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Abstract: In this paper, we show that linear varieties of polynomials can be used to
approximate linear varieties of the space of continuous functions. This property is
important in applications where polynomial optimization is used as it allows one
to impose affine constraints on the decision variables with no loss of accuracy.
In particular, construction of Lyapunov functionals for systems with delay is
discussed.

Keywords: Polynomial Optimization, Semidefinite Programming, Polynomial
Approximation, Time-Delay, Stability

1. INTRODUCTION

In 1885, Weierstrass first published a result
(Weierstrass, 1885) showing that real-valued poly-
nomials can be used to approximate any con-
tinuous function on a compact interval to ar-
bitrary accuracy with respect to the supremum
norm. Various generalizations of the Weierstrass
approximation theorem have focused on general-
ized mappings (Stone, 1948) and alternate topolo-
gies (Krein, 1945). More recently, the Weierstrass
theorem has found applications in numerical com-
putation due to the ease with which polyno-
mial functions are parameterized and evaluated.
In particular, the Weierstrass theorem has often
been used to justify polynomial curve fitting and
its generalizations in the field of machine learn-
ing (Recht, 2006).

In this paper, we reexamine the Weierstrass the-
orem from the relatively new perspective of poly-
nomial optimization. These problems consider op-
timization over C[0, 1], the Banach space of con-
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tinuous functions on [0, 1]. The structure of the
problem is often a special case of

max Af

b + Bf ≥ 0
c + Cf = 0,

where A,B,C : C[0, 1] → R are bounded linear
operators, and c and b are constants. We would
like to determine if the existence of a continuous
optimal solution to the problem implies the exis-
tence of a polynomial optimal solution. In partic-
ular, we consider a problem which arises in Lya-
punov analysis of linear time-delay systems (Peet
et al., 2006). In this case, we are obliged to op-
timize over the set of continuous matrix-valued
functions T such that∫ 1

0

T (s)ds = 0.

We would like to determine whether we can as-
sume T is polynomial. If T is polynomial, then
we can apply recent advances in sum-of-squares
optimization techniques (Parrilo, 2000) and re-
sults in semialgebraic geometry (Stengle, 1973;
Schmüdgen, 1991; Putinar, 1993) which make it



possible to numerically solve polynomial opti-
mization problems in an asymptotic manner using
semidefinite programming. The main result of this
paper is to show that a continuous solution to the
proposed type of optimization problem implies the
existence of an equivalent polynomial solution.

2. NOTATION AND BACKGROUND

Most notation is standard. R is the real numbers.
Rn×m is the real matrices of dimension n by m.
C[I] is the Banach space of functions f : I → R
with norm

‖f‖∞ = sup
s∈I

|f(s)|.

When F is a continuous matrix-valued function
on I, then ‖F‖∞ denotes

‖F‖∞ = sup
s∈I

σ̄(F (s)),

where σ̄(F ) denotes the maximum singular value
norm.

The following is a statement of the Weierstrass
theorem.

Theorem 1. (Weierstrass Approximation Theorem).
Let f ∈ C[0, 1]. Then there is a sequence of poly-
nomials pn such that pn(x) converges uniformly
to f(x) on [0, 1].

3. LINEAR VARIETIES

The following proposition is an extension of the
Weierstrass theorem to linear varieties of the
Banach space C[0, 1].

Proposition 2. Let Li : C[0, 1] → R be bounded
linear operators. Then for any f ∈ C[0, 1] and δ >
0, there exists polynomial r such that ‖f − r‖∞ ≤
δ and Lir = Lif for i = 1, . . . , k.

PROOF. Proceed by induction. Suppose that
the proposition is true for k = m − 1. If Lm = 0,
then let p be defined as for m− 1. If Lmd = 0 for
all d ∈ C[0, 1], then let r be as given by the propo-
sition for m − 1. In this case Lmr = Lmf = 0.
Otherwise, there exists some g ∈ C[0, 1] such that
Lmg = c > 0. Let β be a uniform bound for
operators Li in i = 1, . . . , k. Assume without loss
of generality that ‖g‖∞ = 1. Let f̃ = f + δ

4g and
γ = min{ δ

8 , δc
8β }.

By assuming that the proposition is true for k =
m− 1, we assume there exists some polynomial p
such that

Lif = Lip for i = 1, . . . , m− 1

and
‖f̃ − p‖∞ ≤ γ ≤ δ/8.

Therefore

‖f − p‖∞ ≤ ‖f +
δ

4
g − p‖∞ +

δ

4
‖g‖∞

≤ δ

8
+

δ

4
< δ/2.

Furthermore,

Lmp = Lmf +
δ

4
Lmg − Lm

(
f +

δ

4
g − p

)

= Lmf +
δ

4
c− Lm

(
f +

δ

4
g − p

)

≥ Lmf +
δ

4
c− βγ ≥ Lmf +

δ

8
c > Lmf.

There also exists polynomial b with Lmb < Lmf
and Lif = Lib for i = 1, . . . , m − 1 by letting
f̃ = f − δ

4g.

Now since Lmp > Lmf and Lmb < Lmf , there
exists some λ ∈ [0, 1] such that λLmp + (1 −
λ)Lmb = Lf . Now let r = λp + (1 − λ)b. Then
r is polynomial,

Lmr = λLmp + (1− λ)Lmb = Lmf,

and

Lir = λLip + (1− λ)Lib

= λLif + (1− λ)Lif

= Lif for i = 1, . . . , m− 1,

and

‖f − r‖∞ = ‖λ(f − p) + (1− λ)(f − b)‖∞
≤ λ‖f − p‖∞ + (1− λ)‖f − b‖∞
≤ δ/2 + δ/2 = δ.

Therefore, if the proposition is true for k = m−1,
it is also true for k = m. Assume without loss of
generality that L1 = 0. Then the proposition is
true for k = 1 by the Weierstrass Approximation
Theorem.

4. MATRIX-VALUED VARIABLES AND
CONSTRAINTS

The Proposition also works with vector and
matrix-valued functions and constraints.

Corollary 3. Let Ti,j : C[0, 1] → R be bounded
linear operators. Then for any fj ∈ C[0, 1]
and δ > 0, there exist polynomials rj such
that ‖fj − rj‖∞ ≤ δ for j = 1, . . . , n and∑n

j=1 Ti,jrj =
∑n

j=1 Ti,jfj for i = 1, . . . , q.

PROOF. Proceed by induction. First assume
the Corollary holds for n = t − 1. By this as-
sumption, there exist polynomials rj such that



‖fj − rj‖∞ ≤ δ
2 for j = 1, . . . , t − 1 and∑t−1

j=1 Ti,jrj =
∑t−1

j=1 Ti,jfj for i = 1, . . . , q.

Let β be a uniform bound on the Ti,j . Let Li =
Ti,j for i = 1, . . . , q. Now, by Proposition 2, there
exists a polynomial rt such that ‖ft − rt‖∞ ≤ δ

2
and Ti,trt = Ti,tft for i = 1, . . . , q. Therefore∑t

j=1 Ti,jrj =
∑t

j=1 Ti,jfj for i = 1, . . . , q and the
Corollary holds for n = t. The Corollary holds for
n = 1 by Proposition 2.

Note: This Corollary and the equivalence of
norms implies that the variables and constraints
in Proposition 2 can be matrix-valued.

5. OPTIMIZATION

Consider the following problem with bounded
linear operators Li,Ki : C[0, 1] → R.

maxL0f

ci + Lif = 0, for i = 1, . . . , m

di + Kif ≥ 0, for i = 1, . . . , n (1)

Proposition 4. Consider optimization problem (1).
Suppose f ∈ C[0, 1] is feasible with objective value
h. Then there exists a feasible polynomial solution
with objective value h.

PROOF. Suppose f is feasible with objective
value h. By Corollary 3, there exists a polynomial
p such that

− h + L0p = 0
ci + Lip = ci + Lif = 0, for i = 1, . . . , m

di + Kip = di + Kif ≥ 0, for i = 1, . . . , n

Therefore, p is feasible with objective value h

6. AN EXAMPLE FROM TIME-DELAY

The motivating problem for this paper arises from
analysis of linear systems with discrete delays.
Specifically, we are interested in systems of the
form

ẋ(t) =
k∑

i=0

Aix(t− hi),

where x(t) ∈ Rn. In the simplest case we are given
information about the the delays h0, . . . , hk, the
matrices A0, . . . , Ak, and a matrix of polynomials,
B, and we would like to determine whether the
system is stable.

For such systems it is known that if the system is
stable, then this property can be proven using a
Lyapunov functional of the form

V (φ) =
∫ 0

−h

[
φ(0)
φ(s)

]T

M(s)
[
φ(0)
φ(s)

]
ds

+
∫ 0

−h

∫ 0

−h

φ(s)T N(s, t)φ(t) ds dt. (2)

For simplicity, we consider a single delay and
therefore M and N are continuous matrix-valued
functions. Here φ is an element of the state space,
which is the space of continuous functions map-
ping [−h, 0] to Rn. The derivative of V has a sim-
ilar structure to V and is also defined by matrix
functions which are linear transformations of M
and N .

We wish to prove stability by constructing func-
tionals of the form of Equation (2) using poly-
nomial optimization. In (Peet et al., 2006), a
necessary and sufficient condition was given for
positivity of the first part of the functional. A
version of this is as follows.

Theorem 5. Suppose M : [−h, 0] → S2n is contin-
uous. Then the following are equivalent.

(i) There exists an ε > 0 so that for all continu-
ous y : [−h, 0] → Rn

∫ 0

−h

[
y(0)
y(t)

]T

M(t)
[
y(0)
y(t)

]
dt ≥ ε‖y‖L2 (3)

(ii) There exist an η > 0 and a continuous
function T : [−h, 0] → Sm satisfies

M(t) +
[
T (t) 0

0 −ηI

]
≥ 0 for all t ∈ [−h, 0]

∫ 0

−h

T (t) dt = 0

This theorem converts positivity of an integral to
pointwise positivity of a function with a linear
constraint. If we assume M and T are polyno-
mial, pointwise positivity is equivalent to a sum-
of-squares constraint. The constraint that T in-
tegrates to zero is a bounded linear constraint.
The condition that the derivative of the Lyapunov
function be negative has a similar structure. For
details on formulating the semidefinite program,
we refer to (Peet et al., 2006).

The important question in this case is whether one
can assume that M and T are polynomials. The
following Proposition is not a complete proof that
one can assume that M and T are polynomial.
This is because not all of the constraints implied
by one function being the derivative of another
can be represented using a bounded operator L.
However, the proposition is otherwise complete
and offers progress in this direction.



Proposition 6. Suppose that L : Cm×m[0, 1] ×
Cn×n[0, 1] → Rp×p is a bounded linear operator.
Suppose for ε > 0, there exist continuous matrix-
valued functions M and T such that for some
ε > 0

M(s) + T (s) ≥ εI,

−D(s) + U(s) ≥ εI,

L(M, D) = 0,
∫ 1

0

T (s)ds = 0,

∫ 1

0

U(s)ds = 0.

Then there exist matrix-valued polynomials N, Q, R, E
such that for some η > 0

N(s) + Q(s) ≥ ηI,

−E(s) + R(s) ≥ ηI,

L(N, E) = 0,
∫ 1

0

Q(s)ds = 0,

∫ 1

0

R(s)ds = 0.

PROOF. By Proposition 2, there exist polyno-
mial matrices N,Q, R,E such that

∫ 1

0

Q(s)ds =
∫ 1

0

T (s)ds = 0,

∫ 1

0

R(s)ds =
∫ 1

0

U(s)ds = 0,

L(N, E) = L(M,D) = 0,

‖M −N‖∞ ≤ ε/3, ‖D − E‖∞ ≤ ε/3,

‖Q− T‖∞ ≤ ε/3, ‖R− U‖∞ ≤ ε/3.

The we have

N + Q = M + T + (N −M) + (Q− T ) ≥ ε/3I

−E + R = −D + U + (D − E) + (R− U) ≥ ε/3I,

as desired.

7. CONCLUSION

Numerous extensions of the Weierstrass approxi-
mation theorem have been proposed in the litera-
ture. Typically, these results either alter the alge-
bra used to approximate the continuous functions
or consider continuous functions on spaces other
than the reals. The contribution of this paper is
to instead consider approximations on subsets of
the continuous functions, and in particular those
defined by affine constraints. The application we
consider is stability of linear systems with de-
lay. Additionally, Proposition 2 can be used for
general problems in polynomial optimization and
in particular sum-of-squares programming prob-
lems (Parrilo, 2004). Ongoing work involves in-
vestigation of unbounded operators such as differ-
entiation and functions of multiple variables.

REFERENCES

Krein, M. G. (1945). On a problem of extrapola-
tion of A.N. Kolmogorov. Dokl. Akad. Nauk.
SSSR 46, 306–309.

Parrilo, P. A. (2000). Structured Semidefinite Pro-
grams and Semialgebraic Geometry Methods
in Robustness and Optimization. PhD thesis.
California Institute of Technology.

Parrilo, P. A. (2004). Web site for SOSTOOLS.
http://www.cds.caltech.edu/sostools/.

Peet, M., A. Papachristodoulou and S. Lall
(2006). On positive forms and the stability of
linear time-delay systems. In: Proceedings of
the IEEE Conference on Decision and Con-
trol.

Putinar, M. (1993). Positive polynomials on com-
pact semi-algebraic sets. Indiana Univ. Math.
J. 42(3), 969–984.

Recht, B. (2006). Convex Modeling with Priors.
PhD thesis. Massachusetts Institute of Tech-
nology.
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