the form:

u(t) = Kx = K0x1(t) +K1x2(t− τ) +

∫ 0

−τ
K2(s)x2(t+ s)ds

where

K0 =Z0Y0(0)+Z1Y0(−τ)+

∫ 0

−τ
Z2(s)Y0(s)ds+Z0Y1(0)

K1 = Z1Y1(−τ)

K2(s) = Z0Y2(0, s) + Z1Y2(−τ, s) + Z2(s)Y1(s) +

∫ 0

−τ
Z2(θ)Y2(θ, s)dθ.

Contrast with output feedback forms u(t) = Kx(t) or u(t) = Kx(t− τ).
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Full-state Feedback Control: An LMI via SOS

Theorem 11.
Suppose there exist matrices Z0, Z1 and polynomials Q1, Q2, Z2, U, T such that the
following hold[
τQ2(0, 0) +Q1(0) + T (s) τQ2(0, s)

τQ2(s, 0) Q1(s)

]
− εI ∈ Σs,

−

S11 + ST11 + L11 + LT11 ∗T ∗T
S21 + LT12 S22 ∗T

S31(s) + L13(s)T 0 Q̇1(s)

+

U11(s) U21(s)T 0
U21(s) U22(s) 0

0 0 0

− εI ∈ Σs,

S11 = A0(τQ2(0, 0) +Q1(0)) + τA1Q2(−τ, 0) +
1

2τ
Q1(0), S21 = Q1(−τ)TAT1 ,

S22 = − 1

τ
Q1(−τ), S31(s) = τQ2(0, s)TAT0 + τQ2(−τ, s)TAT1 + τQ̇2(s, 0),

L11 = B0Z0, L12 = B0Z1, L13 = τB0Z2(s)∫ 0

−τ

[
U11(s) ∗T
U21(s) U22(s)

]
ds = 0,

∫ 0

−τ
T (s)ds = 0,

d

ds
Q2(s, θ) +

d

dθ
Q2(s, θ) ∈ Σk, Q2(s, θ) ∈ Σk.

Then ẋ(t) = A0x(t) +A1x(t− τ) +B0u(t) is full-state feedback stabilizable.
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Full-state Feedback Controller: Numerical Example

Consider a numerical example.

ẋ(t) =

[
0 0
0 1

]
x(t) +

[
−2 −.5
0 −1

]
x(t− τ) +

[
0
1

]
u(t)

Using a value of τ = 5s, we compute the following controller:

u(t) =

[
−3601
−944

]T
x(t) +

[
−.00891
.872

]T
x(t− τ)

+

∫ 0

−5

[
52.1 + 6.98s+ .00839s2 − .0710s3

12.7 + 1.50s− .0407s2 − .0190s3

]T
x(t+ s)ds
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Numerical Example
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Figure: Trajectory of a delayed system (τ = 5s) with full-state feedback
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Conclusions:

• A Dual approach to controller synthesis
I Convexifies the problem
I Can be applied to any

Lyapunov-Krasovskii-based approach.
I NOT limited to SOS.
I Biggest technical hurdle is operator

inversion.

• Practical Implications
I First numerical solution to

Full-State Feedback of
multi-state delayed systems.

Numerical Code Produced:
• Operator Inversion Code

I Code in Mathematica
I Complicated multi-state systems

require polynomial
approximation before inversion
of M(s) > 0 as per Theorem 9.

Available for download at
http://control.asu.edu

• Controller Synthesis Code
I Uses DelayTools toolbox of

functions
I Coupled with Mathematica Code

(Must be run separately)

• Simulation Code
I Approximates distributed delay

with 10 discrete delays
I Very slow for large delays
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